CN111850554B - 一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法 - Google Patents

一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法 Download PDF

Info

Publication number
CN111850554B
CN111850554B CN202010793978.3A CN202010793978A CN111850554B CN 111850554 B CN111850554 B CN 111850554B CN 202010793978 A CN202010793978 A CN 202010793978A CN 111850554 B CN111850554 B CN 111850554B
Authority
CN
China
Prior art keywords
deposition
nbc
coating
phase
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010793978.3A
Other languages
English (en)
Other versions
CN111850554A (zh
Inventor
魏祥
陈志国
杨泽壬
郝鹏磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Humanities Science and Technology
Original Assignee
Hunan University of Humanities Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Humanities Science and Technology filed Critical Hunan University of Humanities Science and Technology
Priority to CN202010793978.3A priority Critical patent/CN111850554B/zh
Publication of CN111850554A publication Critical patent/CN111850554A/zh
Application granted granted Critical
Publication of CN111850554B publication Critical patent/CN111850554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法,属于耐磨涂层领域。本发明中所述涂层包含NbC相和Nb在Fe中的固溶体相,并且这两种物相的晶粒尺寸都是纳米级的。其制备过程包括选用以渗碳体为强化相的钢铁材料(0.02%≤C wt%≤1.1%)为基体材料,对基体材料进行表面处理,以纯Nb棒和渗碳体为强化相的钢铁材料(0.8%≤C wt%≤6.1%)为电极材料,采用电火花沉积在基体材料表面进行交替沉积。本发明中形成高硬度NbC相的碳元素来自于基体材料和钢铁电极材料,并且通过电火花沉积极快的冷却速率获得了纳米晶涂层,不但能形成无缺陷,大厚度的涂层,而且涂层具有高硬度,优异的耐磨耐性等优点。

Description

一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法
技术领域
本发明涉及一种耐磨涂层及其制备方法,特别是涉及一种以NbC为强化相的大厚度纳米晶耐磨涂层及其制备方法。
背景技术
表面工程技术能在材料表面制备出与基体材料不同,具有优异耐磨和耐腐蚀等特殊性能的涂层或覆层,能以最经济、最有效的方法改变材料表面及近表面区的形态、化学成分和组织结构,实现材料表面的强化、改性及修复与再制造。该技术在实际中已得到了广泛的应用,并创造了巨大的经济效益。
电火花沉积工艺就是一种利用电火花放电将电极材料熔化并转移至基体材料表面,以形成特定性能涂层的表面处理技术。其沉积的具体原理是,当作为阳极的电极材料通过旋转或振动的方式与作为阴极的基体材料(工件)无限接近时,利用短周期、高电流的电脉冲放电,产生的高达5000~10000℃的高温将电极材料与基体材料无限接近的微小区域瞬间熔化甚至气化,并在电场力的作用下,熔融的电极材料转移至基体材料表面与熔融的电极材料发生熔合并快速凝固,形成冶金结合的沉积层。与其他表面技术相比,电火花沉积工艺具有如下的优点:(1)能量输入底,基体保持在室温,热影响区小,因此,可以忽略其对基体的影响;(2)涂层与基体呈冶金结合且结合强度高,明显优于热喷涂;(4)设备便宜且操作简单;(5)适用原地或在线修复,这点对大型工件或在线设备的修复非常重要;(6)熔融电极材料能在基材表面快速凝固,能形成纳米晶,甚至非晶涂层,进一步提升材料的性能。然而,目前在电火花沉积制备耐磨涂层的实际生产中,为获得优异的耐磨性能,其所使用的电极材料一般都为高硬度的硬质合金或金属陶瓷。虽然该类涂层具有较好的耐磨性,获得了较多的应用,但同时也存在一些不足。高硬度硬质合金或金属陶瓷的高硬度来自于其大量脆性的硬质相,而电火花沉积是一种快速凝固的表面处理技术,因此,在电火花沉积过程中,制备的涂层中极易产生纵向的裂纹,不利于涂层耐磨性的提高,并且由于较大热应力的存在,使得涂层容易发生剥落,因此其实用的涂层厚度一般在50μm左右,并不能获得大厚度的耐磨涂层。为获得较大的涂层厚度,并避免涂层中裂纹的产生,最近,栾程群等报道了一种基于电火花沉积,以塑性较好的Nb棒为电极材料在热作模具钢H13钢表面制备Nb涂层的工作,结果表明,涂层截面组织连续、致密,无明显的缺陷,含Fe2Nb 和Fe0.2Nb0.8 两种物相,涂层的硬度达642HV,为基体的3.2倍,在同等摩擦磨损实验条件下,其磨损质量仅为基体材料的1/3,显著的提高了H13钢模具的寿命(栾程群,等. H13钢表面电火花沉积Nb涂层组织与性能研究,表面技术,2019,48(1):285-289.)。NbC具有比Fe2Nb 和Fe0.2Nb0.8 两种物相高得多的硬度,并已在高温合金(专利号:CN108467959B)、金属陶瓷(专利号:)、薄膜材料(专利号:CN105779951A)、焊丝(专利号:CN103894757A)和涂层(专利号:CN103526198A、CN103255414A)等领域获得了广泛的应用。但目前关于采用电火花沉积制备NbC强化的大厚度纳米晶耐磨涂层的研究仍未见公开报道。
发明内容
本发明的目的是提供一种以NbC为强化相的大厚度纳米晶耐磨涂层及其制备方法。
为达到上述目标,本发明采用下述技术方案:
本发明中NbC强化的大厚度纳米晶耐磨涂层包含NbC相和Nb在Fe中的固溶体相,并且这两相的晶粒尺寸都是纳米级的,所述大厚度纳米晶耐磨涂层中NbC相是电火花沉积过程中原位生成的,NbC相的质量分数大于5.2%,涂层的厚度大于等于50μm,小于等于250μm。
采用电火花沉积工艺对NbC强化的大厚度纳米晶耐磨涂层进行制备,具体的工艺步骤如下:
(1)对将用于电火花沉积的以渗碳体为强化相的钢铁材料(碳的质量分数为0.02%≤C wt%≤1.1%)进行表面处理,包括除锈,除油,如果表面有裂纹,先进行车削以消除裂纹层;
(2)采用纯Nb棒作为电极材料进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为500~3000W,输出电压为100~300V,沉积速率为0.5-10min/cm2
(3)采用碳的质量分数大于等于0.8%,小于等于6.1%,并以渗碳体为强化相的钢铁材料作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积。
(4)采用纯Nb棒作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为500~3000W,输出电压为100~300V,沉积速率为0.5-10min/cm2
(5)依次重复上述第(3)和第(4)步骤,直到达到涂层厚度的要求。
由于采用了上述技术方案,本发明提供的一种以NbC为强化相的大厚度纳米晶耐磨涂层及其制备方法具有这样的有益效果,制备的涂层中以高硬度的NbC为强化相,极大的提高涂层的耐磨性,并且由于电火花沉积过程中极快的冷却速率,使得制备的涂层的晶粒为纳米级,通过细晶强化机制,进一步提高了涂层的硬度和耐磨性;通过细晶强化改善涂层的塑韧性,并通过与涂层中塑性好的Nb在Fe中的固溶体相的共同作用,使得涂层在快速凝固的过程中能通过塑性变形释放大量的热应力,有效避免了涂层中纵向裂纹的产生,并有利于涂层厚度的增加;采用的基体材料和钢铁电极材料中的强化相为渗碳体(Fe3C),其稳定性低于NbC,因此为电火花沉积过程中生成NbC创造了先决条件;在文献报道的有关含NbC相的涂层的制备中,NbC中的碳元素都为外部添加,例如以石墨的形式,该种工艺条件下碳元素较难在涂层中均匀分布,本发明中NbC中的C元素来自于基体材料本身,避免了该问题的产生;NbC强化的纳米晶耐磨涂层中高硬度的NbC相为原位生成,使得NbC相与Nb在Fe中的固溶体相的界面结合强度高,有利于涂层综合力学性能和耐磨性的提高。最重要的是,通过以纯铌棒为电极材料和以渗碳体为强化相的钢铁电极材料的交替沉积,产生的有益效果有,为获得较高NbC含量的高耐磨涂层,在制备该涂层时其基体材料不再限定于具有较高碳含量的中、高碳素钢,拓展了该技术的应用范围;交替沉积使得涂层在获得大厚度,并保持纳米晶组织结构的同时,能显著的释放应力,通过以渗碳体为强化相的钢铁电极材料成分(碳的质量分数大于等于0.8%,小于等于6.1%)大范围的调整,实现了涂层力学性能和耐磨性大范围的调控。
具体实施方式
下面结合实施例对本发明作进一步的描述。
实施例1
(1)对将用于电火花沉积的以渗碳体为强化相的钢铁材料(碳的质量分数为0.02%)进行表面处理,包括除锈,除油,如果表面有裂纹,先进行车削以消除裂纹层;
(2)采用纯Nb棒作为电极材料进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为3000W,输出电压为200V,沉积速率为0.5 min /cm2
(3)采用碳的质量分数为0.8%,并以渗碳体为强化相的钢铁材料作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为3000W,输出电压为250V,沉积速率为0.5 min /cm2
(4)采用纯Nb棒作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为500W,输出电压为100V,沉积速率为10min/cm2
(5)依次重复10次上述第(3)和第(4)步骤。
最终制备获得的NbC强化的大厚度纳米晶耐磨涂层的厚度为120μm。
实施例2
(1)对将用于电火花沉积的以渗碳体为强化相的钢铁材料(碳的质量分数为0.5%)进行表面处理,包括除锈,除油,如果表面有裂纹,先进行车削以消除裂纹层;
(2)采用纯Nb棒作为电极材料进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为500W,输出电压为100V,沉积速率为10 min /cm2
(3)采用碳的质量分数为2.9%,并以渗碳体为强化相的钢铁材料作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为1500W,输出电压为150V,沉积速率为6 min /cm2
(4)采用纯Nb棒作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为1000W,输出电压为180V,沉积速率为8min/cm2
(5)依次重复5次上述第(3)和第(4)步骤。
最终制备获得的NbC强化的大厚度纳米晶耐磨涂层的厚度为80μm。
实施例3
(1)对将用于电火花沉积的以渗碳体为强化相的钢铁材料(碳的质量分数为0.9%)进行表面处理,包括除锈,除油,如果表面有裂纹,先进行车削以消除裂纹层;
(2)采用纯Nb棒作为电极材料进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为2000W,输出电压为300V,沉积速率为8 min /cm2
(3)采用碳的质量分数为6.1%,并以渗碳体为强化相的钢铁材料作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为500W,输出电压为100V,沉积速率为10min /cm2
(4)采用纯Nb棒作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为3000W,输出电压为300V,沉积速率为0.5min/cm2
(5)依次重复20次上述第(3)和第(4)步骤。
最终制备获得的NbC强化的大厚度纳米晶耐磨涂层的厚度为250μm。
实施例4
(1)对将用于电火花沉积的以渗碳体为强化相的钢铁材料(碳的质量分数为1.1%)进行表面处理,包括除锈,除油,如果表面有裂纹,先进行车削以消除裂纹层;
(2)采用纯Nb棒作为电极材料进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为1600W,输出电压为300V,沉积速率为4min /cm2
(3)采用碳的质量分数为5.2%,并以渗碳体为强化相的钢铁材料作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为2000W,输出电压为190V,沉积速率为5min /cm2。。
(4)采用纯Nb棒作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为2200W,输出电压为190V,沉积速率为5min/cm2
(5)依次重复5次上述第(3)和第(4)步骤。
最终制备获得的NbC强化的大厚度纳米晶耐磨涂层的厚度为64μm。
实施例5
(1)对将用于电火花沉积的以渗碳体为强化相的钢铁材料(碳的质量分数为0.7%)进行表面处理,包括除锈,除油,如果表面有裂纹,先进行车削以消除裂纹层;
(2)采用纯Nb棒作为电极材料进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为2600W,输出电压为300V,沉积速率为10min /cm2
(3)采用碳的质量分数为3.5%,并以渗碳体为强化相的钢铁材料作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为900W,输出电压为180V,沉积速率为9 min /cm2。。
(4)采用纯Nb棒作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为2100W,输出电压为260V,沉积速率为10min/cm2
(5)依次重复3次上述第(3)和第(4)步骤。
最终制备获得的NbC强化的大厚度纳米晶耐磨涂层的厚度为50μm。

Claims (4)

1.一种NbC强化的大厚度纳米晶耐磨涂层,其特征是:NbC强化的大厚度纳米晶耐磨涂层包含NbC相和Nb在Fe中的固溶体相,并且这两相的晶粒尺寸都是纳米级的,所述大厚度纳米晶耐磨涂层中NbC相是电火花沉积过程中原位生成的,NbC相的质量分数大于5.2%,涂层的厚度大于等于50μm,小于等于250μm。
2.一种根据权利要求1所述的一种NbC强化的大厚度纳米晶耐磨涂层的制备方法,其特征是采用电火花沉积工艺对该涂层进行制备,具体的工艺步骤如下:
(1)对将用于电火花沉积的基体材料进行表面处理,包括除锈,除油,如果表面有裂纹,先进行车削以消除裂纹层,所述基体材料是碳元素的质量分数为0.02%≤C wt%≤1.1%,并以渗碳体为强化相的钢铁材料;
(2)采用纯Nb棒作为电极材料进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为500~3000W,输出电压为100~300V,沉积速率为0.5-10min/cm2
(3)采用碳的质量分数大于等于0.8%,小于等于6.1%,并以渗碳体为强化相的钢铁材料作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积;
(4)采用纯Nb棒作为电极材料在上一步骤中制备获得的涂层表面进行电火花沉积,沉积过程中采用惰性气体进行保护,沉积的具体工艺参数为:输出功率为500~3000W,输出电压为100~300V,沉积速率为0.5-10min/cm2
(5)依次重复上述第(3)和第(4)步骤,直到达到涂层厚度的要求。
3.根据权利要求2所述的一种NbC强化的大厚度纳米晶耐磨涂层的制备方法,其特征是:所述纳米晶耐磨涂层中NbC相形成时其碳元素来自于以渗碳体为强化相的钢铁基体材料和电极材料。
4.根据权利要求3所述的一种NbC强化的大厚度纳米晶耐磨涂层的制备方法,其特征是:所述以渗碳体为强化相的钢铁基体材料中碳元素的质量分数为,0.1%≤C wt%≤1.0%。
CN202010793978.3A 2020-08-10 2020-08-10 一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法 Active CN111850554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010793978.3A CN111850554B (zh) 2020-08-10 2020-08-10 一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010793978.3A CN111850554B (zh) 2020-08-10 2020-08-10 一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN111850554A CN111850554A (zh) 2020-10-30
CN111850554B true CN111850554B (zh) 2021-05-25

Family

ID=72972681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010793978.3A Active CN111850554B (zh) 2020-08-10 2020-08-10 一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN111850554B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170016454A1 (en) * 2015-02-25 2017-01-19 United Technologies Corporation Method for coating compressor blade tips

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"H13钢表面电火花沉积Nb涂层组织与性能研究";栾程群等;《表面技术》;20190131;第48卷(第1期);第285-290页 *
"THE ELECTRON NATURE OF INTERACTION OF MATERIALS IN ELECTROSPARK ALLOYING OF IRON WITH CARBIDES";A. D. Verkhoturov等;《Powder Metallurgy & Metal Ceramic》;19851231;第927-930页 *

Also Published As

Publication number Publication date
CN111850554A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN101555580B (zh) 一种金属轧辊表面电火花强化方法
CN102465294B (zh) 一种大面积激光熔覆高硬度镍基合金材料的方法
Chen et al. Surface modification of resistance welding electrode by electro-spark deposited composite coatings: Part I. Coating characterization
US20220152705A1 (en) Process for forming wrought structures using cold spray
CN108866538B (zh) 激光熔覆原位合成复合碳化物(Ti,Nb)C强化Ni基涂层及制备
CN111719152B (zh) 一种NbC/Fe2B复合梯度耐磨涂层及其制备方法
CN101954549B (zh) 一种氩弧熔覆铁基粉末
CN110295363A (zh) 一种AlCoCrFeMnNi高熵合金粉末及其熔覆层的制备方法
CN113718247B (zh) 一种铜合金损伤件等离子熔覆修复方法
Sunil Developing surface metal matrix composites: A comparative survey
CN111850554B (zh) 一种NbC强化的大厚度纳米晶耐磨涂层及其制备方法
CN113278960B (zh) 一种新型等离子堆焊Fe-Mo2FeB2过渡层的制备方法
CN111876776B (zh) 一种NbC强化具有硬度梯度的纳米晶耐磨涂层及其制备方法
Li et al. Experimental study in SEAM machining performance of W-Cu alloy electrode materials
CN111719151B (zh) 一种NbC强化的纳米晶耐磨涂层及其制备方法
CN115074724B (zh) 使用V元素增强Ni基耐磨激光熔覆涂层及其制备方法
US5870663A (en) Manufacture and use of ZrB2 /CU composite electrodes
CN111172532A (zh) 一种在纯钛板材表面制备中熵合金涂层的方法
CN102864453B (zh) 激光熔覆原位合成硼化物陶瓷涂层及其制备方法
CN105695987B (zh) 一种金属水轮机转轮表面纳米碳化钨强化方法
Alam et al. Recent trends in surface cladding on AISI 1045 steel substrate: a review
Kumari Study of TiC coating on different type steel by electro discharge coating
CN107338371A (zh) 一种新型司太立合金及其制备方法
Kumar et al. A sustainable development perspective and evaluating the impact of laser cladding parameters on mild steel
CN106011854A (zh) 一种铁硼化合物涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant