CN111850115B - 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型 - Google Patents

用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型 Download PDF

Info

Publication number
CN111850115B
CN111850115B CN201910341307.0A CN201910341307A CN111850115B CN 111850115 B CN111850115 B CN 111850115B CN 201910341307 A CN201910341307 A CN 201910341307A CN 111850115 B CN111850115 B CN 111850115B
Authority
CN
China
Prior art keywords
tki
renal cancer
metastatic renal
dna methylation
patients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910341307.0A
Other languages
English (en)
Other versions
CN111850115A (zh
Inventor
罗俊航
韦锦焕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910341307.0A priority Critical patent/CN111850115B/zh
Publication of CN111850115A publication Critical patent/CN111850115A/zh
Application granted granted Critical
Publication of CN111850115B publication Critical patent/CN111850115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种用于预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点分子标记物及其应用。所述DNA甲基化位点分子标记物包括:cg00396667、cg18815943、cg03890877、cg07611000和cg14391855。通过检测上述5个DNA甲基化位点在转移性肾癌患者组织中的甲基化水平,并通过相应的预测模型,达到预测转移性肾癌患者应用TKI类靶向药物敏感性的目的,提高了转移性肾癌患者应用TKI类靶向药物人群界定的准确性,对患者的进一步诊治方案和延长患者生存期具有重大意义。

Description

用于预测晚期肾癌应用TKI类药物敏感性的分子诊断模型
技术领域
本发明涉及用于预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点分子标记物及其应用,涉及用于预测转移性肾癌患者术后对TKI类靶向药物敏感人群的界定。
背景技术
在全球范围内,每年约有300000人被诊断为肾癌,每年约有129000人死于肾癌[1,2]。肾癌的主要组织学亚型为透明细胞癌(clearcell renal cell carcinoma,ccRCC),ccRCC约占所有肾癌病例的80%,为方便叙述,以下简称肾癌[1]。大约20%-30%的肾癌患者在确诊时肿瘤已发生远处转移而不能接受手术根治[3]。此类转移性肾癌患者的预后差,中位生存期仅为6-12个月,5年生存率小于10%,局限性肾癌患者术后仍有20%-40%的患者出现远处转移[3, 4]。近年来,美国食品药品管理局(FDA)先后审批通过了一系列TKI类靶向药物,如舒尼替尼、索拉菲尼及帕唑帕尼等。这些药物当前已广泛用于转移性肾癌的一线和二线治疗。其疗效一直是人们关注的焦点,但研究发现不同的个体对药物的反应存在较大差异[5-7]。近年来,多项研究利用分子标记物,对病人进行个体化治疗,回顾性和前瞻性研究已经报道了TKI类靶向药物治疗获益的预后和预测指标,包括血清标志物[8, 9]、肿瘤组织内标志物[10-12]和基因变异标记物[13-15],然而至今仍没有用于晚期转移性肾癌患者接受TKI类靶向药物治疗是否获益的预后/预测指标应用于临床。
DNA甲基化(DNA methylation)为DNA化学修饰的一种形式,在不改变DNA序列的前提下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团,引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。DNA甲基化是癌症发生发展的关键因素之一,其作为诊断和预后的生物标记物迅速引起了临床的关注[16-18]。随着全基因组技术的不断发展,对包括肾癌在内的人类癌症相关的DNA甲基化的认识逐渐深入[19-21]。我们前期通过DNA甲基化芯片筛选发现5个DNA甲基化位点分子标记物cg00396667、cg18815943、cg03890877、cg07611000和cg14391855与肾癌患者总体生存密切相关[22]。本发明进一步应用该5个DNA甲基化分子标记物构建新的分子预测模型,用于转移性肾癌患者应用TKI类靶向药物敏感性的评估。
专利CN200680012835.2探索MTOR抑制剂疗法的敏感性的生物标记物,但局限于MTOR抑制剂,而且局限于单个分子标记物,其检测方法受蛋白、mRNA稳定性的影响大等问题。目前,还未见有基于多个DNA甲基化位点模型对转移性肾癌患者应用TKI类靶向药物敏感性预测的报道。
发明内容
本发明所要解决的技术问题是克服临床晚期转移性肾癌应用TKI类靶向药物敏感性预测方面存在的缺陷和不足,提供一组用于预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点分子标记物cg00396667、cg18815943、cg03890877、cg07611000和cg14391855,通过综合分析上述5个DNA甲基化位点在转移性肾癌患者组织中甲基化水平,通过建立分子预后模型,达到预测转移性肾癌患者应用TKI类靶向药物敏感性的目的。
本发明的目的是提供一种用于预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点的分子标记物。
本发明的另一个目的是提供所述DNA甲基化位点的分子标记物的应用。
本发明的上述目的是通过以下技术方案给予实现的:预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点的分子标记物,包括cg00396667、cg18815943、cg03890877、cg07611000和cg14391855。
本发明还请求保护上述DNA甲基化位点分子标记物在制备预测转移性肾癌患者应用TKI类靶向药物敏感性的试剂盒或构建预测转移性肾癌患者应用TKI类靶向药物敏感性的模型中的应用。
一种用于检测权利要求1所述DNA甲基化位点分子标记物的焦磷酸测序技术扩增及延伸引物组,其特征在于,包括分别检测cg00396667、cg18815943、cg03890877、cg07611000和cg14391855位点甲基化水平的扩增引物及延伸引物,其序列依次如表1所示。
本发明还提供一种用于预测转移性肾癌患者应用TKI类靶向药物敏感性的模型,其特征在于,所述模型为通过检测cg00396667、cg18815943、cg03890877、cg07611000和cg14391855这5个DNA甲基化位点的甲基化水平来计算转移性肾癌患者应用TKI类靶向药物敏感性的预后评分指数,预后评分指数=(–0.745×cg00396667) + (0.068×cg18815943)+ (70.421×cg03890877) + ( –0.608×cg07611000) + (–10.236×cg14391855)。
本发明还提供一种用于预测转移性肾癌患者应用TKI类靶向药物敏感性的试剂盒,其特征在于,包含权利要求3所述的焦磷酸测序扩增及测序引物组。
本发明还提供利用上述试剂盒进行转移性肾癌患者应用TKI类靶向药物敏感性的方法为:
S1、提取肾癌组织样品DNA;
S2、利用上述引物组对S1的样本DNA进行焦磷酸测序检测,确定DNA甲基化位点甲基化水平;
S3、根据转移性肾癌患者应用TKI类靶向药物敏感性预后评分指数=(–0.745×cg00396667) + (0.068×cg18815943) + (70.421×cg03890877) + ( –0.608×cg07611000) + (–10.236×cg14391855)计算出晚期转移性组织样本的预后评分指数,以预测转移性肾癌患者应用TKI类靶向药物敏感性。
与现有技术相比,本发明具有以下有益效果:
本发明公开了一组用于预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点分子标记物,所述位点包括cg00396667、cg18815943、cg03890877、cg07611000和cg14391855。通过检测上述5个DNA甲基化位点在转移性肾癌患者组织中的甲基化水平,并通过相应的预测模型,达到预测转移性肾癌患者应用TKI类靶向药物敏感性的目的,对患者的进一步诊治方案和延长患者生存期具有重大意义。
表1:5个DNA甲基化位点焦磷酸测序扩增引物及测序引物
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1 用于预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点及预后风险模型建立。
1、肾癌预后相关5个DNA甲基化位点构建预后风险模型
(1)在TCGA 数据库中33例应用TKI类靶向药物转移性肾癌患者,从甲基化芯片数据(Infinium HumanMethylation 450 BeadChip)提取5个DNA甲基化位点分子标记物(cg00396667、cg18815943、cg03890877、cg07611000和cg14391855)的数据,同时提取这33例患者临床病理资料、随访数据及TKI类靶向药物使用情况资料;
(2)采用COX回归模型方法,构建用于预测转移性肾癌患者应用TKI类靶向药物敏感性的分子模型,其线性方程表示如下:预后评分指数=(–0.745×cg00396667) + (0.068×cg18815943) + (70.421×cg03890877) + ( –0.608×cg07611000) + (–10.236×cg14391855)。
2、TCGA数据组评估5个DNA甲基化模型预测准确度
根据5个DNA甲基化水平,计算TCGA数据库33例应用TKI类靶向药物患者的预后评分指数,分数范围从-2.17至1.29。通过风险模型计算出每个样本的预后评分指数,我们使用x-tile软件选取0.815为最佳截点(Cut-off)值,将TCGA数据库中应用TKI类靶向药物转移性肾癌患者分为低风险组和高风险组,低风险组患者与高风险组患者生存时间显著差异(log rank P=0.002,图1)。
3、中山大学数据组验证预后风险模型
(1)设计5个DNA甲基化位点分子标记物(cg00396667、cg18815943、cg03890877、cg07611000和cg14391855)的焦磷酸测序扩增引物和测序引物;
(2)提取35例中山大学附属第一医院肾癌石蜡标本组织DNA,采用步骤(1)的特异性引物,通过焦磷酸测序的方法,检测5个DNA甲基化位点分子标记物(cg00396667、cg18815943、cg03890877、cg07611000和cg14391855)甲基化水平;
(3)通过风险模型计算出每个样本的预后评分指数,选取与TCGA组相同的Cut-off值(0.815),将中山大学组应用TKI类靶向药物的35例转移性肾癌患者患者分为低风险组和高风险组,低风险组患者与高风险组患者生存时间显著差异(log rank P=0.029,图2)。基于上述技术方案,本发明所述的DNA甲基化位点及检测方法可有效的用于预测转移性肾癌患者应用TKI类靶向药物敏感性。通过检测患者肿瘤组织中cg00396667、cg18815943、cg03890877、cg07611000和cg14391855共5个DNA甲基化水平的变化,用于预测转移性肾癌患者应用TKI类靶向药物敏感性,提高了转移性肾癌患者应用TKI类靶向药物人群界定的准确性,对患者的进一步诊治方案和延长患者生存期具有重大意义。
实施例2 用于预测转移性肾癌患者应用TKI类靶向药物敏感性的试剂盒。
用于预测转移性肾癌患者应用TKI类靶向药物敏感性的试剂盒,所述试剂盒包含下列所示检测5个DNA甲基化位点焦磷酸延伸引物及测序引物:
具体地,利用上述试剂盒进行转移性肾癌患者应用TKI类靶向药物敏感性的方法为:
S1、提取转移性肾癌组织样品DNA;
S2、利用上述引物组对S1的样本DNA进行焦磷酸测序技术检测,确定5个DNA甲基化分子标记物甲基化水平;
S3、根据预后风险模型-预后评分指数=(–0.745×cg00396667) + (0.068×cg18815943) + (70.421×cg03890877) + ( –0.608×cg07611000) + (–10.236×cg14391855)计算出转移性肾癌患者应用TKI类靶向药物敏感性的评分指数。
以上对本发明公开的一种用于预测转移性肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点以及检测方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
参考文献
1. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman Jet al. Epidemiology of Renal Cell Carcinoma.Eur Urol2019, 75(1):74-84.
2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, RebeloMet al. Cancer incidence and mortality worldwide: sources, methods and majorpatternsin GLOBOCAN 2012.Int J Cancer2015, 136(5):E359-86.
3. Janzen NK, Kim HL, Figlin RA, Belldegrun AS. Surveillance afterradical orpartial nephrectomy for localized renal cell carcinoma andmanagement of recurrent disease.Urol Clin North Am2003, 30(4):843-52.
4. Escudier B. Advanced renal cell carcinoma: current and emergingmanagementstrategies.Drugs2007, 67(9):1257-64.
5. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, RixeOet al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma.N Engl J Med2007, 356(2):115-24.
6. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff Jet al. Pazopanib in locally advanced or metastatic renal cell carcinoma: resultsof arandomized phase III trial.J Clin Oncol2010, 28(6):1061-8.
7. Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, Khoo Vet al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis,treatment and follow-up.Ann Oncol2014, 25 Suppl 3:iii49-56.
8. Tran HT, Liu Y, Zurita AJ, Lin Y, Baker-Neblett KL, Martin AMet al. Prognostic or predictive plasma cytokines and angiogenic factors forpatientstreated with pazopanib for metastatic renal-cell cancer: aretrospective analysis of phase 2 and phase 3 trials.Lancet Oncol2012, 13(8):827-37.
9. Harmon CS, DePrimo SE, Figlin RA, Hudes GR, Hutson TE, MichaelsonMDet al. Circulating proteins as potential biomarkers of sunitinib andinterferon-alphaefficacy in treatment-naive patients with metastatic renalcell carcinoma.Cancer Chemother Pharmacol2014, 73(1):151-61.
10. Hedlund EM, Yang X, Zhang Y, Yang Y, Shibuya M, Zhong Wet al.Tumor cell-derived placental growth factor sensitizes antiangiogenic andantitumor effects ofanti-VEGF drugs.Proc Natl Acad Sci U S A2013, 110(2):654-9.
11. Miles KM, Seshadri M, Ciamporcero E, Adelaiye R, Gillard B,Sotomayor Pet al. Dll4 blockade potentiates the anti-tumor effects of VEGFinhibition in renalcell carcinoma patient-derived xenografts.PLoS One2014, 9(11):e112371.
12. Stewart GD, O'Mahony FC, Laird A, Rashid S, Martin SA, Eory Let al. Carbonic anhydrase 9 expression increases with vascular endothelialgrowthfactor-targeted therapy and is predictive of outcome in metastaticclear cell renal cancer.Eur Urol2014, 66(5):956-63.
13. Garcia-Donas J, Esteban E, Leandro-Garcia LJ, Castellano DE,Gonzalez del Alba A, Climent MAet al. Single nucleotide polymorphismassociations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre,observational, prospective study.Lancet Oncol2011, 12(12):1143-50.
14. van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, GuchelaarHJ, van Erp NPet al. Genetic polymorphisms associated with a prolongedprogression-free survival inpatients with metastatic renal cell cancertreated with sunitinib.Clin Cancer Res2011, 17(3):620-9.
15. Xu CF, Bing NX, Ball HA, Rajagopalan D, Sternberg CN, Hutson TEet al. Pazopanib efficacy in renal cell carcinoma: evidence for predictivegenetic markers inangiogenesis-related and exposure-related genes.J Clin Oncol2011, 29(18):2557-64.
16. Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, Ames Set al.DNA methylation markers and early recurrence in stage I lung cancer.N Engl J Med2008, 358(11):1118-28.
17. Castelo-Branco P, Choufani S, Mack S, Gallagher D, Zhang C,Lipman Tet al. Methylation of the TERT promoter and risk stratification ofchildhood brain tumours: anintegrative genomic and molecular study.Lancet Oncol2013, 14(6):534-42.
18. Esteller M. Relevance of DNA methylation in the management ofcancer.Lancet Oncol2003, 4(6):351-8.
19. Sandoval J, Mendez-Gonzalez J, Nadal E, Chen G, Carmona FJ,Sayols Set al. A prognostic DNA methylation signature for stage I non-small-cell lung cancer.J Clin Oncol2013, 31(32):4140-7.
20. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, RaphaelBJ, Mungall AJet al. Genomic and epigenomic landscapes of adult de novo acutemyeloid leukemia.N Engl J Med2013, 368(22):2059-74.
21. Arai E, Sakamoto H, Ichikawa H, Totsuka H, Chiku S, Gotoh Met al.Multilayer-omics analysis of renal cell carcinoma, including the whole exome,methylome and transcriptome.Int J Cancer2014, 135(6):1330-42.
22. Wei JH, Haddad A, Wu KJ, Zhao HW, Kapur P, Zhang ZLet al. A CpG-methylation-based assay to predict survival in clear cell renal cellcarcinoma.Nat Commun2015, 6:8699.

Claims (2)

1.一组用于预测晚期肾癌患者应用TKI类靶向药物敏感性的DNA甲基化位点分子标记物,其特征在于,包括cg00396667、cg18815943、cg03890877、cg07611000和cg14391855。
2.一种用于检测权利要求1所述DNA甲基化位点分子标记物的焦磷酸测序引物组,其特征在于,包括分别检测cg00396667、cg18815943、cg03890877、cg07611000和cg14391855位点甲基化水平的扩增引物及延伸引物,其序列依次如表1所示。
CN201910341307.0A 2019-04-25 2019-04-25 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型 Active CN111850115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910341307.0A CN111850115B (zh) 2019-04-25 2019-04-25 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910341307.0A CN111850115B (zh) 2019-04-25 2019-04-25 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型

Publications (2)

Publication Number Publication Date
CN111850115A CN111850115A (zh) 2020-10-30
CN111850115B true CN111850115B (zh) 2024-03-05

Family

ID=72951535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910341307.0A Active CN111850115B (zh) 2019-04-25 2019-04-25 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型

Country Status (1)

Country Link
CN (1) CN111850115B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060278A1 (ja) * 2014-10-17 2016-04-21 国立大学法人東北大学 大腸癌に対する薬物療法の感受性を予測する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150218643A1 (en) * 2014-02-06 2015-08-06 Brittany N. Lasseigne Differential methylation level of cpg loci that are determinative of kidney cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060278A1 (ja) * 2014-10-17 2016-04-21 国立大学法人東北大学 大腸癌に対する薬物療法の感受性を予測する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TKI治疗晚期肾癌预后的生物学标志物;郑克文;李汉忠;李永强;;现代泌尿外科杂志(03);全文 *
转移性肾癌的内科治疗及相关研究进展;赵;吴瑾;;癌症进展(第07期);全文 *

Also Published As

Publication number Publication date
CN111850115A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Craig et al. Tumour evolution in hepatocellular carcinoma
McNamara et al. Impact of high tumor mutational burden in solid tumors and challenges for biomarker application
Riely et al. Clinical course of patients with non–small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib
Rydzanicz et al. Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications
Taniguchi et al. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib
EP2412823B1 (en) Gene expression markers for colorectal cancer prognosis
US20140206545A1 (en) Gene expression markers for prediction of patient response to chemotherapy
Langevin et al. Leukocyte-adjusted epigenome-wide association studies of blood from solid tumor patients
Suh et al. Serum neuron-specific enolase levels predict the efficacy of first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in patients with non-small cell lung cancer harboring EGFR mutations
Lenz et al. Association of consensus molecular subtypes and molecular markers with clinical outcomes in patients with metastatic colorectal cancer: biomarker analyses from LUME-colon 1
Karashima et al. Expression of angiogenesis‐related gene profiles and development of resistance to tyrosine‐kinase inhibitor in advanced renal cell carcinoma: Characterization of sorafenib‐resistant cells derived from a cutaneous metastasis
EP3945135A1 (en) Biomarkers for diagnosing and monitoring lung cancer
CN111850115B (zh) 用于预测晚期肾癌应用tki类药物敏感性的分子诊断模型
Agarwal et al. Genetic and cytokine changes associated with symptomatic stages of CLL
US20100184773A1 (en) Germline Polymorphisms in the Angiogenic Pathway Predict Tumor Recurrence in Cancer Therapy
Nordentoft et al. Whole-genome Mutational Analysis for Tumor-informed Detection of Circulating Tumor DNA in Patients with Urothelial Carcinoma
US20040170983A1 (en) Methods of determining a chemotherapuetic regimin based on loss of heterozygosity at the thymidylate synthase locus
Ji et al. Relationship between glutathione S-transferase P1 (GSTP1), X-ray repair cross complementing group 1 (XRCC1) and 5, 10-methylenetetrahydrofolate reductase (5, 10-MTHFR) gene polymorphisms and response to chemotherapy in advanced gastric cancer
Reese et al. Current and future biomarkers in the management of renal cell carcinoma
WO2009151448A1 (en) Thymidylate synthase haplotype is associated with tumor recurrence in stage ii and stage iii colon cancer patients
ES2856232A1 (es) Biomarcadores para predecir la respuesta de un sujeto a una terapia con bcg, metodos y usos basados en los mismos
Powrózek et al. Correlation between TS, MTHFR, and ERCC1 gene polymorphisms and the efficacy of platinum in combination with pemetrexed first-line chemotherapy in mesothelioma patients
WO2015044495A1 (es) Método para predecir la respuesta al tratamiento con quimioterapia en pacientes de cáncer colorrectal
US8568968B2 (en) EGFR polymorphisms predict gender-related treatment
Liu et al. High TROAP Expression Correlates With Shorter Survival in Patients With Glioma: A Study Based on Multiple Data Fusion Analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant