CN111849992A - 靶向c-Met基因的siRNA分子及其应用 - Google Patents

靶向c-Met基因的siRNA分子及其应用 Download PDF

Info

Publication number
CN111849992A
CN111849992A CN202010824358.1A CN202010824358A CN111849992A CN 111849992 A CN111849992 A CN 111849992A CN 202010824358 A CN202010824358 A CN 202010824358A CN 111849992 A CN111849992 A CN 111849992A
Authority
CN
China
Prior art keywords
sirna
met
sirna molecule
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010824358.1A
Other languages
English (en)
Inventor
陈莉
王桂兰
周家名
秦婧
顾王露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202010824358.1A priority Critical patent/CN111849992A/zh
Publication of CN111849992A publication Critical patent/CN111849992A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一组靶向c‑Met基因的siRNA分子及其应用,属于生物医药技术领域。该siRNA分子由正义链和反义链组成,体外实验证明,本发明的siRNA分子的反义链可特异性地与抑制c‑Met基因的mRNA结合,降解mRNA,从而干扰转录后翻译过程,诱导肿瘤细胞凋亡、抑制肿瘤细胞转移和侵袭,达到治疗肿瘤的目的。

Description

靶向c-Met基因的siRNA分子及其应用
技术领域
本发明属于生物医药技术领域,具体涉及一组靶向c-Met基因的siRNA分子及其应用。
背景技术
原发性肝癌特别是肝细胞肝癌(Hepatocellular carcinoma,HCC),是最常见的肝脏原发性肿瘤,其发病率及病死率有逐步升高的趋势。目前其全球发病率在所有恶性肿瘤中居第五,而癌症死亡率高居第三位,每年约有80万人死于肝细胞癌。全球每年肝癌新发病例有一半左右发生在我国,列我国癌症死因第二位,严重危害国民健康。肝癌的恶性程度较高,发病隐匿,早期诊断困难,进展较快,确诊时大多数患者已达到中晚期伴有广泛浸润或发生远处转移,不能手术切除。导致肝癌预后不佳的一个重要原因就是缺乏有效的治疗手段,因此除强调和重视早期发现、早期治疗外,探索有效的治疗方法对改善肝癌患者的预后具有重要意义。
c-Met基因位于人类7号染色体长臂(7q31),大小约110kb,包括21个外显子,启动子区域有许多调控序列,如IL-6和HGF等。在不同组织和细胞系中c-Met的转录产物有多种,各种转录产物的功能尚不清楚,但某些转录产物只在特定的癌组织中出现,因此,这些转录产物可能与特定组织的癌变有关。研究显示,c-Met在非小细胞肺癌、胃癌、脑癌、乳腺癌、结直肠癌、肝癌等多种常见恶性肿瘤中都能检测被异常激活。近年来,诺华、默克等药物公司以c-Met为靶点的抑制剂在治疗肺癌上有突破性进展,由于肺癌和胃癌等在我国频发,故c-Met也已经成为热门研究靶点之一。
RNA干扰(RNA interference e,RNAi)是由小干扰RNA(small interference RNA,siRNA)引发其同源信使RNA(messenger RNA,mRNA)降解的一种转录后基因沉默形式(Nature.1998,391:806-811)。现已被证实在多种病毒感染性疾病和肿瘤的治疗中具有极大的潜力,是理想的阻断基因表达的治疗手段。RNAi技术开辟了一个全新的治疗领域,目前国际上已有数十种siRNA药物进入临床阶段。
发明内容
本发明的目的是提供一组靶向c-Met基因的siRNA分子及其应用,该siRNA分子的反义链可特异性地与抑制c-Met基因的mRNA结合,降解mRNA,从而干扰转录后翻译过程,诱导肿瘤细胞凋亡、抑制肿瘤细胞转移和侵袭。
为了实现上述发明目的,本发明采用以下技术方案:
靶向c-Met基因的siRNA分子,由正义链和反义链组成,其序列为:
正义链:5’-GGAAGAAGAUCACGAAGAUdTdT-3’(SEQ ID NO:1),
反义链:5’-AUCUUCGUGAUCUUCUUCCdTdT-3’(SEQ ID NO:2)。
上述靶向c-Met基因的siRNA分子在制备抑制细胞中c-Met基因功能的药物中的应用。
上述靶向c-Met基因的siRNA分子在制备预防和/或治疗肝癌的药物中的应用。
进一步地,所述靶向c-Met基因的siRNA分子可以抑制肝癌细胞的迁移。
进一步地,所述靶向c-Met基因的siRNA分子可以抑制肝癌细胞的侵袭。
体外实验证明,本发明的siRNA分子的反义链可特异性地与抑制c-Met基因的mRNA结合,降解mRNA,从而干扰转录后翻译过程,诱导肿瘤细胞凋亡、抑制肿瘤细胞转移和侵袭,达到治疗肿瘤的目的。
本发明的siRNA分子可以应用于制备调节细胞中抑制c-Met基因功能的药物中发挥RNA干扰的作用,诱导肿瘤细胞凋亡、抑制肿瘤细胞转移和侵袭,达到治疗肿瘤的目的。
附图说明
图1为实施例1中实时定量PCR检测c-Met在肝癌细胞HepG2和Huh7和正常肝细胞LO2中的mRNA表达水平。
图2为实施例1中Western Blot检测c-Met在肝癌细胞HepG2和Huh7和正常肝细胞LO2中的蛋白表达水平。
图3为实施例1中实时定量PCR检测siRNA下调肝癌细胞HepG2中c-Met的mRNA表达水平。
图4为实施例1中实时定量PCR检测siRNA下调肝癌细胞HepG2中c-Met的蛋白表达水平。
图5为实施例1中Western Blot检测siRNA下调肝癌细胞Huh7中c-Met的mRNA表达水平。
图6为实施例1中实时定量PCR检测siRNA下调肝癌细胞Huh7中c-Met的蛋白表达水平。
图7为实施例1中MTT法检测siRNA下调肝癌细胞HepG2中c-Met的表达水平后对细胞增值能力的影响。
图8为实施例1中MTT法检测siRNA下调肝癌细胞Huh7中c-Met的表达水平后对细胞增值能力的影响。
图9为实施例1中细胞划痕实验检测siRNA下调肝癌细胞HepG2中c-Met的表达水平后对细胞迁移能力的影响。
图10为实施例1中细胞划痕实验检测siRNA下调肝癌细胞Huh7中c-Met的表达水平后对细胞迁移能力的影响。
图11为实施例1中Transwell细胞侵袭实验检测siRNA下调肝癌细胞HepG2中c-Met的表达水平后对细胞侵袭能力的影响。
图12为实施例1中Transwell细胞侵袭实验检测siRNA下调肝癌细胞Huh7中c-Met的表达水平后对细胞侵袭能力的影响。
具体实施方式
为方便起见,在下文中,术语“siRNA”、“siRNA序列”或“siRNA分子”可以互换,它们表示的意思和范围相同。
其中,siRNA是正义链和反义链退火形成的双链结构。
本发明的siRNA分子来源于针对c-Met基因开放阅读框的功能保守区而设计。
siRNA的制备可采用多种方法,比如:化学合成法、体外转录、酶切长链dsRNA、载体表达siRNA、PCR合成siRNA表达元件等,这些方法的出现为研究者提供了可选择的空间,可以更好地获得基因沉默效率。
本发明的siRNA分子可以作为制备调节细胞中c-Met基因功能药物的有效成分,尤其是抗肿瘤药物的有效成分。
出于应用目的,可将siRNA分子作为药物直接给药于受药者身上特定部位,比如肿瘤组织。
本发明的药物的剂型可以为多种形式,只要适合于相应疾病的给药、并且恰当地保持siRNA分子的活性。比如,对于注射用给药系统,剂型可以是冻干粉。
任选地,上述药物剂型中可以包含任何药学上可接受的载体及佐剂,只要其适合于相应的给药体系、并且恰当地保持siRNA分子的活性。
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
下述实施例仅用于阐明本发明,并非是对本发明进行限制。
实施例l
一、实验方法
步骤1,细胞培养
肝癌细胞株HepG2和Huh7购于上海中科院细胞研究所,用含10%FBS(Thermo公司)的DMEM培养基(Thermo Fisher公司)培养,所述培养基中加入青霉素和链霉素(Thermo公司),青霉素和链霉素的终浓度分别为100U/mL和100μg/mL,培养于37℃二氧化碳培养箱。
步骤2,siRNA体外转染
设计靶向c-Met(NCBI号:NM_001127500)基因的siRNA序列c-Met siRNA。设计阴性对照序列(NC)作为对照。序列见表1。
表1 siRNA序列及对照序列
Figure BDA0002635619070000041
取步骤1中培养得到的处于对数生长期的细胞,96孔板的接种密度为5×104/孔、24孔板按1.5×105/孔、6孔板为1×106/孔接种细胞,将其分为c-Met siRNA转染组和不转染siRNA的未处理组,以及NC转染组作为阴性对照。各实验组采用相应的siRNA按操作说明用脂质体
Figure BDA0002635619070000043
2000(Thermo Fisher公司)转染到细胞内,使siRNA终浓度为50nM,37℃培养4h后,培养液换成含10%FBS的DMEM培养基。
所有的实验均重复3次,结果均用平均值±SD表示,用SPSS19.0进行统计学分析。统计学差异用单因素方差分析和双侧t检验。P<0.05表明差异显著。在所有的图表中,*表明与未处理组相比差异显著。
二、实时定量PCR(RT-qPCR)检测mRNA表达水平
用上述方法进行细胞培养和siRNA体外转染。所述的体外转染采用96孔板。
转染48h后,细胞总RNA用
Figure BDA0002635619070000044
RNA提取试剂(Thermo Fisher公司)提取,并按操作说明用RT-qPCR试剂盒(Biomics公司)进行检测。引物序列见表2,PCR反应条件为:95℃预变性5min,45个循环为95℃变性20s、58℃退火30s、72℃延伸30s。
表2 RT-QPCR检测用引物
Figure BDA0002635619070000042
如图1所示,肝癌细胞株HepG2和Huh7中的c-Met的mRNA表达水平显著高于正常肝细胞LO2(P<0.05);如图3和4所示,c-Met siRNA有效抑制了HepG2和Huh7细胞中的c-Met基因的mRNA表达。与未处理组相比,c-Met siRNA的抑制率达分别达到83%和85%(P<0.05)。
三、Western Blot检测基因的蛋白表达水平
用上述方法进行细胞培养和siRNA体外转染。
将细胞接种于6孔板中,置于37℃/5%CO2培养箱中培养24h,细胞融合度达70~80%时进行转染siRNA;24h后,弃去培养液,用PBS冲洗2遍;操作在冰上进行,每孔加入50μlSDS蛋白裂解液裂解细胞,充分混匀至粘稠状,用刮子刮下,转移至1.5mL的离心管中,沸水浴10min后置于冰上,4℃,12000rpm×15min,提取上清液;经SDS-PAGE(5%积层胶,8%分离胶)电泳后,采用湿转印仪以200mA恒流转印2h,将凝胶中蛋白质转移到PVDF膜上;将PVDF膜浸没于封闭液(5%的脱脂牛奶)在摇床上缓慢摇晃2h;分别加入一抗(1:1000),37℃孵育2h;用TBST漂洗膜三次,每次10min;分别加入二抗(羊抗鼠IgG-HRP,1:1000),37℃孵育2h;二抗孵育结束后,用TBST漂洗膜三次,每次5~10min;洗好的膜进行ECL发光显影;结果分析:以内参基因作为内对照,使用Image J软件分析目的条带的灰度值,计算目的基因相对表达量=目的条带灰度值/同一样本内参灰度值。
如图2所示,肝癌细胞株HepG2和Huh7中的c-Met的蛋白表达水平显著高于正常肝细胞LO2(P<0.05);如图5和6所示,c-Met siRNA有效抑制了HepG2和Huh7细胞中的c-Met基因的蛋白表达。与未处理组相比,c-Met siRNA的抑制率达分别达到51%和50%(P<0.05)。
四、MTT法检测细胞增殖
用上述方法进行细胞培养和siRNA体外转染,所述的体外转染采用96孔板。转染前待细胞汇合度达到约75%时,将对数生长期的细胞铺到96孔细胞培养板中,接种密度为5×104/孔,重复3个孔。
分别测定转染24h、48h、72h、96h时的c-Met siRNA转染组,NC转染组和未处理组样本,以及上述的未转染的样本的OD值,所述测定方法为:每孔加入10μl MTT,37℃培养箱避光放置4h;每孔加150μl DMSO,37℃培养箱放置10min;吹打混匀后取120μl于另一干净96孔板中,并取120μl DMSO作为空白对照调零,酶标仪(Bio-Rad公司)上测OD,波长为490nm;进行数据处理,绘制细胞生长曲线。
如图7和8所示,与未处理组和NC组相比,c-Met siRNA处理HepG2和Huh7细胞48h、72h和96h时具有显著细胞生长抑制效果(P<0.05)。
五、细胞划痕实验检测细胞迁移
用上述方法进行细胞培养和siRNA体外转染。
用密度为1.5×105/孔的HepG2和Huh7细胞铺到24孔板里并转染。48h后,用移液器吸头在汇合的细胞中划痕,然后用pH为7.4的PBS缓冲液洗涤,加入无血清的DMEM培养基(Thermo Fisher公司)。划痕后24h和48h后拍照观察细胞迁移,实验做3组平行,每板拍4个视野。
如图9和图10所示,与未处理组和阴性对照组相比,在c-Met siRNA处理HepG2和Huh7细胞24和和48h时能有效抑制HepG2和Huh7的迁移(P<0.05)。
六、Transwell细胞侵袭实验
用上述方法进行细胞培养和siRNA体外转染。所述的体外转染采用24孔板。
转染后72h用24-well membrane filters(美国Corning Bioscience公司)检测细胞迁移。1.5×105个细胞铺到上室中以向含血清的DMEM培养基(Gibco公司)中迁移24h。留在上室中的细胞用棉签去除,迁移到下室中的细胞用10%甲醛固定30s。最后,细胞用0.1%结晶紫染色4min,随后用pH为7.4的PBS缓冲液洗3遍。细胞在200倍放大视野中计数,每个条件下计数5个视野。
如图11和12所示,与未处理组和NC组相比,c-Met siRNA能显著抑制HepG2和Huh7细胞的侵袭(P<0.05)。
序列表
<110> 南通大学
<120> 靶向c-Met基因的siRNA分子及其应用
<130> 20200817
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggaagaagau cacgaagaud tdt 23
<210> 2
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 2
aucuucguga ucuucuuccd tdt 23
<210> 3
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 3
uucuccgaac gugucacgud tdt 23
<210> 4
<211> 23
<212> DNA/RNA
<213> 人工序列(Artificial Sequence)
<400> 4
acgugacacg uucggagaad tdt 23
<210> 5
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gacaagcatc ttcagttac 19
<210> 6
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tgacaatgtt gagaggtt 18
<210> 7
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gaaggtgaag gtcggagtc 19
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gaagatggtg atgggatttc 20

Claims (5)

1.靶向c-Met基因的siRNA分子,其特征在于:由正义链和反义链组成,其序列为:
正义链:5’-GGAAGAAGAUCACGAAGAUdTdT -3’,
反义链:5’- AUCUUCGUGAUCUUCUUCCdTdT -3’。
2.权利要求1所述的siRNA分子在制备抑制细胞中c-Met基因功能的药物中的应用。
3.权利要求1所述的siRNA分子在制备预防和/或治疗肝癌的药物中的应用。
4.根据权利要求3所述的应用,其特征在于:所述靶向c-Met基因的siRNA分子可以诱导肝癌细胞凋亡。
5.根据权利要求3所述的应用,其特征在于:所述靶向c-Met基因的siRNA分子可以抑制肝癌细胞的转移和侵袭。
CN202010824358.1A 2020-08-17 2020-08-17 靶向c-Met基因的siRNA分子及其应用 Pending CN111849992A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010824358.1A CN111849992A (zh) 2020-08-17 2020-08-17 靶向c-Met基因的siRNA分子及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010824358.1A CN111849992A (zh) 2020-08-17 2020-08-17 靶向c-Met基因的siRNA分子及其应用

Publications (1)

Publication Number Publication Date
CN111849992A true CN111849992A (zh) 2020-10-30

Family

ID=72969078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010824358.1A Pending CN111849992A (zh) 2020-08-17 2020-08-17 靶向c-Met基因的siRNA分子及其应用

Country Status (1)

Country Link
CN (1) CN111849992A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080113377A1 (en) * 2002-11-14 2008-05-15 Dharmacon, Inc. siRNA Targeting proto-oncogene MET
US20130023578A1 (en) * 2009-12-31 2013-01-24 Samyang Biopharmaceuticals Corporation siRNA for inhibition of c-Met expression and anticancer composition containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080113377A1 (en) * 2002-11-14 2008-05-15 Dharmacon, Inc. siRNA Targeting proto-oncogene MET
US20130023578A1 (en) * 2009-12-31 2013-01-24 Samyang Biopharmaceuticals Corporation siRNA for inhibition of c-Met expression and anticancer composition containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张盛周;张宏霞;潘飞燕;李朝军;: "腺病毒介导的siRNA下调c-Met表达抑制肝癌细胞生长" *

Similar Documents

Publication Publication Date Title
Sheng et al. LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma
Wang et al. FAM83D activates the MEK/ERK signaling pathway and promotes cell proliferation in hepatocellular carcinoma
Liu et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13
Gu et al. GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer
EP3500307B1 (en) Use of vcp inhibitor and oncolytic virus in the preparation of an anti-tumor drug
Ali et al. Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling
Wang et al. LncRNA GHET1 promotes hypoxia-induced glycolysis, proliferation, and invasion in triple-negative breast cancer through the Hippo/YAP signaling pathway
Wang et al. Ovol2 gene inhibits the Epithelial-to-Mesenchymal Transition in lung adenocarcinoma by transcriptionally repressing Twist1
CN109371131B (zh) 一种诊断和治疗膀胱癌的分子标志物LncRNA DANCR及其用途
CN107828888B (zh) 环状RNA circ-PTPRA的用途
Wang et al. Overexpression of serine/threonine‑protein kinase-1 in pancreatic cancer tissue: Serine/threonine-protein kinase-1 knockdown increases the chemosensitivity of pancreatic cancer cells
Zhang et al. Low expression of lncRNA MEG3 promotes the progression of oral squamous cell carcinoma by targeting miR-21.
Yuan et al. miR‑494 inhibits cell proliferation and metastasis via targeting of CDK6 in osteosarcoma
Chen et al. Regulation of the expression of cytoplasmic polyadenylation element binding proteins for the treatment of cancer
Peng et al. miR‑224‑5p regulates the proliferation, migration and invasion of pancreatic mucinous cystadenocarcinoma by targeting PTEN
Wang et al. MAT1 facilitates the lung metastasis of osteosarcoma through upregulation of AKT1 expression
Guo et al. Intracellular Fusobacterium nucleatum infection increases METTL3-mediated m6A methylation to promote the metastasis of esophageal squamous cell carcinoma
Luo et al. Functional mechanism and clinical implications of miR-141 in human cancers
Liu et al. miR-425 suppresses EMT and the development of TNBC (triple-negative breast cancer) by targeting the TGF-β 1/SMAD 3 signaling pathway
He et al. MiR-3677-3p promotes development and sorafenib resistance of hepatitis B-related hepatocellular carcinoma by inhibiting FOXM1 ubiquitination
Liu et al. circRNA-mediated upregulation of HOXC9 is correlated with poor outcome and immune microenvironment infiltrates in LUAD
CN107893115B (zh) Alkbh1基因及其表达产物在制备用于诊断肿瘤的试剂盒、治疗肿瘤的药物中的用途
CN109371130B (zh) Ripor3在制备用于乳腺癌检测和治疗的生物制品中的应用
Guan et al. LncRNA HIF1A-AS2 modulated by HPV16 E6 regulates apoptosis of cervical cancer cells via P53/caspase9/caspase3 axis
Song et al. Downregulation of miR‑7 and miR‑153 is involved in Helicobacter pylori CagA induced gastric carcinogenesis and progression

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201030