CN111848877A - 一种物理水凝胶及其制备方法和应用 - Google Patents
一种物理水凝胶及其制备方法和应用 Download PDFInfo
- Publication number
- CN111848877A CN111848877A CN202010657531.3A CN202010657531A CN111848877A CN 111848877 A CN111848877 A CN 111848877A CN 202010657531 A CN202010657531 A CN 202010657531A CN 111848877 A CN111848877 A CN 111848877A
- Authority
- CN
- China
- Prior art keywords
- polyethyleneimine
- acrylamide
- physical hydrogel
- sio
- initiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2351/00—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2351/08—Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Medicinal Preparation (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种物理水凝胶及其制备方法和应用,属于医用高分子材料技术领域,所述物理水凝胶由聚乙烯亚胺、聚丙烯酰胺和二氧化硅纳米粒子经引发剂、助引发剂引发聚合得到的物理水凝胶。所述引发剂为过硫酸钾,所述助引发剂为N',N',N,N‑四甲基乙二胺。本发明通过组分调节,得到剪切变稀,且剪切破坏后短时间内具备优良的回复性能,实现可3D打印或注射。
Description
技术领域
本发明属于医用高分子材料技术领域,特别涉及一种物理水凝胶及其制备方法和应用。
背景技术
物理水凝胶是一种通过链缠绕、氢键、疏水作用、离子相互作用、静电相互作用、自组装等物理作用力形成的具有三维网络结构的湿软性材料,它可以通过外界作用力发生相的转变,所以物理凝胶也称为可逆凝胶。
为了实现物理凝胶的可注射或可3D打印性能,要求其在高剪切速率下存在相对较低粘度,便于注射或打印。在注入和沉积到指定位置后,需要发生快速的相转变以防止凝胶流动。也就是说,物理水凝胶在剪切应力作用下产生粘性流体,在剪切应力消除后快速恢复,即剪切变稀和快速恢复,这是物理水凝胶实现可注射或可打印的关键。
发明内容
本发明的目的在于提供一种聚乙烯亚胺/聚丙烯酰胺/SiO2物理水凝胶及其制备方法和应用,通过组分调节,得到剪切变稀,且剪切破坏后短时间内具备优良的回复性能,实现可3D打印或注射。
本发明所采用的技术方案是:
一种物理水凝胶,所述物理水凝胶由聚乙烯亚胺、聚丙烯酰胺和二氧化硅纳米粒子经引发剂、助引发剂引发聚合得到的物理水凝胶。
进一步地,所述引发剂为过硫酸钾,所述助引发剂为N',N',N,N-四甲基乙二胺。
一种物理水凝胶的制备方法,所述方法包括如下制备步骤:
步骤1:将聚乙烯亚胺加入到去离子水中,室温下通过磁力搅拌60小时形成均匀的聚乙烯亚胺水溶液;
步骤2:将丙烯酰胺单体加入去离子水中,室温下通过磁力搅拌溶解形成均匀的丙烯酰胺水溶液;
步骤3:将步骤一的聚乙烯亚胺溶液和步骤二的丙烯酰胺溶液室温下混合得到均匀的含聚乙烯亚胺/丙烯酰胺的混合溶液;
步骤4:在步骤三混合溶液的基础上,加入SiO2纳米粒子通过磁力搅拌形成均匀的聚乙烯亚胺/丙烯酰胺/SiO2混合溶液;
步骤5:向聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中添加引发剂过硫酸钾和助引发剂N',N',N,N-四甲基乙二胺引发聚合,室温下静置6~24h进行原位自由基聚合反应,得到聚乙烯亚胺/聚丙烯酰胺/SiO2物理水凝胶。
进一步地,所述步骤1中,聚乙烯亚胺的浓度为0.1g/mL。
进一步地,所述步骤2中,按摩尔浓度计,丙烯酰胺的浓度范围是:2~7mol/L。
进一步地,步骤3聚乙烯亚胺/丙烯酰胺的混合溶液中,按质量浓度计,支化聚乙烯亚胺的浓度范围是:0.02~0.2g/mL。
进一步地,步骤4聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中,支化聚乙烯亚胺的分子量范围是:600~1000 000g/mol。
进一步地,步骤4聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中,SiO2纳米粒子的浓度范围是:0.02~1.00g/mL;SiO2纳米粒子的尺寸范围是:5~100nm。
进一步地,步骤5中的聚合反应在氮气氛围下进行。
一种物理水凝胶,所述物理水凝胶在3D打印或注射上的应用。
本发明的优点与效果为:
本发明提供了一种聚乙烯亚胺/丙烯酰胺/SiO2物理水凝胶,通过组分调节,得到机械性能稳定的可注射或可3D打印水凝胶。在这个三元物理凝胶体系,PEI的存在对其在注射过程中的无障碍流动性进行调节,SiO2的存在提高PEI/PAM物理网络的力学性能和自恢复性质,从而可实现注射后的快速自恢复,维持凝胶的形状不发生流动,即剪切变稀被破坏的结构在短时间内能够快速恢复,具备优良的的自恢复性能,实现可3D打印或可注射。
附图说明
图1是本发明实施例1的三个周期应变扫描-时间扫面交替循环测试;
图2是本发明实施例2的三个周期应变扫描-时间扫面交替循环测试;
图3是本发明实施例2进行体外注射的视图。
具体实施方式
为了更加清楚地说明本发明,下面结合具体的案例对本发明作进一步的说明。
不同配比的聚乙烯亚胺/丙烯酰胺/SiO2物理水凝胶。实验配方下表所示:
实施例1:
步骤1:将分子量为70000的支化聚乙烯亚胺加入到去离子水中,室温下通过磁力搅拌60小时形成浓度为0.1g/mL的均匀聚乙烯亚胺水溶液;
步骤2:将1.78g丙烯酰胺AM溶于去离子水中;
步骤3:再取1ml聚乙烯亚胺溶液加入到步骤2的溶液中,磁力搅拌得到均匀的聚乙烯亚胺/丙烯酰胺的混合溶液;
步骤4:在步骤3的基础上,加入0.4g Ludox TM-50colloidal silica原溶液(22nm,30wt.%)通过磁力搅拌形成均匀的聚乙烯亚胺/丙烯酰胺/SiO2混合溶液。
步骤5、氮气氛围下,向聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中加入1ml 0.01g/mL过硫酸钾和30μL N',N',N,N-四甲基乙二胺引发聚合,室温下静置反应12小时;整个体系的去离子水用量为5mL。
实施例2:
步骤1:将分子量为70000的支化聚乙烯亚胺加入到去离子水中,室温下通过磁力搅拌60小时形成浓度为0.1g/mL的均匀聚乙烯亚胺水溶液;
步骤2:将1.78g丙烯酰胺AM溶于去离子水中,
步骤3:再取1ml聚乙烯亚胺溶液加入到步骤2中的溶液中,磁力搅拌得到均匀的聚乙烯亚胺/丙烯酰胺的混合溶液;
步骤4:在步骤3的基础上,加入0.4g Ludox SM colloidal silica原溶液(7nm,30wt.%)通过磁力搅拌形成均匀的聚乙烯亚胺/丙烯酰胺/SiO2混合溶液。
步骤5、氮气氛围下,向聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中加入1ml 0.01g/mL过硫酸钾和30μL N',N',N,N-四甲基乙二胺引发聚合,室温下静置反应12小时;整个体系的去离子水用量为5mL。
水凝胶的恢复性能测试:
用MCR 102流变仪的平板P-EDT400-SN82074524系统,采用振荡模式进行参数设定,固定角频率ω=6.28rad/s进行了三个周期应变-时间扫描交替测试水凝胶的储能模量和损耗模量。应变扫描中应变振幅的范围为0.01%~200%,然后应变振幅降低到0.1%在大约10s到100s时间段内进行时间扫描测试。
测试实施例1物理水凝胶储能模量和损耗模量在应变扫描和时间扫描测试中的变化,结果如图1所示。
由图1数据分析可以看出实施例1得到的聚乙烯亚胺/丙烯酰胺/SiO2物理凝胶在应变扫描测试中,其储能模量G'和损耗模量G"在大的应变振幅范围内,随振幅增加而降低,且模量由G'>G"变为G'<G",这表明了物理凝胶从弹性固体变为了粘性流体,且表现了出与剪切变稀类似的应变变稀现象。当应变振幅降到0.1%进行时间扫描时,水凝胶的模量立刻从G'<G"变为G'>G",这表明一旦外力撤除,水凝胶从粘性流体变成弹性固体。此外,在完成第三次时间扫描测试后,其储能模量G'能够恢复到初次应变扫描的81.2%,说明了聚乙烯亚胺/丙烯酰胺/SiO2物理凝胶具备了优异的自恢复性能。
实施例2在完成第三次时间扫描测试后,其储能模量G'能够恢复到初次应变扫描的85.3%,也说明了聚乙烯亚胺/丙烯酰胺/SiO2物理凝胶在短时间内具备了优异的自恢复性能。
水凝胶的体外注射实验:
由图3可以看到,样品在注射器中能够被推出进行注射,且注射后,样品在表面皿上不发生流动。这表明样品在注射过程中可以发生流动,其次是注射完成后可保持其形状不发生流动。具备可3D打印或可注射的性质。
上述实施例的实施方式并不是本发明的唯一实施方式,对于本领域的技术人员来说,在本发明的发明实质和原理的基础下所做出的相应改变或变动都应包含在本发明的保护范围之内。
Claims (10)
1.一种物理水凝胶,其特征在于:所述物理水凝胶由聚乙烯亚胺、聚丙烯酰胺和二氧化硅纳米粒子混合水溶液经引发剂和助引发剂引发聚合得到的物理水凝胶。
2.根据权利要求1所述的一种物理水凝胶,其特征在于:所述引发剂为过硫酸钾,所述助引发剂为N',N',N,N-四甲基乙二胺。
3.如权利要求1所述的一种物理水凝胶,其特征在于:所述方法包括如下制备步骤:
步骤1:将聚乙烯亚胺加入到去离子水中,室温下通过磁力搅拌60小时形成均匀的聚乙烯亚胺水溶液;
步骤2:将丙烯酰胺单体加入去离子水中,室温下通过磁力搅拌溶解形成均匀的丙烯酰胺水溶液;
步骤3:将步骤一的聚乙烯亚胺溶液和步骤二的丙烯酰胺溶液室温下混合得到均匀的含聚乙烯亚胺/丙烯酰胺的混合溶液;
步骤4:在步骤三混合溶液的基础上,加入SiO2纳米粒子通过磁力搅拌形成均匀的聚乙烯亚胺/丙烯酰胺/SiO2混合溶液;
步骤5:向聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中添加0.005~0.030g/mL引发剂过硫酸钾和4~10μL/mL助引发剂N',N',N,N-四甲基乙二胺引发聚合,室温下静置6~24h进行原位自由基聚合反应,得到聚乙烯亚胺/聚丙烯酰胺/SiO2物理水凝胶。
4.根据权利要求3所述的一种物理水凝胶的制备方法,其特征在于:所述步骤1中,聚乙烯亚胺的浓度为0.01~0.02g/mL。
5.根据权利要求3所述的一种物理水凝胶的制备方法,其特征在于:所述步骤2中,按摩尔浓度计,丙烯酰胺的浓度范围是:2~7mol/L。
6.根据权利要求3所述的一种物理水凝胶的制备方法,其特征在于:步骤3聚乙烯亚胺/丙烯酰胺的混合溶液中,按质量浓度计,支化聚乙烯亚胺的浓度范围是:0.02~0.2g/mL。
7.根据权利要求3所述的一种物理水凝胶的制备方法,其特征在于:步骤4聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中,支化聚乙烯亚胺的分子量范围是:600~1000 000g/mol。
8.根据权利要求3所述的一种物理水凝胶的制备方法,其特征在于:步骤4聚乙烯亚胺/丙烯酰胺/SiO2混合溶液中,SiO2纳米粒子的浓度范围是:0.02~1.00g/mL;SiO2纳米粒子的尺寸范围是:5~100nm。
9.根据权利要求3所述的一种物理水凝胶的制备方法,其特征在于:步骤5中的聚合反应在氮气氛围下进行。
10.一种物理水凝胶,其特征在于:所述物理水凝胶在3D打印或药物注射上的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010657531.3A CN111848877A (zh) | 2020-07-09 | 2020-07-09 | 一种物理水凝胶及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010657531.3A CN111848877A (zh) | 2020-07-09 | 2020-07-09 | 一种物理水凝胶及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111848877A true CN111848877A (zh) | 2020-10-30 |
Family
ID=73152090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010657531.3A Pending CN111848877A (zh) | 2020-07-09 | 2020-07-09 | 一种物理水凝胶及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111848877A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016453A1 (en) * | 2000-08-25 | 2002-02-28 | Contura S.A. | Polyacrylamide hydrogel and its use as an endoprosthesis |
CN104262881A (zh) * | 2014-10-10 | 2015-01-07 | 齐鲁工业大学 | 一种高强度双网络纳米二氧化硅复合水凝胶的制备方法 |
CN109266322A (zh) * | 2018-09-10 | 2019-01-25 | 四川大学 | 一种具有高韧性的聚丙烯酰胺凝胶驱油剂及其制备方法 |
CN110724282A (zh) * | 2019-11-28 | 2020-01-24 | 山东大学 | 一种超长拉伸自修复水凝胶粘结材料及其制备方法 |
-
2020
- 2020-07-09 CN CN202010657531.3A patent/CN111848877A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016453A1 (en) * | 2000-08-25 | 2002-02-28 | Contura S.A. | Polyacrylamide hydrogel and its use as an endoprosthesis |
CN104262881A (zh) * | 2014-10-10 | 2015-01-07 | 齐鲁工业大学 | 一种高强度双网络纳米二氧化硅复合水凝胶的制备方法 |
CN109266322A (zh) * | 2018-09-10 | 2019-01-25 | 四川大学 | 一种具有高韧性的聚丙烯酰胺凝胶驱油剂及其制备方法 |
CN110724282A (zh) * | 2019-11-28 | 2020-01-24 | 山东大学 | 一种超长拉伸自修复水凝胶粘结材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
WANG, L等: "Physical hydrogel with tunable flowability and self-recovery properties through introducing branched polymer and nanoparticle", 《POLYMER》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Apostolides et al. | Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: Synthesis, characterization and applications | |
CN108276590B (zh) | 可3d打印的琼脂/聚丙烯酰胺双氢键协同交联高韧性水凝胶的制备方法 | |
US11427748B2 (en) | Mussel bionic gel composition, self-repairing gel, profile control and water plugging agent, method for preparing self-repairing gel, and use | |
CN109705366B (zh) | 一种具有强烈剪切变稀和剪切变稠行为凝胶的制备方法 | |
Tang et al. | 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation | |
WO2021238112A1 (zh) | 用于2-8℃医药冷链运输的高稳定性复合相变凝胶 | |
CN109400818A (zh) | 一种聚丙烯酰胺水凝胶的制备方法 | |
Deng et al. | Chondroitin sulfate hydrogels based on electrostatic interactions with enhanced adhesive properties: exploring the bulk and interfacial contributions | |
Abbas et al. | Surface tension, density and viscosity studies on the associative behaviour of oxyethylene-oxybutylene diblock copolymers in water at different temperatures | |
Liu et al. | Self-growing hydrogel particles with applications for reservoir control: Growth behaviors and influencing factors | |
CN111848877A (zh) | 一种物理水凝胶及其制备方法和应用 | |
Wu et al. | Preparation and performance of oil well cement fluid loss additive ANAFM | |
Hou et al. | Janus Nanoparticle Coupled Double‐Network Hydrogel | |
Yang et al. | Investigation of TPEG comb polymer as filtration and rheological additives for high-temperature water-based drilling fluid | |
Babayan et al. | Formation of rodlike silica aggregates directed by adsorbed thermoresponsive polymer chains | |
Peng et al. | Effect of molecular weight of polycarboxylate-type superplasticizer on the rheological properties of cement pastes | |
US20200071469A1 (en) | Gels derived from poly(ethylidene norbornene)-b-poly(cyclopentene) block copolymer nanocomposites for viscosity modifications and drilling fluid applications | |
JP5598833B2 (ja) | 有機・無機複合ヒドロゲルの製造方法 | |
WO2024159646A1 (zh) | 含酰腙键的双疏型聚合物及纳米双疏反转剂的制备方法 | |
CN115043977B (zh) | 固井用铝酸盐水泥两性离子聚合物缓凝剂的组成、制备及应用 | |
Jiao et al. | Potential for significantly improving performances of oil-well cement by soap-free emulsions | |
Wu et al. | Fabrication of microgels via supramolecular assembly of cyclodextrin-containing star polycations and oppositely charged linear polyanions | |
CN105036140A (zh) | 降低二氧化硅浆液粘度的方法 | |
Wang et al. | Physical hydrogel with tunable flowability and self-recovery properties through introducing branched polymer and nanoparticle | |
Hashmi et al. | On-line observation of hydrogels during swelling and LCST-induced changes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201030 |
|
WD01 | Invention patent application deemed withdrawn after publication |