CN111847529A - A kind of method for removing sulfur content in hydroxide precursor - Google Patents
A kind of method for removing sulfur content in hydroxide precursor Download PDFInfo
- Publication number
- CN111847529A CN111847529A CN202010716123.0A CN202010716123A CN111847529A CN 111847529 A CN111847529 A CN 111847529A CN 202010716123 A CN202010716123 A CN 202010716123A CN 111847529 A CN111847529 A CN 111847529A
- Authority
- CN
- China
- Prior art keywords
- washing
- slurry
- sulfur content
- removing sulfur
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 35
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 239000011593 sulfur Substances 0.000 title claims abstract description 34
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 title claims abstract description 21
- 238000005406 washing Methods 0.000 claims abstract description 61
- 239000002002 slurry Substances 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 230000032683 aging Effects 0.000 claims abstract description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 239000000047 product Substances 0.000 claims description 15
- 239000012065 filter cake Substances 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 7
- 239000012266 salt solution Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 229940044175 cobalt sulfate Drugs 0.000 claims description 6
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 6
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229940099596 manganese sulfate Drugs 0.000 claims description 6
- 235000007079 manganese sulphate Nutrition 0.000 claims description 6
- 239000011702 manganese sulphate Substances 0.000 claims description 6
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 6
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 6
- 229940053662 nickel sulfate Drugs 0.000 claims description 6
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 6
- 238000004806 packaging method and process Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 3
- 230000002431 foraging effect Effects 0.000 claims description 3
- 238000007873 sieving Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 abstract description 12
- 239000003513 alkali Substances 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 8
- 239000002351 wastewater Substances 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000010406 cathode material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229940083608 sodium hydroxide Drugs 0.000 description 5
- 239000012452 mother liquor Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- -1 nickel-cobalt-aluminum Chemical compound 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910006020 NiCoAl Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种锂电池正极材料前驱体除硫技术,特别是一种去除氢氧化物前驱体中硫含量的方法。The invention relates to a technology for removing sulfur from a cathode material precursor of a lithium battery, in particular to a method for removing sulfur content in a hydroxide precursor.
背景技术Background technique
随着电动汽车市场的迅猛发展,动力锂离子电池作为其核心部件之一受到行业的高度关注。由于杂质对电池的安全性能、电化学性能、循环寿命等存在不利影响,因此,用于动力锂离子电池的正极材料在杂质控制方面的要求非常严苛。With the rapid development of the electric vehicle market, the power lithium-ion battery as one of its core components has received great attention from the industry. Due to the adverse effects of impurities on the safety performance, electrochemical performance, cycle life, etc. of the battery, the cathode materials used for power lithium-ion batteries have very strict requirements in terms of impurity control.
前驱体是生产锂离子电池正极材料的重要原材料,前驱体的杂质含量直接影响着正极材料的电化学性能。工业上前驱体主要通过湿法合成,以NiSO4、CoSO4、MnSO4为混合盐溶液、液碱为沉淀剂、氨水为络合剂。合成的前驱体材料颗粒表面和颗粒内部含有大量的SO4 2-,而残留在前驱体中的SO4 2-会在正极煅烧过程中进入正极材料中,影响正极材料性能,最终导致电池容量降低。The precursor is an important raw material for the production of cathode materials for lithium ion batteries, and the impurity content of the precursor directly affects the electrochemical performance of the cathode material. Industrial precursors are mainly synthesized by wet method, using NiSO 4 , CoSO 4 , MnSO 4 as mixed salt solution, liquid alkali as precipitating agent, and ammonia water as complexing agent. The synthesized precursor material particles contain a large amount of SO 4 2- on the surface and inside the particles, and the SO 4 2- remaining in the precursor will enter the cathode material during the cathode calcination process, which will affect the performance of the cathode material and eventually lead to a decrease in battery capacity. .
目前常规的前驱体除硫洗涤工艺是脱除母液→碱洗→水洗,即合成后的前驱体进行过滤,脱除母液后,再依次经液碱洗涤、热纯水洗涤,该工艺对前驱体表面吸附的SO4 2-具有一定的效果,S含量通常可降至2000ppm以内,但步骤繁琐、耗碱耗水量较大。制备1吨前驱体,碱洗消耗浓碱配水约6~7m3、水洗用水约为7~10m3;有时因合成参数的变化,导致前驱体中具有非常高的硫含量,为了进一步降低产品中的硫含量,以达到目标值,只能通过消耗大量的碱液、纯水、时间进行洗涤,大大增加了制备成本和环境负担。At present, the conventional pre-sulfur removal and washing process is to remove the mother liquor → alkali washing → water washing, that is, the synthesized precursor is filtered, and after the mother liquor is removed, it is washed with liquid alkali and hot pure water in sequence. The SO 4 2- adsorbed on the surface has a certain effect, and the S content can usually be reduced to less than 2000ppm, but the steps are cumbersome and the alkali consumption and water consumption are large. To prepare 1 ton of precursors, alkaline washing consumes about 6-7 m 3 of concentrated alkaline water, and about 7-10 m 3 of water for washing; sometimes due to changes in synthesis parameters, the precursors have very high sulfur content. In order to reach the target value, only by consuming a large amount of lye, pure water and time for washing, which greatly increases the preparation cost and environmental burden.
中国专利CN107459069B公开了一种降低镍钴铝前驱体硫含量的方法,将镍钴铝前驱体脱除母液后转移到洗涤釜中进行浆洗和水洗,再进行干燥,过筛,得到硫含量≤1000ppm镍钴铝前驱体。但该流程与常规方法类似,同样需要消耗较多的碱液和纯水。Chinese patent CN107459069B discloses a method for reducing the sulfur content of nickel-cobalt-aluminum precursor. The nickel-cobalt-aluminum precursor is removed from the mother liquor and then transferred to a washing kettle for slurry washing and water washing, and then drying and sieving to obtain a sulfur content of ≤1000ppm NiCoAl precursor. However, this process is similar to the conventional method, and it also needs to consume more lye and pure water.
因此,急需开发一种更为有效的洗涤方法,控制产品中S含量满足规格要求的同时,减少步骤,降低生产过程中的碱耗、水耗以及废水排放量,达到降低成本、提高生产效率、减少废水排放的效果。Therefore, it is urgent to develop a more effective washing method, which can reduce the steps, reduce the alkali consumption, water consumption and waste water discharge in the production process while controlling the S content in the product to meet the specification requirements, so as to reduce costs, improve production efficiency, The effect of reducing waste water discharge.
发明内容SUMMARY OF THE INVENTION
本发明针对目前前驱体除硫工艺消耗大量水资源的问题,通过改变浆料陈化的条件,直接升高浆料的pH,以达到控制产品中S杂质含量的目的,极大地减少了洗涤过程中的碱耗和水耗、减少废水量,简化洗涤步骤,达到降低成本、提高生产效率、减少废水排放的效果。Aiming at the problem that the current precursor desulphurization process consumes a large amount of water resources, the present invention directly increases the pH of the slurry by changing the conditions for aging of the slurry, so as to achieve the purpose of controlling the content of S impurities in the product, and greatly reduce the washing process. Alkali consumption and water consumption, reduce the amount of waste water, simplify washing steps, reduce costs, improve production efficiency, and reduce waste water discharge.
本发明所采用的技术方案是:一种去除氢氧化物前驱体中硫含量的方法,其包括如下步骤:The technical scheme adopted in the present invention is: a method for removing the sulfur content in the hydroxide precursor, which comprises the following steps:
①按照所需选用硫酸镍、硫酸钴、硫酸锰的混合盐溶液与氢氧化钠溶液、氨水并流加入反应釜中,制备得到前驱体浆料;①Select the mixed salt solution of nickel sulfate, cobalt sulfate, manganese sulfate, sodium hydroxide solution, and ammonia water into the reaction kettle in parallel to prepare the precursor slurry according to the needs;
②通过反应釜设置的pH控制系统将浆料的pH值升高,并控制温度、搅拌转速,进行陈化;②The pH value of the slurry is raised by the pH control system set in the reaction kettle, and the temperature and stirring speed are controlled for aging;
③陈化结束后,将浆料转移至洗涤装置,采用纯水进行洗涤,并控制水洗温度、水洗时间;③ After the aging, the slurry is transferred to the washing device, washed with pure water, and the washing temperature and washing time are controlled;
④洗涤结束后,对浆料进行过滤获得滤饼;④ After washing, filter the slurry to obtain a filter cake;
⑤将滤饼依次经过干燥、过筛、除铁、包装等步骤,即可获得目标产品。⑤The target product can be obtained by drying the filter cake, sieving, removing iron, packaging and other steps in sequence.
所述的一种去除氢氧化物前驱体中硫含量的方法,其步骤②中,浆料pH升高至10.35~13.00,控制温度为50~90℃,且浆料中OH-浓度始终为0.052~0.547mol/L。Said method for removing sulfur content in a hydroxide precursor, in step (2), the pH of the slurry is raised to 10.35-13.00, the temperature is controlled to be 50-90°C, and the OH - concentration in the slurry is always 0.052 ~0.547mol/L.
所述的一种去除氢氧化物前驱体中硫含量的方法,其步骤②中,控制搅拌转速为50~500rpm。In the method for removing the sulfur content in the hydroxide precursor, in step (2), the stirring speed is controlled to be 50-500 rpm.
所述的一种去除氢氧化物前驱体中硫含量的方法,其步骤②中,陈化时间为1~5h。In the method for removing sulfur content in a hydroxide precursor, in step (2), the aging time is 1-5h.
所述的一种去除氢氧化物前驱体中硫含量的方法,其步骤③中,洗涤装置为离心机、压滤机、过滤洗涤一体机中的一种。In the method for removing sulfur content in a hydroxide precursor, in step (3), the washing device is one of a centrifuge, a filter press, and an integrated filter and washing machine.
所述的一种去除氢氧化物前驱体中硫含量的方法,其步骤⑤中,制备得到的前驱体产品中硫含量≤1500ppm。In the method for removing the sulfur content in the hydroxide precursor, in step (5), the sulfur content in the prepared precursor product is less than or equal to 1500 ppm.
本发明的有益效果:一种去除氢氧化物前驱体中硫含量的方法,解决了目前共沉淀制备的氢氧化物前驱体中硫含量较高的问题,通过改变浆料陈化的条件,直接升高浆料的pH,以达到控制产品中S杂质含量的目的,替代现有的碱洗法;通过简单的控制浆料陈化条件,即可有效控制S杂质含量,极大地减少了洗涤过程中的碱耗和水耗、减少废水量,简化洗涤步骤,达到降低成本、提高生产效率、减少废水排放的效果。除此之外,传统的洗涤方法不能一次性完成所有物料的碱洗,通常需要分为多批次洗涤,浆料在等候洗涤的过程中逐渐被氧化,极易造成S杂质在颗粒中的吸附,导致后段产品的S杂质含量出现上升趋势,而本发明可一次性完成所有物料的碱洗,有效避免后段产品的S杂质含量上升的情况。本发明具有高效率、低成本的优点。本发明可广泛应用于前驱体的洗涤工艺中,特别是适用于氢氧化物前驱体洗涤除硫的工艺中。The beneficial effects of the present invention are: a method for removing the sulfur content in the hydroxide precursor, which solves the problem of high sulfur content in the hydroxide precursor prepared by co-precipitation at present. Increase the pH of the slurry to control the S impurity content in the product, replacing the existing alkaline washing method; by simply controlling the slurry aging conditions, the S impurity content can be effectively controlled, which greatly reduces the washing process Alkali consumption and water consumption, reduce the amount of waste water, simplify washing steps, reduce costs, improve production efficiency, and reduce waste water discharge. In addition, the traditional washing method cannot complete the alkaline washing of all materials at one time, and usually needs to be divided into multiple batches of washing, and the slurry is gradually oxidized during the waiting for washing process, which can easily cause the adsorption of S impurities in the particles. , causing the S impurity content of the product in the latter stage to show an upward trend, and the present invention can complete the alkaline washing of all materials at one time, and effectively avoid the situation that the content of the S impurity in the product in the later stage rises. The present invention has the advantages of high efficiency and low cost. The invention can be widely used in the washing process of the precursor, especially in the process of washing and removing sulfur of the hydroxide precursor.
具体实施方式Detailed ways
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。The following examples may enable those skilled in the art to more fully understand the present invention, but do not limit the present invention in any way.
实施例1Example 1
一种去除氢氧化物前驱体中硫含量的方法,其特征在于,包括如下步骤:A method for removing sulfur content in a hydroxide precursor, comprising the steps of:
①按照所需选用硫酸镍、硫酸钴、硫酸锰的混合盐溶液与氢氧化钠溶液、氨水并流加入反应釜中,制备得到前驱体浆料;①Select the mixed salt solution of nickel sulfate, cobalt sulfate, manganese sulfate, sodium hydroxide solution, and ammonia water into the reaction kettle in parallel to prepare the precursor slurry according to the needs;
②通过反应釜设置的pH控制系统将浆料的pH值升高至10.38,控制温度为90℃,且浆料中OH-浓度始终为0.052mol/L,控制搅拌转速为100rpm,进行陈化1h;② The pH value of the slurry was raised to 10.38 through the pH control system set up in the reactor, the control temperature was 90°C, and the OH - concentration in the slurry was always 0.052mol/L, the stirring speed was controlled to be 100rpm, and the aging was carried out for 1h. ;
③陈化结束后,将浆料转移至离心机或压滤机中,采用纯水进行洗涤,并控制水洗温度为70℃、水洗时间2h;③ After the aging, the slurry was transferred to a centrifuge or filter press, washed with pure water, and the washing temperature was controlled to be 70°C and the washing time was 2h;
④洗涤结束后,对浆料进行过滤获得滤饼;④ After washing, filter the slurry to obtain a filter cake;
⑤将滤饼依次经过干燥、过筛、除铁、包装等步骤,即可获得硫含量约为1105ppm的目标产品。⑤ The filter cake is dried, sieved, iron removal, packaging and other steps in sequence to obtain the target product with a sulfur content of about 1105ppm.
实施例2Example 2
一种去除氢氧化物前驱体中硫含量的方法,其特征在于,包括如下步骤:A method for removing sulfur content in a hydroxide precursor, comprising the steps of:
①按照所需选用硫酸镍、硫酸钴、硫酸锰的混合盐溶液与氢氧化钠溶液、氨水并流加入反应釜中,制备得到前驱体浆料;①Select the mixed salt solution of nickel sulfate, cobalt sulfate, manganese sulfate, sodium hydroxide solution, and ammonia water into the reaction kettle in parallel to prepare the precursor slurry according to the needs;
②通过反应釜设置的pH控制系统将浆料的pH值升高至11.40,控制温度为70℃,且浆料中OH-浓度始终为0.105mol/L,控制搅拌转速为150rpm,进行陈化2h;②The pH value of the slurry was raised to 11.40 through the pH control system set up in the reactor, the control temperature was 70°C, and the OH - concentration in the slurry was always 0.105mol/L, the stirring speed was controlled to be 150rpm, and the aging was carried out for 2h ;
③陈化结束后,将浆料转移至离心机或洗涤过滤一体机中,采用纯水进行洗涤,并控制水洗温度为70℃、水洗时间2h;;③ After the aging, transfer the slurry to a centrifuge or an integrated washing and filtering machine, wash with pure water, and control the washing temperature to be 70 °C and the washing time to be 2 hours;
④洗涤结束后,对浆料进行过滤获得滤饼;④ After washing, filter the slurry to obtain a filter cake;
⑤将滤饼依次经过干燥、过筛、除铁、包装等步骤,即可获得硫含量约为1250ppm的目标产品。⑤ The filter cake is dried, sieved, iron removal, packaging and other steps in sequence to obtain the target product with a sulfur content of about 1250ppm.
实施例3Example 3
一种去除氢氧化物前驱体中硫含量的方法,其特征在于,包括如下步骤:A method for removing sulfur content in a hydroxide precursor, comprising the steps of:
①按照所需选用硫酸镍、硫酸钴、硫酸锰的混合盐溶液与氢氧化钠溶液、氨水并流加入反应釜中,制备得到前驱体浆料;①Select the mixed salt solution of nickel sulfate, cobalt sulfate, manganese sulfate, sodium hydroxide solution, and ammonia water into the reaction kettle in parallel to prepare the precursor slurry according to the needs;
②通过反应釜设置的pH控制系统将浆料的pH值升高至12.82,控制温度为50℃,且浆料中OH-浓度始终为0.525mol/L,控制搅拌转速为200rpm,进行陈化3h;② The pH value of the slurry was raised to 12.82 through the pH control system set up in the reactor, the control temperature was 50°C, and the OH - concentration in the slurry was always 0.525mol/L, the stirring speed was controlled to be 200rpm, and the aging was carried out for 3h ;
③陈化结束后,将浆料转移至压滤机或洗涤过滤一体机中,采用纯水进行洗涤,并控制水洗温度为70℃、水洗时间2h;;③ After the aging, transfer the slurry to a filter press or an integrated washing and filtering machine, wash with pure water, and control the washing temperature to be 70 °C and the washing time to be 2 hours;
④洗涤结束后,对浆料进行过滤获得滤饼;④ After washing, filter the slurry to obtain a filter cake;
⑤将滤饼依次经过干燥、过筛、除铁、包装等步骤,即可获得硫含量约为1430ppm的目标产品。⑤ The filter cake is dried, sieved, iron removal, packaging and other steps in sequence to obtain the target product with a sulfur content of about 1430ppm.
对比例Comparative ratio
①按照所需选用硫酸镍、硫酸钴、硫酸锰的混合盐溶液与氢氧化钠溶液、氨水并流加入反应釜中,制备得到前驱体浆料;①Select the mixed salt solution of nickel sulfate, cobalt sulfate, manganese sulfate, sodium hydroxide solution, and ammonia water into the reaction kettle in parallel to prepare the precursor slurry according to the needs;
②合成结束后停止进料,控制浆料pH、温度、搅拌转速等工艺参数与合成过程保持一致,陈化1h;② Stop feeding after the synthesis, control the process parameters such as pH, temperature, stirring speed of the slurry to be consistent with the synthesis process, and age for 1 hour;
③陈化结束后,将浆料放入离心机或压滤机或洗涤过滤一体机,脱出母液后进行碱洗、水洗;碱液浓度为0.3mol/L、温度为70℃、碱洗时间为3h;水洗温度为70℃、水洗时间2h;③ After the aging, put the slurry into a centrifuge or a filter press or an integrated washing and filtering machine, and then carry out alkali washing and water washing after removing the mother liquor; 3h; washing temperature is 70℃, washing time is 2h;
④洗涤结束后,对浆料进行过滤获得滤饼;④ After washing, filter the slurry to obtain a filter cake;
⑤将滤饼依次经过干燥、过筛、除铁、包装等步骤,获得的产品S含量约为1580ppm。⑤ The filter cake is successively dried, sieved, iron removal, packaging and other steps, and the S content of the obtained product is about 1580ppm.
本发明的原理:研发人员发现,常规洗涤方法都会先将浆料脱水得到滤饼,再对滤饼进行碱洗和水洗,在脱水过程中,颗粒表面与溶液分离,颗粒表面产生微观变化,使其浸润界面性质发生改变,当再次进行碱液的淋洗或分散洗涤时,界面浸润性下降,阻碍了离子交换,不利于产品中硫杂质的洗脱,且此方面的研究未见相关文献报道。本方法利用氢氧根离子与颗粒内部/表面孔隙内吸附的硫酸根离子进行离子交换的原理,从而达到降低产品中硫杂质含量的目的;通过将浆料pH升高至10.35~13.00,控制温度为50~90℃,且浆料中OH-浓度始终为0.052~0.547mol/L,其原因为,pH过低无法达到洗涤效果,pH过高会引入较多的钠离子导致水洗需加大用水量方能达到钠离子指标要求;温度过低洗涤效果差,温度过高则易引起前驱体颗粒界面发生变化导致洗涤效果下降。采用本方法进行洗涤,可有效保持颗粒表面与溶液的浸润界面,提高离子交换效率,达到好的洗涤效果。The principle of the invention: The researcher found that the conventional washing method will first dehydrate the slurry to obtain a filter cake, and then perform alkaline washing and water washing on the filter cake. The property of its infiltration interface changes. When the lye leaching or dispersion washing is performed again, the interface wettability decreases, which hinders the ion exchange and is not conducive to the elution of sulfur impurities in the product, and there is no relevant literature report on this research. . This method utilizes the principle of ion exchange between hydroxide ions and sulfate ions adsorbed in the inner/surface pores of the particles, so as to achieve the purpose of reducing the content of sulfur impurities in the product; by raising the pH of the slurry to 10.35-13.00, the temperature is controlled. The temperature is 50~90℃, and the OH - concentration in the slurry is always 0.052~0.547mol/L. The reason is that the washing effect cannot be achieved if the pH is too low. Only when the temperature is too low can the amount of sodium ions meet the requirements of the sodium ion index; if the temperature is too low, the cleaning effect is poor, and if the temperature is too high, it is easy to cause changes in the interface of the precursor particles, resulting in a decrease in the cleaning effect. Using the method for washing can effectively maintain the infiltration interface between the particle surface and the solution, improve the ion exchange efficiency, and achieve a good washing effect.
实施例与对比例比较情况见下表:The comparative situation of embodiment and comparative example is shown in the following table:
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010716123.0A CN111847529A (en) | 2020-07-23 | 2020-07-23 | A kind of method for removing sulfur content in hydroxide precursor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010716123.0A CN111847529A (en) | 2020-07-23 | 2020-07-23 | A kind of method for removing sulfur content in hydroxide precursor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111847529A true CN111847529A (en) | 2020-10-30 |
Family
ID=72949398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010716123.0A Pending CN111847529A (en) | 2020-07-23 | 2020-07-23 | A kind of method for removing sulfur content in hydroxide precursor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111847529A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113440903A (en) * | 2021-05-21 | 2021-09-28 | 中冶瑞木新能源科技有限公司 | Method for aging ternary precursor |
CN114784218A (en) * | 2022-03-29 | 2022-07-22 | 兰州金通储能动力新材料有限公司 | Method for reducing alkali content on surface of lithium battery cathode material |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102280619A (en) * | 2011-07-08 | 2011-12-14 | 厦门钨业股份有限公司 | Preparation method of high-tap density spherical three-component anode material precursor |
CN103332753A (en) * | 2013-06-06 | 2013-10-02 | 南通瑞翔新材料有限公司 | Preparation method of high-tap spherical high-manganese ternary anode material precursor |
CN103342395A (en) * | 2013-07-04 | 2013-10-09 | 厦门钨业股份有限公司 | Method for preparing low-sulfur ternary precursor |
CN106745331A (en) * | 2016-11-24 | 2017-05-31 | 华友新能源科技(衢州)有限公司 | A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide |
CN107459069A (en) * | 2017-08-25 | 2017-12-12 | 浙江华友钴业股份有限公司 | A kind of method for reducing nickel cobalt aluminium presoma sulfur content |
CN109279661A (en) * | 2018-09-13 | 2019-01-29 | 湖南鸿捷新材料有限公司 | A kind of preparation method of reducing the sulfur content of NCM ternary precursor |
CN110550668A (en) * | 2019-07-25 | 2019-12-10 | 浙江美都海创锂电科技有限公司 | Process preparation method of power type single crystal NCM622 type precursor concentrator |
CN110817975A (en) * | 2019-09-19 | 2020-02-21 | 宜宾光原锂电材料有限公司 | A kind of method for reducing sulfur content of ternary precursor |
-
2020
- 2020-07-23 CN CN202010716123.0A patent/CN111847529A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102280619A (en) * | 2011-07-08 | 2011-12-14 | 厦门钨业股份有限公司 | Preparation method of high-tap density spherical three-component anode material precursor |
CN103332753A (en) * | 2013-06-06 | 2013-10-02 | 南通瑞翔新材料有限公司 | Preparation method of high-tap spherical high-manganese ternary anode material precursor |
CN103342395A (en) * | 2013-07-04 | 2013-10-09 | 厦门钨业股份有限公司 | Method for preparing low-sulfur ternary precursor |
CN106745331A (en) * | 2016-11-24 | 2017-05-31 | 华友新能源科技(衢州)有限公司 | A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide |
CN107459069A (en) * | 2017-08-25 | 2017-12-12 | 浙江华友钴业股份有限公司 | A kind of method for reducing nickel cobalt aluminium presoma sulfur content |
CN109279661A (en) * | 2018-09-13 | 2019-01-29 | 湖南鸿捷新材料有限公司 | A kind of preparation method of reducing the sulfur content of NCM ternary precursor |
CN110550668A (en) * | 2019-07-25 | 2019-12-10 | 浙江美都海创锂电科技有限公司 | Process preparation method of power type single crystal NCM622 type precursor concentrator |
CN110817975A (en) * | 2019-09-19 | 2020-02-21 | 宜宾光原锂电材料有限公司 | A kind of method for reducing sulfur content of ternary precursor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113440903A (en) * | 2021-05-21 | 2021-09-28 | 中冶瑞木新能源科技有限公司 | Method for aging ternary precursor |
CN114784218A (en) * | 2022-03-29 | 2022-07-22 | 兰州金通储能动力新材料有限公司 | Method for reducing alkali content on surface of lithium battery cathode material |
CN114784218B (en) * | 2022-03-29 | 2023-11-07 | 兰州金通储能动力新材料有限公司 | Method for reducing alkali content on surface of positive electrode material of lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022227669A1 (en) | Iron phosphate precursor and preparation method therefor and application thereof | |
CN109052492B (en) | Method for preparing ternary cathode material from laterite nickel ore nitric acid leaching solution | |
CN107459069B (en) | A method for reducing the sulfur content of nickel-cobalt-aluminum precursor | |
CN113683130B (en) | Preparation method of nickel-rich large-particle-size ternary precursor with low sodium and sulfur impurity content | |
CN110240207A (en) | A method of recycling waste lithium battery to prepare ternary cathode material | |
CN104229906B (en) | The method and apparatus of the nickel-containing waste water preparation plating level single nickel salt utilizing surface treatment process to produce | |
CN114349068B (en) | Preparation method of large-particle-size nickel-cobalt-aluminum ternary positive electrode material precursor | |
CN108767218A (en) | A kind of post-processing approach that battery is prepared with nickel cobalt aluminium hydroxide | |
CN112713269B (en) | Production system and production method for reducing content of sodium ions and sulfate ions in precursor of positive electrode material | |
CN110759384A (en) | Method for preparing spheroidal manganous manganic oxide by manganese sulfate solution | |
CN111847529A (en) | A kind of method for removing sulfur content in hydroxide precursor | |
CN112591808B (en) | A kind of preparation method of nickel-cobalt-manganese ternary precursor of low sodium sulfur | |
CN111792679A (en) | A green and low-cost ternary material precursor and its preparation method and device | |
CN115092902A (en) | Method for preparing lithium manganese iron phosphate cathode material by utilizing iron-rich manganese slag | |
CN114784218A (en) | Method for reducing alkali content on surface of lithium battery cathode material | |
CN108946825A (en) | A kind of preparation method of small grain size cobaltosic oxide | |
CN109205684A (en) | A kind of preparation method of small grain size cobaltosic oxide | |
CN112342383B (en) | Separation and recovery method of nickel, cobalt, manganese and lithium in ternary waste | |
CN113666397A (en) | A method for economical recovery of lithium by acid method of waste lithium iron phosphate material | |
CN114684871A (en) | Method for reducing sulfur content of sulfate system lithium ion battery positive electrode material precursor | |
CN116216791B (en) | A washing method for cobalt-free high-nickel precursor and its application | |
CN101168453A (en) | Method for treating (SO4)2- impurity of spherical nickel hydroxide | |
CN114150378B (en) | High-spherical ternary precursor and preparation method thereof | |
CN116177511A (en) | A method for rebuilding defective iron phosphate | |
CN116119636A (en) | Regeneration method of positive electrode material of waste lithium iron phosphate battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220303 Address after: 324000 No.1, building 9, No.18, Nianxin Road, Quzhou City, Zhejiang Province Applicant after: HUAYOU NEW ENERGY TECHNOLOGY (QUZHOU) Co.,Ltd. Applicant after: ZHEJIANG HUAYOU COBALT Co.,Ltd. Applicant after: Zhejiang Huayou Puxiang new energy materials Co.,Ltd. Address before: 324000 No.1, building 9, No.18, Nianxin Road, Quzhou City, Zhejiang Province Applicant before: HUAYOU NEW ENERGY TECHNOLOGY (QUZHOU) Co.,Ltd. Applicant before: ZHEJIANG HUAYOU COBALT Co.,Ltd. Applicant before: QUZHOU HUAHAI NEW ENERGY TECHNOLOGY Co.,Ltd. Applicant before: Zhejiang Huayou Puxiang new energy materials Co.,Ltd. |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201030 |