CN111844113A - Flexible pneumatic finger and gripping device - Google Patents

Flexible pneumatic finger and gripping device Download PDF

Info

Publication number
CN111844113A
CN111844113A CN202010656133.XA CN202010656133A CN111844113A CN 111844113 A CN111844113 A CN 111844113A CN 202010656133 A CN202010656133 A CN 202010656133A CN 111844113 A CN111844113 A CN 111844113A
Authority
CN
China
Prior art keywords
structural unit
shell
pneumatic finger
needle shaft
flexible pneumatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010656133.XA
Other languages
Chinese (zh)
Inventor
薛文博
葛锜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Priority to CN202010656133.XA priority Critical patent/CN111844113A/en
Publication of CN111844113A publication Critical patent/CN111844113A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The invention discloses a flexible pneumatic finger and a grabbing device, wherein the flexible pneumatic finger comprises a first structural unit, a plurality of second structural units and a third structural unit which are sequentially hinged, the first structural unit, the plurality of second structural units and the third structural unit are hinged to form an inner cavity, a latex air bag is arranged in the inner cavity, and the latex air bag is connected with an air pipe through an air vent arranged on the first structural unit. The flexible pneumatic finger provided by the invention has a more compact overall structure, can realize modular design and application concepts by virtue of the first structural unit, the second structural unit and the third structural unit, and has a load bearing capacity which is higher by one order of magnitude than that of a flexible soft driver bent in the same size.

Description

Flexible pneumatic finger and gripping device
Technical Field
The invention relates to the field of pneumatic fingers, in particular to a flexible pneumatic finger and a gripping device.
Background
Pneumatic fingers in the industry are mainly divided into two types, one type is a rigid pneumatic finger taking a cylinder piston as a transmission mechanism, the rigid pneumatic finger is characterized in that the power output is linear, larger load can be borne, and the defect is that the mechanical system is overstaffed in structure and is not suitable for grabbing flexible articles; the other type of flexible pneumatic finger is prepared by taking flexible materials such as silica gel, latex and the like as a main body and applying a special constraint mode, and is characterized by having good grabbing surface adaptability and having no destructive effect on an object to be grabbed.
Accordingly, the prior art is yet to be improved and developed.
Disclosure of Invention
In view of the above-mentioned shortcomings of the prior art, the present invention provides a flexible pneumatic finger and a grasping device, which aims to solve the problems of loose structure, small output force and incapability of bearing large load of the existing flexible actuating finger.
The technical scheme of the invention is as follows:
the utility model provides a flexible pneumatic finger, wherein, includes articulated first constitutional unit, a plurality of second constitutional unit and third constitutional unit in proper order, first constitutional unit, a plurality of second constitutional unit and the articulated inside cavity that forms of third constitutional unit, be provided with the latex gasbag in the inside cavity, the latex gasbag is through setting up air vent and trachea on the first constitutional unit are connected.
The flexible pneumatic finger is characterized in that the first structural unit comprises a first outer wall body and a first rotary shell integrally connected with the first outer wall body, and a first needle shaft hole is formed in the first rotary shell; the second structural unit comprises a second outer wall body, a second front end rotating shell and a second rear end rotating shell which are integrally connected with the second outer wall body, wherein a second front end needle shaft hole is formed in the second front end rotating shell, and a second rear end needle shaft hole is formed in the second rear end rotating shell; the first structure unit and the second structure unit are aligned through the first needle shaft hole and the second front end needle shaft hole and are hinged through inserting a needle shaft; and adjacent second structure units are hinged by aligning the second front end needle shaft hole and the second rear end needle shaft hole and inserting a needle shaft.
The flexible pneumatic finger is characterized in that the outer diameter of the second front end rotating shell is larger than that of the first rotating shell, when the first structural unit is hinged to the second structural unit, the second front end rotating shell and the first rotating shell form a concentric structure, the second front end rotating shell is located on the outer layer of the concentric structure, and the first rotating shell is located on the inner layer of the concentric structure.
The flexible pneumatic finger is characterized in that a first rotation limiting inclined plane is arranged at the bottom of the first rotating shell, a second front end rotation limiting inclined plane is arranged at the bottom of the second front end rotating shell, and the first rotation limiting inclined plane and the second front end rotation limiting inclined plane form a maximum rotation angle between the first structural unit and the second structural unit when abutting against each other; the bottom of the second rear-end rotating shell is provided with a second rear-end rotating limiting inclined plane, and when the second front-end rotating limiting inclined plane and the second rear-end rotating limiting inclined plane are abutted against each other, the maximum rotating angle between adjacent second structure units is formed.
The flexible pneumatic finger is characterized in that the third structural unit comprises a third outer wall body and a third rotary shell integrally connected with the third outer wall body, and a third needle shaft hole is formed in the third rotary shell; the third structural unit and the second structural unit are hinged through the alignment of the third needle shaft hole and the second rear-end needle shaft hole and the insertion of a needle shaft.
The flexible pneumatic finger, wherein, the external diameter of third gyration shell is greater than the external diameter of second rear end gyration shell, third constitutional unit with when second constitutional unit accomplishes the articulated, third gyration shell with second rear end gyration shell forms concentric structure, the third gyration shell is located concentric structure's skin, second rear end gyration shell is located concentric structure's inlayer.
The flexible pneumatic finger is characterized in that a third rotation limiting inclined plane is arranged on the third rotation shell, a second rear end rotation limiting inclined plane is arranged at the bottom of the second rear end rotation shell, and the third rotation limiting inclined plane and the second rear end rotation limiting inclined plane form the maximum rotation angle of the third structural unit and the second structural unit when being mutually abutted.
The flexible pneumatic finger is characterized in that the first structural unit, the second structural unit and the third structural unit are all arc-shaped or straight prism-shaped.
The flexible pneumatic finger, wherein, be provided with air vent and screw thread fixed orifices on the first outer wall body.
A gripping device comprising a central plate, said flexible pneumatic fingers being fixedly disposed on said central plate.
Has the advantages that: compared with a soft driver of a silica gel air bag type, the flexible pneumatic finger provided by the invention has a more compact overall structure, can realize modular design and application concepts by virtue of the first structural unit, the second structural unit and the third structural unit, and has a load bearing capacity which is higher by an order of magnitude than that of a flexible soft driver bent in the same size.
Drawings
Fig. 1 is a schematic structural view of a flexible pneumatic finger according to the present invention.
Fig. 2 is a schematic partial cross-sectional view of a flexible pneumatic finger according to the present invention.
FIG. 3 is a schematic view of the flexible pneumatic finger of the present invention in an uninflated state.
Fig. 4 is a schematic view of the inflated state of the flexible pneumatic finger of the present invention.
Fig. 5 is a schematic structural diagram of a first structural unit according to the present invention.
FIG. 6 is a schematic structural diagram of a second structural unit according to the present invention.
FIG. 7 is a schematic view of the first structural unit and the second structural unit of the present invention in an uninflated state.
FIG. 8 is a schematic view of the first structural unit and the second structural unit of the present invention after inflation.
FIG. 9 is a schematic structural diagram of a third structural unit according to the present invention.
Figure 10 is another schematic view of a flexible pneumatic finger according to the present invention.
Fig. 11 is a schematic structural view of a grasping apparatus according to the present invention.
FIG. 12 is a schematic top view of the center plate of the present invention.
Detailed Description
The invention provides a flexible pneumatic finger and gripping device, and the invention is further described in detail below in order to make the purpose, technical scheme and effect of the invention clearer and clearer. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Referring to fig. 1 and 2, the present invention provides a flexible pneumatic finger, which includes a first structural unit 10, a plurality of second structural units 20, and a third structural unit 30, which are hinged in sequence, wherein the first structural unit 10, the plurality of second structural units 20, and the third structural unit 30 are hinged to form an internal cavity, a latex air bag 40 is disposed in the internal cavity, and the latex air bag 40 is connected to an air tube 12 through a vent hole 11 disposed on the first structural unit 10.
In this embodiment, the number of the second structural units 20 may be defined according to the use scenario of the user, and when the flexible pneumatic finger is used to grab the objects with different specifications and sizes, the number of the second structural units is selected as appropriate; as shown in fig. 1-2, taking 7 second structural units 20 as an example, 7 second structural units 20 are sequentially hinged, the first structural unit 10 is hinged to the front end of the 7 sequentially hinged second structural units, and the third structural unit 30 is hinged to the rear end of the 7 sequentially hinged second structural units; in this embodiment, first constitutional unit 10, 7 second constitutional unit and third constitutional unit form the inner cavity after articulated in proper order, be provided with latex gasbag 40 in the inner cavity, latex gasbag 40 is close to the one end of third constitutional unit and fixes on the inner wall of third constitutional unit, latex gasbag 40 is close to the one end of first constitutional unit is provided with the trompil, the trompil with fixed setting trachea joint 13 fixed connection on the air vent 11 of first constitutional unit 10, the wall of inner cavity can constitute the restraint to latex gasbag 40's inflation process.
In this embodiment, since both ends of the latex airbag 40 are respectively and fixedly connected to the first structural unit 10 and the third structural unit 30, when the pressure in the latex airbag 40 is zero (no gas is introduced), the latex airbag 40 can straighten the flexible pneumatic finger, and the position state of the flexible pneumatic finger at this time is as shown in fig. 3; the latex air bag 40 is aerated through the air pipe 12 to increase the internal pressure, when the relative pressure is 20kpa and no load exists, the position state of the flexible pneumatic finger is as shown in fig. 4, and the principle of the rotation of the flexible pneumatic finger is as follows: because constitute articulated relation between first constitutional unit, second constitutional unit and the third constitutional unit, when latex gasbag 40 internal pressure increases, latex gasbag 40 takes place to be out of shape to the drive take place to rotate between first constitutional unit, second constitutional unit and the third constitutional unit, and then snatch the object, work as first constitutional unit, second constitutional unit and third constitutional unit take place the butt in the biggest turned angle position, prevent that inside latex gasbag further takes place to warp, prevent to deviate from the latex gasbag from the interior cavity, cause the drive inefficacy.
In some embodiments, as shown in fig. 5 and 6, the first structural unit 10 includes a first outer wall body 14 and a first rotating shell 15 integrally connected to the first outer wall body 14, the first rotating shell 14 is provided with a first needle shaft hole 16; the second structure unit 20 includes a second outer wall body 21, a second front end revolving shell 22 and a second rear end revolving shell 23 integrally connected with the second outer wall body 21, a second front end needle shaft hole 24 is provided on the second front end revolving shell 22, and a second rear end needle shaft hole 25 is provided on the second rear end revolving shell 23; the first structural unit 10 and the second structural unit 20 are hinged through the alignment of the first needle shaft hole 16 and the second front needle shaft hole 22 and the insertion of the needle shaft; and the adjacent second structure units 20 are hinged through the alignment of the second front end needle shaft hole 24 and the second rear end needle shaft hole 25 and the insertion of a needle shaft.
In this embodiment, the first outer wall body 14 and the first rotating shell 15 are integrally connected, which means that the first rotating shell 15 and the first outer wall body 14 are integrally formed, that is, they cannot be separated; also, the second outer wall body 21 is integrally formed with the second front end revolving case 22 and the second rear end revolving case 23. The first structural unit and the second structural unit are hinged by inserting needle shafts with the same specification into needle shaft holes with the same size respectively, and the adjacent second structural units are hinged. Further, as shown in fig. 1, the outer diameter of the second front end revolving shell 22 is larger than the outer diameter of the first revolving shell 14, when the first structural unit 10 and the second structural unit 20 are hinged, the second front end revolving shell 22 and the first revolving shell 14 form a concentric structure, the second front end revolving shell 22 is located at the outer layer of the concentric structure, and the first revolving shell 14 is located at the inner layer of the concentric structure. In this embodiment, the concentric structure means that the first rotating shell 14 and the second front rotating shell 22 both use the hinged needle shaft as the axis and can rotate around the axis by a predetermined angle.
In some embodiments, as shown in fig. 5 and 6, a first rotation limiting inclined surface 17 is disposed at the bottom of the first rotation shell 14, a second front rotation limiting inclined surface 26 is disposed at the bottom of the second front rotation shell 22, and the first rotation limiting inclined surface 17 and the second front rotation limiting inclined surface 17 form a maximum rotation angle between the first structure unit 10 and the second structure unit 20 when abutting against each other. In this embodiment, the first structural unit 10 and the second structural unit 20 are maintained in the initial state shown in fig. 7 during the non-inflation process of the latex airbag 40, and when the latex airbag 40 is inflated, the second structural unit 20 gradually rotates, and finally the second front end rotation limiting inclined surface 26 and the first rotation limiting inclined surface 17 abut against each other to reach the maximum rotation angle of the first structural unit and the second structural unit, as shown in fig. 8. In this embodiment, the mutual abutting of the second front-end rotation limiting inclined surface 26 and the first rotation limiting inclined surface 17 completes the limiting design of the maximum relative rotation angle, so that the latex airbag 40 still has complete wall surface coating in the hollow cavity of the flexible pneumatic finger, and the driving failure caused by the excessive pressure coming out from the structural unit is avoided.
In some embodiments, as shown in fig. 6, a second rear rotation limiting inclined surface 27 is disposed at the bottom of the second rear rotation shell 23, and when the second front rotation limiting inclined surface 26 and the second rear rotation limiting inclined surface 27 abut against each other, a maximum rotation angle between adjacent second structure units 20 is formed.
In some embodiments, as shown in fig. 1 and 9, the third structural unit 30 includes a third outer wall body 31 and a third rotating shell 32 integrally connected to the third outer wall body 31, and a third needle shaft hole 33 is provided on the third rotating shell 32; the third structure unit 30 and the second structure unit 20 are hinged by aligning the third needle shaft hole 33 and the second rear needle shaft hole 26 and inserting a needle shaft. The outer diameter of the third rotating shell 32 is greater than the outer diameter of the second rear-end rotating shell 23, when the third structural unit 30 is hinged to the second structural unit 20, the third rotating shell 32 and the second rear-end rotating shell 23 form a concentric structure, the third rotating shell 32 is located on the outer layer of the concentric structure, and the second rear-end rotating shell 23 is located on the inner layer of the concentric structure. In this embodiment, the concentric structure means that the third rotating shell 32 and the second rear rotating shell 23 both use the hinged needle shaft as an axis and can rotate around the axis by a predetermined angle.
Further, as shown in fig. 1 and 9, a third rotation limiting inclined surface 34 is disposed at the bottom of the third rotation shell 32, a second rear rotation limiting inclined surface 27 is disposed at the bottom of the second rear rotation shell 23, and when the third rotation limiting inclined surface 34 and the second rear rotation limiting inclined surface 38 abut against each other, a maximum rotation angle between the third structure unit 30 and the second structure unit 20 is formed.
In some embodiments, as shown in fig. 1, the first structural unit, the second structural unit and the third structural unit are all arc-shaped, but not limited thereto. For example, as shown in fig. 10, the first structural unit, the second structural unit, and the third structural unit may be all in a shape of a straight prism.
In some embodiments, as shown in fig. 1 and 5, the first structural unit 10 is further provided with a threaded fixing hole 18, and the flexible pneumatic finger is fixed on the outer end device through the matching of the threaded fixing hole 18 and a screw.
In some embodiments, as shown in fig. 11, there is also provided a grasping device including a central plate 50 and the above-described flexible pneumatic finger 60 fixedly disposed on the central plate 50. Specifically, the central plate 50 is provided with a fixing hole 51 fitted to the screw fixing hole 18 of the first structural unit and an air tube through hole 52 fitted to the air vent hole 11 of the first structural unit, and the external air tube 12 is connected to the opening of the latex bladder 40 through the air tube through hole 52 and the air vent hole 11 in this order and finally through the air tube joint 13.
In some embodiments, one or more flexible pneumatic fingers 60 may be disposed on the central plate 50 for grasping different objects, for example, as shown in fig. 11 and 12, 4 flexible pneumatic fingers 60 may be uniformly fixed on the central plate 50.
In some embodiments, as shown in fig. 12, the central plate is further provided with a plurality of mounting holes 53, and the central plate 50 is conveniently mounted on the end of the robot arm or the base frame through the mounting holes 53.
In summary, the flexible pneumatic finger provided by the invention has a more compact overall structure, modular design and application concepts can be realized by virtue of the first structural unit, the second structural unit and the third structural unit, and the load bearing capacity of the flexible pneumatic finger is higher by one order of magnitude than that of a flexible soft driver bent in the same size; and the maximum rotation angle is arranged on the adjacent structural units, so that the pneumatic finger protector has a certain safety protection effect on the flexible pneumatic finger.
It is to be understood that the invention is not limited to the examples described above, but that modifications and variations may be effected thereto by those of ordinary skill in the art in light of the foregoing description, and that all such modifications and variations are intended to be within the scope of the invention as defined by the appended claims.

Claims (10)

1. The utility model provides a flexible pneumatic finger which characterized in that, is including articulated first constitutional unit, a plurality of second constitutional unit and third constitutional unit in proper order, first constitutional unit, a plurality of second constitutional unit and the articulated inside cavity that forms of third constitutional unit, be provided with the latex gasbag in the inside cavity, the latex gasbag is through setting up air vent and trachea on the first constitutional unit are connected.
2. The flexible pneumatic finger of claim 1, wherein the first structural unit comprises a first outer wall body and a first swivel housing integrally connected to the first outer wall body, the first swivel housing being provided with a first pintle hole; the second structural unit comprises a second outer wall body, a second front end rotating shell and a second rear end rotating shell which are integrally connected with the second outer wall body, wherein a second front end needle shaft hole is formed in the second front end rotating shell, and a second rear end needle shaft hole is formed in the second rear end rotating shell; the first structure unit and the second structure unit are aligned through the first needle shaft hole and the second front end needle shaft hole and are hinged through inserting a needle shaft; and adjacent second structure units are hinged by aligning the second front end needle shaft hole and the second rear end needle shaft hole and inserting a needle shaft.
3. The flexible pneumatic finger according to claim 2, wherein the second front swivel shell has an outer diameter larger than that of the first swivel shell, and when the first structural unit is hinged to the second structural unit, the second front swivel shell and the first swivel shell form a concentric structure, the second front swivel shell is located at an outer layer of the concentric structure, and the first swivel shell is located at an inner layer of the concentric structure.
4. The flexible pneumatic finger according to claim 3, wherein the bottom of the first rotary shell is provided with a first rotation limiting slope, the bottom of the second front rotary shell is provided with a second front rotation limiting slope, and the first rotation limiting slope and the second front rotation limiting slope form a maximum rotation angle between the first structural unit and the second structural unit when abutting against each other; the bottom of the second rear-end rotating shell is provided with a second rear-end rotating limiting inclined plane, and when the second front-end rotating limiting inclined plane and the second rear-end rotating limiting inclined plane are abutted against each other, the maximum rotating angle between adjacent second structure units is formed.
5. The flexible pneumatic finger of claim 2, wherein the third structural unit comprises a third outer wall body and a third swivel case integrally connected with the third outer wall body, the third swivel case being provided with a third needle shaft hole; the third structural unit and the second structural unit are hinged through the alignment of the third needle shaft hole and the second rear-end needle shaft hole and the insertion of a needle shaft.
6. The flexible pneumatic finger according to claim 5, wherein the third swivel shell has an outer diameter larger than that of the second rear swivel shell, and when the third structural unit is hinged to the second structural unit, the third swivel shell and the second rear swivel shell form a concentric structure, the third swivel shell is located at an outer layer of the concentric structure, and the second rear swivel shell is located at an inner layer of the concentric structure.
7. The flexible pneumatic finger according to claim 6, wherein a third rotation limiting inclined surface is provided on the third rotation housing, a second rear rotation limiting inclined surface is provided at the bottom of the second rear rotation housing, and when the third rotation limiting inclined surface and the second rear rotation limiting inclined surface abut against each other, a maximum rotation angle of the third structural unit and the second structural unit is formed.
8. The flexible pneumatic finger according to claim 1, wherein the first, second and third structural units are all arc-shaped or right prism-shaped.
9. The flexible pneumatic finger of claim 2 wherein the first outer wall body is provided with a threaded securing hole.
10. A gripping device comprising a central plate, a flexible pneumatic finger according to any one of claims 1-9 fixedly disposed on said central plate.
CN202010656133.XA 2020-07-09 2020-07-09 Flexible pneumatic finger and gripping device Pending CN111844113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010656133.XA CN111844113A (en) 2020-07-09 2020-07-09 Flexible pneumatic finger and gripping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010656133.XA CN111844113A (en) 2020-07-09 2020-07-09 Flexible pneumatic finger and gripping device

Publications (1)

Publication Number Publication Date
CN111844113A true CN111844113A (en) 2020-10-30

Family

ID=73152724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010656133.XA Pending CN111844113A (en) 2020-07-09 2020-07-09 Flexible pneumatic finger and gripping device

Country Status (1)

Country Link
CN (1) CN111844113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771072A (en) * 2021-09-01 2021-12-10 深圳市骏创科技有限公司 Flexible manipulator and robot device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130316877A1 (en) * 2012-05-26 2013-11-28 Randy S. Scire Device and method for simultaneously stretching fingers and hand and strengthening hand and forearm
CN205043799U (en) * 2015-09-30 2016-02-24 杭州南江机器人股份有限公司 Flexible robot bionic hand indicates
CN205704258U (en) * 2016-07-01 2016-11-23 北京软体机器人科技有限公司 A kind of software four refers to robot
CN110171014A (en) * 2019-05-30 2019-08-27 南方科技大学 End effector suitable for carrying out physical interaction under unstructured environment
CN212601918U (en) * 2020-07-09 2021-02-26 南方科技大学 Flexible pneumatic finger and gripping device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130316877A1 (en) * 2012-05-26 2013-11-28 Randy S. Scire Device and method for simultaneously stretching fingers and hand and strengthening hand and forearm
CN205043799U (en) * 2015-09-30 2016-02-24 杭州南江机器人股份有限公司 Flexible robot bionic hand indicates
CN205704258U (en) * 2016-07-01 2016-11-23 北京软体机器人科技有限公司 A kind of software four refers to robot
CN110171014A (en) * 2019-05-30 2019-08-27 南方科技大学 End effector suitable for carrying out physical interaction under unstructured environment
CN212601918U (en) * 2020-07-09 2021-02-26 南方科技大学 Flexible pneumatic finger and gripping device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771072A (en) * 2021-09-01 2021-12-10 深圳市骏创科技有限公司 Flexible manipulator and robot device
CN113771072B (en) * 2021-09-01 2022-11-15 深圳市骏创科技有限公司 Flexible manipulator and robot device

Similar Documents

Publication Publication Date Title
CN212601918U (en) Flexible pneumatic finger and gripping device
CN111844113A (en) Flexible pneumatic finger and gripping device
CN210650736U (en) Mechanical arm joint assembly and mechanical arm
CN209022098U (en) A kind of pneumatic software gripper of articulated type endoskeleton
CN101402201B (en) Side-sway joint based on pneumatic flexible driver
CN206855463U (en) A kind of drive lacking two refers to crawl hand
CN105619438B (en) The flat folder adaptive robot finger apparatus of connecting rod fluid
CN105773643B (en) Closed loop flexible piece fluid puts down folder adaptive robot finger apparatus
CN112573184A (en) Inflatable intelligent grabbing mechanism
CN110525697A (en) A kind of collecting device of inflatable hand
WO2020199240A1 (en) 3d printing-based ratchet stop mechanical prosthesis having airbag and usage method
CN208595673U (en) Exhaust pipe and air conditioner
CN114536378A (en) Transport manipulator stable in clamping
CN213532646U (en) Rotatable flexible clamping jaw
CN115479179A (en) Non-excavation pipeline repairing device
CN215459847U (en) Flexible exoskeleton device
CN112720540A (en) Soft manipulator driven by negative pressure type pneumatic artificial muscle
CN207071939U (en) A kind of flat folder coupling switching adaptive robot finger apparatus of duplex rack
CN108555946A (en) A kind of robot gripper
CN205952118U (en) Single motor drive rubber tube vulcanizes propulsion car
CN220009837U (en) Transfer device for manufacturing precise die
WO2024027024A1 (en) Gripping and sensing device based on pneumatic soft body
CN206141520U (en) Pre -emergency takes turns car
CN116638498B (en) Equipment maintenance manipulator
CN209531918U (en) A kind of handgrip for automobile component

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination