CN111842919A - 一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇 - Google Patents

一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇 Download PDF

Info

Publication number
CN111842919A
CN111842919A CN202010759655.2A CN202010759655A CN111842919A CN 111842919 A CN111842919 A CN 111842919A CN 202010759655 A CN202010759655 A CN 202010759655A CN 111842919 A CN111842919 A CN 111842919A
Authority
CN
China
Prior art keywords
iron
nickel
ultra
salt
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010759655.2A
Other languages
English (en)
Other versions
CN111842919B (zh
Inventor
张競方
张红娟
邢菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Agricultural University
Original Assignee
Hebei Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Agricultural University filed Critical Hebei Agricultural University
Priority to CN202010759655.2A priority Critical patent/CN111842919B/zh
Publication of CN111842919A publication Critical patent/CN111842919A/zh
Application granted granted Critical
Publication of CN111842919B publication Critical patent/CN111842919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超小镍铁纳米团簇的制备方法和相关纳米团簇,将导电炭黑、镍盐、铁盐、柠檬酸钠在水中搅拌后去除水分得到干凝胶,将干凝胶与三聚氰胺在惰性气氛中共热至900℃左右即得到最终产品。该方法简单便捷,环境友好,所制备的镍铁纳米团簇细小均匀(约2nm),对OER催化性能好,稳定性高。

Description

一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇
技术领域
本发明涉及双金属纳米材料领域,具体涉及一种超小镍铁纳米团簇的制备方法及由该方法制备的超小镍铁纳米团簇。
背景技术
化石燃料的过度消耗和日益严重的环境问题,促使人们对可持续能源储存和转换系统进行了大量研究。电催化水裂解被认为是最有前途的清洁能源载体之一,但由于水裂解的半反应——析氧反应(OER)表现出的缓慢动力学,使其成为水裂解技术的瓶颈。目前,主要通过探索HOO*和HO*中间产物的比例关系来更好地提高OER活性。
迄今为止,贵金属催化剂常被用作OER的基准电催化剂。但贵金属在地球上储量稀少、价格昂贵,从而阻碍了其大规模的应用。因此,开发具有高催化活性、高稳定性、低成本的催化材料成为当前该领域的重要挑战。过渡金属(Ni,Co,Fe,Mn等)基纳米材料因其成本低、丰度高、稳定性好等优点,有望成为取代OER贵金属的催化剂。其中,基于NiFe的化合物引起了人们的极大关注。尽管NiFe双金属电催化剂取得了很大的进展,但在OER方面仍然面临着导电性差和活性不佳的问题。因此,优化NiFe双金属电催化剂以提高OER性能是至关重要的一步。发明专利申请CN 107435156 A公开了一种电解水析氧催化剂的制备方法,将硫脲、镍盐、铁盐、葡萄糖溶于去离子水中,搅拌下加入强碱,然后经过加热、煅烧处理等步骤得到Fe5Ni4S8晶体,可作为电解水析氧反应催化剂使用,但该方法用到强碱,环境友好性较差。发明专利申请CN 108704649 A公开了一种非贵金属基电解水析氧反应电催化剂及制备方法,通过采用不锈钢纳米粉、镍盐、尿素、氟化铵等制备了在镍铁层状双氢氧化物上负载羟基氧化铁的纳米团簇。该催化剂的制备方法一般需要长达十几个小时的加热,耗时较长,另外从TEM图谱上看,所制备的纳米团簇的粒径相对较大。
发明内容
本发明的目的之一是提供一种超小镍铁纳米团簇的制备方法,该方法简单便捷,环境友好,所制备的镍铁纳米团簇细小均匀(约2nm),对OER催化性能好,稳定性高。
为了实现上述目的,本发明采取如下技术方案:
一种超小镍铁纳米团簇的制备方法,包括如下步骤:
(a)将导电炭黑、镍盐、铁盐和柠檬酸钠混合在水中,搅拌后旋蒸去除水分得到干凝胶,所述导电炭黑与镍盐、铁盐的摩尔比为28~38:1:0.9~1.1;
(b)将所述干凝胶与三聚氰胺混合,在惰性气氛中均匀升温至880~950℃并保温1~3小时,即得到超小镍铁纳米团簇,所述干凝胶与三聚氰胺的质量比为1:3~5。
优选的,所述导电炭黑选自科琴黑、乙炔黑或卡博特炭黑;所述镍盐选自(Ni(NO3)2·6H2O)、Ni(NO3)2、NiSO4或NiCl2;所述铁盐选自FeSO4·7H2O 、Fe(NO3)3·9H2O、Fe2(SO4)3、FeCl3、Fe(NO3)2、FeSO4或FeCl2
优选的,所述导电炭黑与镍盐、铁盐的摩尔比为33:1:1;所述柠檬酸钠与镍盐、铁盐的摩尔比为5:1:1;所述干凝胶与三聚氰胺的质量比为1:4;所述惰性气氛为氩气或氮气。
优选的,将所述导电炭黑、镍盐、铁盐和柠檬酸钠混合在水中,持续搅拌3小时后在75℃下旋蒸去除水分得到干凝胶;将所述干凝胶与三聚氰胺混合,在惰性气氛中以5℃/min的升温速度均匀升温至900℃并保温2小时,得到所述超小镍铁纳米团簇。
本发明的另一个目的是提供一种超小镍铁纳米团簇,其由上述超小镍铁纳米团簇的制备方法制备而成,并且团簇直径不大于3nm。
优选的,所述超小镍铁纳米团簇的直径为2±0.5nm。
上述制备方法中,以具有大比表面积、导电性能强的导电炭黑为载体,通过导电炭黑、镍盐、铁盐与柠檬酸钠混合搅拌,充分利用柠檬酸钠对镍离子、铁离子的配位作用将镍、铁锚定在炭黑载体表面并制得干凝胶,然后再通过与三聚氰胺在惰性气氛中共热,利用三聚氰胺氮原子对碳基体的掺杂来实现对炭黑载体的改性,从而改变碳基体电子结构,提高导电率,抑制超小结构的聚集。在上述制备过程中,还利用碳的还原性,从镍盐、铁盐中还原出单质镍、单质铁,形成导电的双金属,并且利用镍铁单质的易氧化性,通过自然氧化在表面形成薄氧化层,自然制造出催化活性位点。上述方法制备的纳米团簇催化剂的粒径均匀,并且在2nm左右,具有更大的比表面积,在OER中催化性能好,稳定性强,能够明显改善OER的动力学,从而有助于克服电解水制氢反应中阳极析氧反应动力学缓慢的瓶颈。
附图说明
图 1 是实施例1制备的超小镍铁纳米团簇的SEM谱图;
图 2 是实施例1制备的超小镍铁纳米团簇的TEM谱图;
图 3 是实施例1和比较例1制备的材料的XRD衍射图谱;
图4是实施例1制备的超小镍铁纳米团簇的X-射线光电子能谱(XPS),图a、b、c、d分别对应C、N、Ni、Fe四种元素的谱图;
图5 是实施例1和比较例1、比较例2、比较例3、比较例4制备的材料以10 mV s-1的扫描速率在1M KOH溶液中的极化曲线;
图 6 是实施例1制备的超小镍铁纳米团簇在25 mA ·cm-2的恒电流密度下保持12小时稳定性测试曲线。
具体实施方式
下面通过优选的实施例对本发明做进一步说明:
实施例1:超小镍铁纳米团簇的制备方法实例1
将60 mg科琴黑(EC-600JD,按纯碳计5mmol)、44 mg六水合硝酸镍(Ni(NO3)2·6H2O,0.15mmol)、42 mg硫酸亚铁(FeSO4·7H2O,0.15mmol)和221 mg柠檬酸钠(0.75mmol,相对于镍盐、铁盐5倍过量)混合在10 mL超纯水中,持续搅拌3小时,75 ℃下旋蒸,除去水分,得到干凝胶(本步骤中导电炭黑与镍盐、铁盐的摩尔比为33:1:1)。
将所得的干凝胶与三聚氰胺以质量比为1:4混合,然后将混合物转至石英管中,在氩气中以5 °C/min的升温速率,加热至900 ℃,保持2小时。最终得到超小镍铁纳米团簇材料。
将实施例1得到的超小镍铁纳米团簇材料分别做SEM、TEM、XRD和XPS谱图,并分别如图1、2、3、4所示。由图1可知,超小镍铁纳米团簇材料的整体宏观形貌为三维开放的链状网络结构,内部的空隙有利于OER测试过程中电解液的渗入,增加电解液与电催化材料的接触面积,从而增强其电催化活性;由图2可知,虚线框内为超小镍铁纳米团簇,该团簇均匀地分散于碳载体上,尺寸较均一,约为2 nm左右(一般不大于3nm,多在1.5~2.5nm之间)。测得该团簇的晶格间距为0.24nm,与镍铁合金的(111)面相匹配;由图3可知,实施例1所得到材料包含氮掺杂碳的峰(20~30°)和镍铁纳米簇的峰(位于43.6, 50.8, 74.7°),其中镍铁纳米簇的三个峰与卡片号为JCPDS No. 47-1405的面心立方镍铁合金相匹配,分别对应于镍铁合金的(111)、(200)和(220)晶面。以上结果证实了实施例1得到的材料为超小的镍铁纳米团簇。由图4的表面价态分析可知,a图中C的XPS谱图中位于∼284.5, ∼285.3和 ∼286.4eV 处的峰分别对应于C-C, C-N和C-O键。b图N的XPS谱图中位于398.3, 400.1和401.8 eV处的峰分别对应于嘧啶氮、吡咯氮和石墨氮。c图为Ni的XPS谱图,852.1 eV处的峰为金属态Ni0,855.5 和861.5 eV为氧化态Ni2+。d图为Fe的XPS谱图,707.8 eV处的峰为金属态Fe0,710.8和712.5 eV 分别为Fe2+和Fe3+。c图和d图中所观察到的氧化态的镍和铁是因为样品暴露于空气中所形成的氧化层。以上结果证实了实施例1得到的超小镍铁纳米团簇材料表层为被氧化的镍铁(可作为OER的活性位点),团簇内部仍为单质镍铁合金(其良好的导电性有利于OER过程中的电荷转移和传输)。
实施例2:超小镍铁纳米团簇的制备方法实例2
将50 mg科琴黑(EC-600JD,按纯碳计4.2mmol)、40mg NiSO4(0.15mmol)、18 mg氯化亚铁(FeCl2,0.14mmol)和191 mg柠檬酸钠(0.65mmol,相对于镍盐或铁盐过量)混合在15mL超纯水中,持续搅拌2.5小时,70 ℃下旋蒸,除去水分,得到干凝胶(本步骤中导电炭黑与镍盐、铁盐的摩尔比为28:1:0.9)。
将所得的干凝胶与三聚氰胺以质量比为1:3混合,然后将混合物转至石英管中,在氩气中以6 °C/min的升温速率,加热至950 ℃,保持1小时。最终得到超小镍铁纳米团簇材料。
实施例3:超小镍铁纳米团簇的制备方法实例3
将68 mg乙炔黑(按纯碳计5.7mmol)、20mg NiCl2(0.15mmol)、27mg FeCl3(0.17mmol)和200 mg柠檬酸钠(0.68mmol,相对于镍盐或铁盐过量)混合在12 mL超纯水中,持续搅拌2小时,80 ℃下旋蒸,除去水分,得到干凝胶(本步骤中导电炭黑与镍盐、铁盐的摩尔比为38:1:1.1)。
将所得的干凝胶与三聚氰胺以质量比为1:5混合,然后将混合物转至石英管中,在氮气中以4°C/min的升温速率,加热至880 ℃,保持3小时。最终得到超小镍铁纳米团簇材料。
实施例4:超小镍铁纳米团簇的制备方法实例4
将54mg卡博特炭黑(CSX946F,按纯碳计4.5mmol)、27mg Ni(NO32(合0.15mmol)、23mgFeSO4(合0.15mmol)和200 mg柠檬酸钠(0.68mmol,相对于镍盐或铁盐过量)混合在10 mL超纯水中,持续搅拌3小时,75 ℃下旋蒸,除去水分,得到干凝胶(本步骤中导电炭黑与镍盐、铁盐的摩尔比为30:1:1)。
将所得的干凝胶与三聚氰胺以质量比为1:4混合,然后将混合物转至石英管中,在氩气中以5°C/min的升温速率,加热至900 ℃,保持2小时。最终得到超小镍铁纳米团簇材料。
对实施例2、3、4所制备的超小镍铁纳米团簇材料分别做SEM、TEM、XRD和XPS谱图,结论与实施例1基本相同。对上述四个实施例的放大实验表明可以制得克级产品,性能相当。
实施例5 电催化性能测试
以实施例1为例,进行电催化性能测试,并与如下若干比较例进行催化性能比较。
比较例1:不使用三聚氰胺进行氮掺杂的实例:
(a)将60 mg科琴黑(EC-600JD)、44 mg六水合硝酸镍(Ni(NO3)2·6H2O)、42 mg硫酸亚铁(FeSO4·7H2O)和221 mg柠檬酸钠混合在10 mL超纯水中,持续搅拌3小时。75℃下旋蒸,除去水分,得到干凝胶。
(b)将所得的干凝胶转至石英管中,在氩气中以5°C/min的升温速率,加热至900°C,保持2小时,得到NiFe纳米颗粒材料。
比较例2:单纯氮掺杂,不加入镍盐、铁盐的实例
(a)将60 mg科琴黑(EC-600JD)与三聚氰胺以质量比为1:4混合,将混合物转至石英管中,在氩气中以5°C/min的升温速率,加热至900°C,保持2小时,得到氮掺杂碳材料。
比较例3:
购买的商业化二氧化钌,未经处理。
比较例4:
使用丙酮、乙醇、3 M盐酸和超纯水依次对泡沫镍超声清洗20分钟,然后置于室温下干燥待用(电化学测试时,泡沫镍的有效面积为1*1 cm)。
试验过程:
将2毫克实施例1和比较例1、2、3的材料分别分散在980微升乙醇和20微升Nafion的混合溶液中来制备催化剂浆液;然后将152微升的催化剂浆液分别滴在干净的泡沫镍(有效面积为1*1 cm)上,干燥后制成对应的工作电极,并与比较例4单纯的泡沫镍电极一起去进行电催化比较测试。
电催化测试时,使用铂片和Hg/HgO分别作为对电极和参比电极;电势参考可逆氢电极(RHE):ERHE=EHg/HgO+0.098+0.059×pH (1M KOH溶液)。根据以下等式计算过电势(η):η=ERHE-1.23V。在10mV·s-1的扫描速率下在1M KOH溶液中记录线性扫描伏安法(LSV)以获得极化曲线,参见图5,图5中电极电势数据进行了95%的iR补偿。稳定性测试在25mA· cm-2的恒电流密度下保持12小时,参见图6。
由图5可知,实施例1的电催化剂应用于碱性环境下析氧反应能显著降低过电势(相对于比较例1的镍铁纳米颗粒催化剂、比较例2的氮掺杂碳、比较例3的商业化二氧化钌和比较例4的空白泡沫镍)。与比较例4比较,实施例1的电催化剂具有明显增大的电流密度,说明其高活性来源于电催化剂本身而非工作电极的基底(空白泡沫镍)。与比较例2比较,实施例1的电催化剂展现出了巨大的活性优势,说明其活性主要来源于镍铁团簇。与比较例1比较,实施例1的电催化剂所具有的较小的镍铁团簇尺寸,以及同氮掺杂碳间的电子协同作用使其具有更高的催化活性。与比较例3比较,实施例1的电催化剂展现出了更高的电流密度和更低的电位,说明该催化剂具有替代商业化二氧化钌的潜力。具体来说,实施例1的电催化剂在20 和50 mA· cm-2的电流密度下过电位仅需260和287 mV,塔菲尔斜率为42mV·dec-1,展现出了优异的电催化产氧活性。同时,由图6可知,所制备的电催化剂在碱性电解液中具有优异的稳定性,在25mA ·cm-2的电流密度下稳定至少12个小时,说明超小镍铁纳米团簇具有较强的结构稳定性。超小镍铁纳米团簇固定在氮掺杂碳上能够有效地防止其聚集和失活,使其在长时间的反应过程中仍能维持其催化位点的高活性。高性能可归因于NiFe纳米簇的超小尺寸所带来的较大的活性面积以及其与氮掺杂碳之间的电子协同作用。该催化剂的制备方法有望拓展至其它金属超小纳米簇的合成,从而在能源存储和转化领域具有广阔的应用前景。
上述实施例只是对本发明构思和实现的说明,并非对其进行限制,在本发明构思下,未经实质变换的技术方案仍然在保护范围内。

Claims (6)

1.一种超小镍铁纳米团簇的制备方法,其特征在于包括如下步骤:
(a)将导电炭黑、镍盐、铁盐和柠檬酸钠混合在水中,搅拌后去除水分得到干凝胶,所述导电炭黑与镍盐、铁盐的摩尔比为28~38:1:0.9~1.1,柠檬酸钠相对于镍盐与铁盐的物质的量之和过量;
(b)将所述干凝胶与三聚氰胺混合,在惰性气氛中均匀升温至880~950℃并保温1~3小时,即得到超小镍铁纳米团簇,所述干凝胶与三聚氰胺的质量比为1:3~5。
2.如权利要求1所述的超小镍铁纳米团簇的制备方法,所述导电炭黑选自科琴黑、乙炔黑或卡博特炭黑;所述镍盐选自Ni(NO3)2·6H2O、Ni(NO3)2、NiSO4或NiCl2;所述铁盐选自FeSO4·7H2O 、Fe(NO3)3·9H2O、Fe2(SO4)3、FeCl3、Fe(NO3)2、FeSO4或FeCl2
3.如权利要求1所述的超小镍铁纳米团簇的制备方法,其特征在于,所述导电炭黑与镍盐、铁盐的摩尔比为33:1:1;所述柠檬酸钠与镍盐、铁盐的摩尔比为5:1:1;所述干凝胶与三聚氰胺的质量比为1:4;所述惰性气氛为氩气或氮气。
4.如权利要求1所述的超小镍铁纳米团簇的制备方法,其特征在于,将所述导电炭黑、镍盐、铁盐和柠檬酸钠混合在水中,持续搅拌3小时后在75℃下旋蒸去除水分得到干凝胶;将所述干凝胶与三聚氰胺混合,在惰性气氛中以5℃/min的升温速度均匀升温至900℃并保温2小时,得到所述超小镍铁纳米团簇。
5.一种超小镍铁纳米团簇,其特征在于采用权利要求1至4任一项所述的超小镍铁纳米团簇的制备方法制备而成,并且团簇直径不大于3nm。
6.如权利要求5所述的超小镍铁纳米团簇,其特征在于所述超小镍铁纳米团簇的直径为2±0.5nm。
CN202010759655.2A 2020-07-31 2020-07-31 一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇 Active CN111842919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010759655.2A CN111842919B (zh) 2020-07-31 2020-07-31 一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010759655.2A CN111842919B (zh) 2020-07-31 2020-07-31 一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇

Publications (2)

Publication Number Publication Date
CN111842919A true CN111842919A (zh) 2020-10-30
CN111842919B CN111842919B (zh) 2023-04-18

Family

ID=72953838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010759655.2A Active CN111842919B (zh) 2020-07-31 2020-07-31 一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇

Country Status (1)

Country Link
CN (1) CN111842919B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523120A (zh) * 2021-12-31 2022-05-24 华东理工大学 一种金属合金纳米簇颗粒的制备方法
CN115976565A (zh) * 2022-10-20 2023-04-18 吉林大学 一种高活性Fe5Ni4S8纳米颗粒/3D多孔碳复合电催化剂的制备方法及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184941A (en) * 1978-07-24 1980-01-22 Ppg Industries, Inc. Catalytic electrode
CN105152167A (zh) * 2015-10-16 2015-12-16 合肥工业大学 一种利用柠檬酸钠规模化合成二维类石墨烯炭材料的方法
CN106732733A (zh) * 2017-01-11 2017-05-31 北京化工大学 一种氮掺杂碳包覆核壳结构镍铁合金纳米催化剂的制备及其催化邻氯硝基苯加氢反应的应用
US20180015537A1 (en) * 2016-07-18 2018-01-18 Kenneth J. Reed Method of producing metallic nano particle colloidal dispersions
CN108479839A (zh) * 2018-03-29 2018-09-04 湖南科技大学 一种碳-氮复合物包覆的镍-钴-铁/碳-氮材料的制备方法及其应用
CN108940269A (zh) * 2017-11-03 2018-12-07 深圳大学 一种纳米合金及其制备方法
CN109433234A (zh) * 2018-12-04 2019-03-08 浙江理工大学 镍铁磷化物/碳纳米管复合材料及其制备方法和应用
CN110459775A (zh) * 2019-08-12 2019-11-15 苏州大学 无机轻元素掺杂镍基材料及其制备方法与应用
JP2020009748A (ja) * 2018-07-02 2020-01-16 東洋インキScホールディングス株式会社 アノード電極用炭素材料、組成物、電極、およびそれを用いた生物燃料電池
CN110783582A (zh) * 2019-11-06 2020-02-11 浙江理工大学 一种氮掺杂碳纳米管负载的氮掺杂碳包覆铁钴合金双功能催化剂及其制备方法和应用
CN111203264A (zh) * 2020-03-19 2020-05-29 湘潭大学 一种新型铁-镍-氮共掺杂碳催化剂及其制备方法和用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184941A (en) * 1978-07-24 1980-01-22 Ppg Industries, Inc. Catalytic electrode
CN105152167A (zh) * 2015-10-16 2015-12-16 合肥工业大学 一种利用柠檬酸钠规模化合成二维类石墨烯炭材料的方法
US20180015537A1 (en) * 2016-07-18 2018-01-18 Kenneth J. Reed Method of producing metallic nano particle colloidal dispersions
CN106732733A (zh) * 2017-01-11 2017-05-31 北京化工大学 一种氮掺杂碳包覆核壳结构镍铁合金纳米催化剂的制备及其催化邻氯硝基苯加氢反应的应用
CN108940269A (zh) * 2017-11-03 2018-12-07 深圳大学 一种纳米合金及其制备方法
CN108479839A (zh) * 2018-03-29 2018-09-04 湖南科技大学 一种碳-氮复合物包覆的镍-钴-铁/碳-氮材料的制备方法及其应用
JP2020009748A (ja) * 2018-07-02 2020-01-16 東洋インキScホールディングス株式会社 アノード電極用炭素材料、組成物、電極、およびそれを用いた生物燃料電池
CN109433234A (zh) * 2018-12-04 2019-03-08 浙江理工大学 镍铁磷化物/碳纳米管复合材料及其制备方法和应用
CN110459775A (zh) * 2019-08-12 2019-11-15 苏州大学 无机轻元素掺杂镍基材料及其制备方法与应用
CN110783582A (zh) * 2019-11-06 2020-02-11 浙江理工大学 一种氮掺杂碳纳米管负载的氮掺杂碳包覆铁钴合金双功能催化剂及其制备方法和应用
CN111203264A (zh) * 2020-03-19 2020-05-29 湘潭大学 一种新型铁-镍-氮共掺杂碳催化剂及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANG LEI等: "NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries", 《NANO ENERGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523120A (zh) * 2021-12-31 2022-05-24 华东理工大学 一种金属合金纳米簇颗粒的制备方法
CN114523120B (zh) * 2021-12-31 2024-03-26 华东理工大学 一种金属合金纳米簇颗粒的制备方法
CN115976565A (zh) * 2022-10-20 2023-04-18 吉林大学 一种高活性Fe5Ni4S8纳米颗粒/3D多孔碳复合电催化剂的制备方法及应用
CN115976565B (zh) * 2022-10-20 2024-06-04 吉林大学 一种高活性Fe5Ni4S8纳米颗粒/3D多孔碳复合电催化剂的制备方法及应用

Also Published As

Publication number Publication date
CN111842919B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions
Yin et al. Enhancing hydrogen evolution activity of triangular PtPdCu nanodarts by phosphorus incorporation
Li et al. Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M= Co, Ni) nanoflowers
Abbas et al. Catalytic activity of urchin-like Ni nanoparticles prepared by solvothermal method for hydrogen evolution reaction in alkaline solution
Liang et al. Cobalt-nickel phosphides@ carbon spheres as highly efficient and stable electrocatalyst for hydrogen evolution reaction
Xing et al. Accelerating water dissociation kinetic in Co9S8 electrocatalyst by mn/N Co-doping toward efficient alkaline hydrogen evolution
Tang et al. Cu2S/Ni3S2 ultrathin nanosheets on Ni foam as a highly efficient electrocatalyst for oxygen evolution reaction
CN111842919B (zh) 一种超小镍铁纳米团簇的制备方法及超小镍铁纳米团簇
CN113549935A (zh) 杂原子掺杂过渡金属单原子催化剂及其制备方法与应用
Loni et al. Cobalt-based electrocatalysts for water splitting: an overview
CN112909271A (zh) 一种具有海胆状形貌的整体式过渡金属磷化物电催化剂及其制备方法与应用
Xie et al. Metal-organic framework-derived CoNi-embedded carbon nanocages as efficient electrocatalysts for oxygen evolution reaction
Si et al. Hydrophilic NiFe-LDH/Ti3C2Tx/NF electrode for assisting efficiently oxygen evolution reaction
CN115896848A (zh) 一种氮/硫共掺杂多孔碳负载锌单原子/金属铜串联催化剂及其制备方法和应用
Zhao et al. Borate-modulated amorphous NiFeB nanocatalysts as highly active and stable electrocatalysts for oxygen evolution reaction
CN111359613A (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
Hu et al. One step synthesis of Co-Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation
Tran et al. A highly active Ni-based anode material for urea electrocatalysis by a modified sol–gel method
Yang et al. Hollow structured Zn0. 76Co0. 24S–Co9S8 composite with two-phase synergistic effect as bifunctional catalysts
Fang et al. In situ growth of S-incorporated CoNiFe (oxy) hydroxide nanoarrays as efficient multifunctional electrocatalysts
Cheng et al. Three-dimensional Ni-MoN nanorod array as active and non-precious metal electrocatalyst for methanol oxidation reaction
Wen et al. Fe doped NiS2 derived from metal-organic framework embedded into g-C3N4 for efficiently oxygen evolution reaction
Liu et al. A hybrid of Co3O4 nanoparticles coupled with B, Co/N-codoped C@ B4C as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions
Shen et al. Efficient ternary CeFeCoP bifunctional electrocatalyst for overall water splitting
Liu et al. Ternary boron-, phosphorus-and oxygen-doped amorphous nickel nanoalloys for enhanced activity towards the oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant