CN111839569A - Pet时间分辨率测算、重建系统和方法 - Google Patents
Pet时间分辨率测算、重建系统和方法 Download PDFInfo
- Publication number
- CN111839569A CN111839569A CN202010741679.5A CN202010741679A CN111839569A CN 111839569 A CN111839569 A CN 111839569A CN 202010741679 A CN202010741679 A CN 202010741679A CN 111839569 A CN111839569 A CN 111839569A
- Authority
- CN
- China
- Prior art keywords
- crystal
- pet
- time
- sigma
- resolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000013078 crystal Substances 0.000 claims abstract description 58
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 238000009825 accumulation Methods 0.000 claims abstract description 13
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 230000002123 temporal effect Effects 0.000 claims abstract description 5
- 238000010586 diagram Methods 0.000 claims description 6
- 238000007476 Maximum Likelihood Methods 0.000 claims description 4
- 230000009191 jumping Effects 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 7
- 238000013170 computed tomography imaging Methods 0.000 abstract description 2
- 238000002600 positron emission tomography Methods 0.000 description 27
- 230000001934 delay Effects 0.000 description 4
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/046—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/006—Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Public Health (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Pulmonology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Nuclear Medicine (AREA)
Abstract
本发明提供了一种PET时间分辨率测算、重建系统和方法,属于X射线计算机断层扫描成像技术领域,包括PET原始符合数据采集、辐射源空间分布获取、符合事件累积、LOR线追踪累积、特征宽度计算、迭代更新和重建。本发明在对计数统计的同时,还对重建图像进行空间强度计算,通过两者的相似度来精确计算每一条LOR上的准确时间分辨率。本发明对于任意γ光源,可以精准测试晶体的时间分辨率;对于PET的检测器时间分辨率差异很大时,也可以精准成像。相较于传统方法,本发明不仅可以分辨率的计算可以具体到每一个晶体,而且对于辐射源形态无要求,可以实时测量。
Description
技术领域
本发明涉及一种PET时间分辨率测算、重建系统和方法,属于X射线计算机断层扫描成像技术领域。
背景技术
正电子发射断层设备的原理是测量正电子湮没后的γ光子配对,并利用的γ光子对的几何方向和时间特性进行成像。其中γ光子对的时间特性是指,两个方向相反的光子由于飞行时间不同,进入检测器闪烁体晶体的时间产生差异。这个时间差会受到晶体材质,晶体形态和前、后端电子学性能的影响,在测量时产生一定的展宽。这个展宽就是时间分辨率的主要特征。只有计算出精准的时间分辨率,才能够更好地提升系统成像质量。
现有技术中,为了定量地测量时间差展宽(后称为时间分辨率),一般采用的技术是利用点源或线源来查看光子计数在不同LOR上的分布。这类方法有着一定局限性:
(1)一般只能算出系统的总体时间分辨率,无法精确计算到每一个晶体的时间分辨率。
(2)对于辐射源的形状摆位有严格要求,无法实时计算。
基于此,做出本申请。
发明内容
为了解决现有技术中存在的上述缺陷,本发明提供了一种PET时间分辨率测算、重建系统和方法。
为了实现上述目的,本发明采取的技术方案如下:
本发明使用任意源对TOF-PET进行分辨率的计算。任意源是指可以是不规则并具有一定体积的固体或液体,也可以是真实的扫描病人或者其他动物,物体放置无特定要求,可以放置在检测器环的中心也可以偏心放置。因此本发明具有很好的实用性,同时也具有很高的准确性。PET诊断成像装置,包括:成像区域外部的多个辐射探测器环状结构,用来采集到发出的辐射事件的信息。探测器具有不同的定时延迟。校准体模可以发射时间同时但方向相反的辐射的事件对(符合事件)的辐射源,辐射事件对与辐射探测器的相互作用路径是LOR,当检测器环确定后,每一条LOR的几何位置是已知的。一旦每个检测器的定时延迟被校准,可以认为符合事件的标记时间是在真实符合发生的位置为中心的,并以特定宽度形成高斯分布。这个特定的宽度(特征展宽)就是本发明要求出的晶体时间分辨率。
本发明一种PET时间分辨率测算、重建方法,包括如下步骤:
(1)PET原始符合数据采集;
(2)辐射源空间分布获取,对PET原始符合数据进行无飞行时间的重建,得到光子空间分布图以及光子衰减分布图;目前PET同时借助CT或者MR的成像结果,产生γ光子在空间中的衰减信息的空间分布,即光子衰减分布图。光子空间分布图是指PET数据进行重建后,形成的2维或3维空间内强度的分布。这个强度的分布代表了扫描物体在空间中不同位置的发射γ光子强度。
(3)符合事件累积,对PET原始符合数据进行统计,得到每个晶体的时间直方图分布H1;进行统计的意思是根据符合事件内的晶体标号,找出同一标号下的所有符合事件,提取出符合事件的时间差信息,对时间差信息按照特定的时间间隔dt进行直方图计算。
(4)LOR线追踪累积,通过光子空间分布图计算得到每个晶体的时间直方图分布H2;线追踪(ray-tracing)方法是指,对所有从特定标号的晶体出发的所有LOR的方向,按照不同光子的飞行时间,得到多个终点位置,并对这些位置的像素值求和。
(5)特征宽度计算,根据步骤(3)和步骤(4)得到的H1和H2计算得到第k个晶体的特征展宽σk为第k个晶体的时间分辨率;
(6)迭代更新,对步骤(5)得到的时间分辨率σk和上一次时间分辨率σ0进行更新迭代,得到更新后的σ’k,比较σ0和σ’k的差值,判断是否满足设定值,若不满足设定值,将σ’k回传至步骤(4),进行下一次更新,循环往复直至满足设定值,跳出循环,得到最终的结果σk;
(7)重建,利用重建公式并根据光子衰减分布图对σk进行重建。
本发明的原理和有益技术效果:
1、本发明在对计数统计的同时,还对重建图像进行空间强度计算,通过两者的相似度来精确计算每一条LOR上的准确时间分辨率。
2、本发明对于任意γ光源,可以精准测试晶体的时间分辨率:本发明方法,γ光源不管是何种形态,都会在步骤(2)获取到它的空间分布信息即形态信息。这样,再通过紧密相关的(3)(4)(5)(6)步骤的处理,就可以精准测试晶体的时间分辨率。
3、对于PET的检测器时间分辨率差异很大时,也可以精准成像:本发明方法可以精准计算每一个晶体的时间分辨率。同时结合步骤(7)的重建方法,实现精准重建成像。
因此,相较于传统方法,本发明不仅可以分辨率的计算可以具体到每一个晶体,而且对于辐射源形态无要求,可以实时测量。
附图说明
图1为本实施例PET时间分辨率测算、重建系统的流程图。
具体实施方式
为了使本发明的技术手段及其所能达到的技术效果,能够更清楚更完善的披露,兹提供了以下实施例,并结合附图作如下详细说明:
本发明使用任意源对TOF-PET进行分辨率的计算。任意源是指可以是不规则并具有一定体积的固体或液体,也可以是真实的扫描病人或者其他动物,物体放置无特定要求,可以放置在检测器环的中心也可以偏心放置。因此本发明具有很好的实用性,同时也具有很高的准确性。PET诊断成像装置,包括:成像区域外部的多个辐射探测器环状结构,用来采集到发出的辐射事件的信息。探测器具有不同的定时延迟。校准体模可以发射时间同时但方向相反的辐射的事件对(符合事件)的辐射源,辐射事件对与辐射探测器的相互作用路径是LOR,当检测器环确定后,每一条LOR的几何位置是已知的。一旦每个检测器的定时延迟被校准,可以认为符合事件的标记时间是在真实符合发生的位置为中心的,并以特定宽度形成高斯分布。这个特定的宽度(特征展宽)就是本发明要求出的晶体时间分辨率。
本实施例的一种PET时间分辨率测算、重建方法,包括如下步骤:
(1)PET原始符合数据采集(通过PET原始符合数据采集模块);PET探测系统由外罩,机架及探测器组成。探测器包括晶体、光电放大和电子处理电路。探测器检测从被检体P内部放出的成对湮没γ射线,生成与检测出的成对湮没γ射线的光量相应的脉冲状电信号。后端信号处理器根据来自光电转换器件的电信号生成单事件数据(Single)。计数部从重复供给的单事件数据中重复确定容纳在与预先设定的时间范围内的2个单事件有关的事件数据。时间范围被设定为例如6ns~18ns左右。该成对的单事件被推测为由来于从同一成对湮没点产生的成对湮没γ射线。成对的单事件概括地被称为符合事件。符合事件被收集到后,事件相关的时间空间信息进行组合封装,并在磁盘或者其他数据存储介质上保存,形成了重建程序可以读取并使用的PET符合数据。有符合事件中的2个单事件,会各自被被检测器记录的到达检测器时间点,这个2个单事件时间点的差值记为时间差。符合数据根据PET机器分为两种,一种是含的上述时间差的,一种是不含有时间差的。本次发明是针对的是有时间差信息的符合事件。
(2)辐射源空间分布获取(通过辐射源空间分布获取模块),对PET原始符合数据进行无飞行时间的重建,得到光子空间分布图以及光子衰减分布图;具体来说,本实施例中它的作用是提取辐射源的实际形态特征,这样可以获得到辐射源的空间分布。它是利用PET诊断成像装置获取到PET符合数据信号,对信号进行无飞行时间的重建,重建方法例如,有序子集最大似然期望值法OSEM,最大似然期望值法(MLEM),滤波反投影FBP或者其他方法,从而得到了基本除去噪声和衰减干扰的质量较佳的光子空间分布图。同时PET系统借助CT或者MR,产生γ光子在空间中的衰减信息的空间分布图。
(3)符合事件累积(通过符合事件累积模块),对PET原始符合数据进行统计,得到每个晶体的时间直方图分布H1[c,h]。这里的c代表了晶体的序号,h代表了出现在该晶体上的事件所记录的时间差。例如,当符合事件i发生时,与它相关的晶体为c1和c2,时差为ti,则分别在H1[c1,m-ti]和H2[c2,m+ti]上记录,这里的m是指的H1的直方图长度的1/2。
(4)LOR线追踪累积(通过LOR线追踪累积模块),从图像的角度(根据光子空间分布图)计算得到每个晶体的时间直方图分布H2[c,h],这里的c代表的晶体的序号,h代表了出现在该晶体上的事件所记录的时间差。H2的记录规则是:统计所有从晶体c出发的LOR线,其中任意一条LOR线上,记录LOR上每一个位置的图像强度Intens和距离中心的位置Dis,通过光速与距离的换算因子c,得到H2上更新的位置是Dis/c。定义射线追踪法获取到晶体c,时间偏移h的强度为H2,则
公式中,Voxel为步骤(2)计算出的体数据(即光子空间分布),LORc是与晶体c相关的所有LOR。xi(h),yi(h),zi(h)是晶体c的第i条LOR上时间差为h的三维坐标,可以通过晶体的几何位置快速推导。σ′i是与c的第i个LOR上配对晶体ci’的特征宽度。
(5)特征宽度计算(通过特征宽度计算模块),根据步骤(3)和步骤(4)得到的H1和H2计算得到第k个晶体的特征展宽σk为第k个晶体的时间分辨率;
本模块通过卷积H2,计算第k个晶体的特征展宽为
其中优化求解最大值算法argmax一般使用线搜索(line search)实现。||代表计算向量的范数。
(6)迭代更新(通过迭代更新模块),对步骤(5)得到的时间分辨率σk和上一次时间分辨率σ0进行更新迭代,得到更新后的σ’k,比较σ0和σ’k的差值,判断是否满足设定值,若不满足设定值,将σ’k回传至步骤(4),进行下一次更新,循环往复直至满足设定值,跳出循环,得到最终的结果σk;
具体地:
σ’k=∈σk0+(1-∈)σk
σ’k代表更新后的晶体分辨率宽度,σk0代表上一次分辨率,σk代表步骤(5)计算的分辨率。∈是经验参数,代表了更新的速度。
更新后的σ’k会回传给步骤(4),进行下一次更新。通过比较σk0和σk,之间差异小到某一预设定值时,跳出循环。得到最终的结果σk。
计算完成后,对于任意一个下标号为k的晶体,都能获得一个σk与之对应。
(7)重建(通过重建模块),利用重建公式并根据光子衰减分布图对σk进行重建。
重建方法是含有以下部分或者全部特征的公式:
f代表图像,它的下标代表该图像的像素标号,第一个上标k代表迭代次数,第二个上标m代表子集的序号。N是图像总的像素点个数。
α为衰减系数,其下标j代表了具体的事件标号。它是通过(1)中所述的衰减信息的空间分布图计算的。
Lm代表了子集m中的事件序号的集合。
其中本实施例对该公式中的系统矩阵项H的权重分布进行了调整。周知一般情况下,含有系统几何信息和飞行时间信息,其中飞行时间信息取决于飞行时间分辨率。PET系统的时间分辨率为2.236*σ,则的飞行时间信息的分布服从[0,σ]的正态分布。本实施例中则是对于任意一个序号为ik符合事件,计算实际的正态分布宽度其中,和是第ik的符合事件所对应的晶体的特征宽度(这里涉及到几个下标:ik,ik1,ik2和k,步骤6中的k指晶体序号,ik是符合事件标号。任意一个符合事件ik是2个单事件组成,接收到这2个单事件的晶体序号为ik1,ik2,将ik1,ik2带入(6)的σk的下标k中,就可以获得最后再计算出就是符合事件的宽度)。
同时,关于“含有系统几何信息和飞行时间信息”,可参考相关文献的描述(Phys Med Biol.2014 February 7;59(3):541–559.doi:10.1088/0031-9155/59/3/541.)。
发明中指出的几何信息和飞行时间信息分别对应原文中bj和κσ,本文与其所指的σ对应,与之唯一不同之处是文献的方法认为所有的事件的都是用相同的σ,而本发明根据(7)中的的计算方法,对于会对每一个事件计算出一个
以上内容是结合本发明的优选实施方式对所提供技术方案所作的进一步详细说明,不能认定本发明具体实施只局限于上述这些说明,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (7)
1.一种PET时间分辨率测算、重建方法,包括如下步骤:
(1)PET原始符合数据采集;
(2)辐射源空间分布获取,对PET原始符合数据进行无飞行时间的重建,得到光子空间分布图以及光子衰减分布图;
(3)符合事件累积,对PET原始符合数据进行统计,得到每个晶体的时间直方图分布H1;
(4)LOR线追踪累积,根据光子空间分布图计算得到每个晶体的时间直方图分布H2;
(5)特征宽度计算,根据步骤(3)和步骤(4)得到的H1和H2计算得到第k个晶体的特征展宽σk为第k个晶体的时间分辨率;
(6)迭代更新,对步骤(5)得到的时间分辨率σk和上一次时间分辨率σ0进行更新迭代,得到更新后的σ’k,比较σ0和σ’k的差值,判断是否满足设定值,若不满足设定值,将σ’k回传至步骤(4),进行下一次更新,循环往复直至满足设定值,跳出循环,得到最终的结果σk;
(7)重建,利用重建公式并根据光子衰减分布图对σk进行重建得到图像结果。
2.如权利要求1所述的一种PET时间分辨率测算、重建方法,其特征在于:所述步骤(2)中的重建方法可采用有序子集最大似然期望值法、最大似然期望值法或滤波反投影。
3.如权利要求1所述的一种PET时间分辨率测算、重建方法,其特征在于:所述步骤(3)中,定义H1为H1[c,h],这里的c代表晶体的序号,这里的h代表出现在该晶体上的事件所记录的时间差。
4.如权利要求3所述的一种PET时间分辨率测算、重建方法,其特征在于:所述步骤(4)中,定义H2为H2[c,h],这里的c代表晶体的序号,h代表出现在该晶体上的事件所记录的时间差;H2的记录规则是:统计所有从晶体c出发的LOR线,其中任意一条LOR线上,记录LOR上每一个位置的图像强度Intens和距离中心的位置Dis,通过光速与距离的换算因子c,得到H2上更新的位置是Dis/c;定义射线追踪法获取到晶体c,时间偏移h的强度为H2,则
公式中,Voxel为步骤(2)计算出的体数据,LORc是与晶体c相关的所有LOR,xi(h),yi(h),zi(h)是晶体c的第i条LOR上时间差为h的三维坐标,σ′i是与c的第i个LOR上配对晶体ci’的特征宽度。
6.如权利要求1所述的一种PET时间分辨率测算、重建方法,其特征在于:
所述步骤(6)中,
σ’k=∈σk0+(1-∈)σk
σ’k代表更新后的晶体分辨率宽度,σk0代表上一次分辨率,σk代表模块4计算的分辨率,∈是经验参数,代表更新的速度。
7.一种PET时间分辨率测算、重建系统,其特征在于:包括
PET原始符合数据采集模块;
辐射源空间分布获取模块,用于对PET原始符合数据进行无飞行时间的重建,得到光子空间分布图以及光子衰减分布图;
符合事件累积模块,用于对PET原始符合数据进行统计,得到每个晶体的时间直方图分布H1;
LOR线追踪累积模块,用于根据光子空间分布图计算得到每个晶体的时间直方图分布H2;
特征宽度计算模块,用于根据步骤符合事件积累模块和LOR线追踪累积模块得到的H1和H2计算得到第k个晶体的特征展宽σk为第k个晶体的时间分辨率;
迭代更新模块,用于对特征宽度计算模块得到的时间分辨率σk和上一次时间分辨率σ0进行更新迭代模块,用于得到更新后的σ’k,比较σ0和σ’k的差值,判断是否满足设定值,若不满足设定值,将σ’k回传至步骤LOR线追踪累积模块,进行下一次更新,循环往复直至满足设定值,跳出循环,得到最终的结果σk;
重建模块,用于利用重建公式对σk进行重建得到图像结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010741679.5A CN111839569B (zh) | 2020-07-29 | 2020-07-29 | Pet时间分辨率测算、重建系统和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010741679.5A CN111839569B (zh) | 2020-07-29 | 2020-07-29 | Pet时间分辨率测算、重建系统和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111839569A true CN111839569A (zh) | 2020-10-30 |
CN111839569B CN111839569B (zh) | 2022-11-01 |
Family
ID=72948344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010741679.5A Active CN111839569B (zh) | 2020-07-29 | 2020-07-29 | Pet时间分辨率测算、重建系统和方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111839569B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112998737A (zh) * | 2021-02-26 | 2021-06-22 | 中派科技(深圳)有限责任公司 | 一种扫描装置的时间偏移校正系统及其时间偏移校正方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070205368A1 (en) * | 2005-09-14 | 2007-09-06 | General Electric Company | Method and system for calibrating a time of flight positron emission tomography system |
CN101490581A (zh) * | 2006-07-21 | 2009-07-22 | 皇家飞利浦电子股份有限公司 | 用于改进的tof pet重建的方法和系统 |
CN102483852A (zh) * | 2009-06-08 | 2012-05-30 | 皇家飞利浦电子股份有限公司 | 利用基于飞行时间信息逐个事件生成的图像内容的飞行时间正电子发射断层摄影重建 |
US20130009063A1 (en) * | 2011-07-07 | 2013-01-10 | Siemens Medical Solutions Usa, Inc. | System and Method for Improving Detection of Gamma Interactions in a Positron Emission Tomography System |
CN103908280A (zh) * | 2013-01-08 | 2014-07-09 | 上海联影医疗科技有限公司 | Pet散射校正的方法 |
CN106539591A (zh) * | 2015-09-21 | 2017-03-29 | 上海联影医疗科技有限公司 | Pet飞行时间状态质量检测方法和pet扫描装置 |
CN110168411A (zh) * | 2016-12-20 | 2019-08-23 | 皇家飞利浦有限公司 | 正电子发射断层摄影中的飞行时分辨率-自适应图像正则化和滤波 |
CN111080737A (zh) * | 2019-12-20 | 2020-04-28 | 东软医疗系统股份有限公司 | 图像重建方法、装置及pet扫描系统 |
US20200151918A1 (en) * | 2018-11-09 | 2020-05-14 | Siemens Medical Solutions Usa, Inc. | Double scatter simulation for improved reconstruction of positron emission tomography data |
-
2020
- 2020-07-29 CN CN202010741679.5A patent/CN111839569B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070205368A1 (en) * | 2005-09-14 | 2007-09-06 | General Electric Company | Method and system for calibrating a time of flight positron emission tomography system |
CN101490581A (zh) * | 2006-07-21 | 2009-07-22 | 皇家飞利浦电子股份有限公司 | 用于改进的tof pet重建的方法和系统 |
CN102483852A (zh) * | 2009-06-08 | 2012-05-30 | 皇家飞利浦电子股份有限公司 | 利用基于飞行时间信息逐个事件生成的图像内容的飞行时间正电子发射断层摄影重建 |
US20130009063A1 (en) * | 2011-07-07 | 2013-01-10 | Siemens Medical Solutions Usa, Inc. | System and Method for Improving Detection of Gamma Interactions in a Positron Emission Tomography System |
CN103908280A (zh) * | 2013-01-08 | 2014-07-09 | 上海联影医疗科技有限公司 | Pet散射校正的方法 |
CN106539591A (zh) * | 2015-09-21 | 2017-03-29 | 上海联影医疗科技有限公司 | Pet飞行时间状态质量检测方法和pet扫描装置 |
CN110168411A (zh) * | 2016-12-20 | 2019-08-23 | 皇家飞利浦有限公司 | 正电子发射断层摄影中的飞行时分辨率-自适应图像正则化和滤波 |
US20200151918A1 (en) * | 2018-11-09 | 2020-05-14 | Siemens Medical Solutions Usa, Inc. | Double scatter simulation for improved reconstruction of positron emission tomography data |
CN111080737A (zh) * | 2019-12-20 | 2020-04-28 | 东软医疗系统股份有限公司 | 图像重建方法、装置及pet扫描系统 |
Non-Patent Citations (3)
Title |
---|
OTA, RYOSUKE: "Cherenkov radiation‐based three‐dimensional position‐sensitive PET detector: A Monte Carlo study", 《MEDICAL PHYSICS》 * |
周倩倩 等: "一种新型溴化铈闪烁体探测器性能研究", 《原子能科学技术》 * |
智丽: "基于飞行时间信息的平板PET图像重建", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112998737A (zh) * | 2021-02-26 | 2021-06-22 | 中派科技(深圳)有限责任公司 | 一种扫描装置的时间偏移校正系统及其时间偏移校正方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111839569B (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6339652B1 (en) | Source-assisted attenuation correction for emission computed tomography | |
US8098916B2 (en) | System and method for image-based attenuation correction of PET/SPECT images | |
US8265365B2 (en) | Time of flight scatter distribution estimation in positron emission tomography | |
US9495771B2 (en) | Systems and methods for motion correction in positron emission tomography imaging | |
US9747701B2 (en) | Systems and methods for emission tomography quantitation | |
US8229199B2 (en) | Method for image reconstruction using sparsity-constrained correction | |
US8620053B2 (en) | Completion of truncated attenuation maps using maximum likelihood estimation of attenuation and activity (MLAA) | |
US8913810B2 (en) | Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external shell source | |
US7402807B2 (en) | Method for reducing an electronic time coincidence window in positron emission tomography | |
Frese et al. | Quantitative comparison of FBP, EM, and Bayesian reconstruction algorithms for the IndyPET scanner | |
US10215864B2 (en) | System and method to improve image quality of emission tomography when using advanced radionuclides | |
US10210635B2 (en) | Reconstruction quality assessment with local non-uniformity in nuclear imaging | |
US8110805B2 (en) | Iterative algorithms for crystal efficiencies estimations from TOF compressed normalization data | |
US11324472B2 (en) | Energy-based scatter correction for PET sinograms | |
US8359345B2 (en) | Iterative algorithms for variance reduction on compressed sinogram random coincidences in PET | |
CN111839569B (zh) | Pet时间分辨率测算、重建系统和方法 | |
CN106456096B (zh) | 使用长寿命放射性同位素的实时伽马相机死区时间确定 | |
US8971991B2 (en) | Supplemental transmission information for attenuation correction in positron emission tomography imaging | |
US8674315B2 (en) | Method and apparatus for using image cumulative distribution function for tomographic reconstruction quality control | |
CN112151162A (zh) | Pet时间实时校正及重建方法和系统 | |
US7890282B2 (en) | Estimation of crystal efficiency with axially compressed sinogram | |
Lee et al. | Precise system models using crystal penetration error compensation for iterative image reconstruction of preclinical quad-head PET | |
Ljungberg | Instrumentation, Calibration, Quantitative Imaging, and Quality Control | |
Links | Special issues in quantitation of brain receptors and related markers by emission computed tomography | |
Clementel et al. | Effect of local TOF kernel miscalibrations on contrast-noise in TOF pet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |