CN111838112B - 一种联合调控风机与出风面积的果园对靶喷雾机及方法 - Google Patents

一种联合调控风机与出风面积的果园对靶喷雾机及方法 Download PDF

Info

Publication number
CN111838112B
CN111838112B CN202010665171.1A CN202010665171A CN111838112B CN 111838112 B CN111838112 B CN 111838112B CN 202010665171 A CN202010665171 A CN 202010665171A CN 111838112 B CN111838112 B CN 111838112B
Authority
CN
China
Prior art keywords
air
canopy
air outlet
information
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010665171.1A
Other languages
English (en)
Other versions
CN111838112A (zh
Inventor
窦汉杰
翟长远
王秀
何亚凯
张春凤
李思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Center of Intelligent Equipment for Agriculture
Original Assignee
Beijing Research Center of Intelligent Equipment for Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Center of Intelligent Equipment for Agriculture filed Critical Beijing Research Center of Intelligent Equipment for Agriculture
Priority to CN202010665171.1A priority Critical patent/CN111838112B/zh
Publication of CN111838112A publication Critical patent/CN111838112A/zh
Application granted granted Critical
Publication of CN111838112B publication Critical patent/CN111838112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0025Mechanical sprayers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Insects & Arthropods (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Catching Or Destruction (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

本发明涉及农业机械技术领域,公开了一种联合调控风机与出风面积的果园对靶喷雾机及方法,该喷雾机包括:超声传感阵列,超声传感阵列用于采集果树的靶标信息;风送装置用于输送风速与风量可解耦控制的风;喷雾装置,喷雾装置的喷雾端位于风送装置的出风侧;控制装置,控制装置的输入端通讯连接超声传感阵列,输出端分别通讯连接风送装置的风机与出风面积调节机构;本发明在对果树进行对靶风送喷药时,可实现对果树输送风速与风量可解耦控制的风,满足了对不同类型的果树冠层的风送喷药需求,达到了较好的药物喷施效果。

Description

一种联合调控风机与出风面积的果园对靶喷雾机及方法
技术领域
本发明涉及农业机械技术领域,特别是涉及一种联合调控风机与出风面积的果园对靶喷雾机及方法。
背景技术
果园病虫害的有效防治可以挽回巨大经济损失,现有的病虫害防治方式主要靠化学农药,据调查统计,果树一年内要喷施农药的次数为8-15次。随着人口老龄化程度增加,繁重的喷药作业已经成为影响果园管理的主要因素。为了克服这一问题,研发了一些用于果园作业的机器人,但是,这些机器人大多针对水果的采摘和收获,用于果园喷药的机器人相对较少。
果园风送喷药技术作为一种高效的自动化施药技术,是通过高速气流将喷头雾化的雾滴进一步撞击雾化成细小均匀的雾滴,以增强雾滴的附着性能,同时强大的气流会翻滚枝叶并裹挟着雾滴穿入靶标内膛,大大增加了雾滴的贯穿能力。
近年来,随着传感器和自动控制技术的发展,出现了果园对靶变量喷雾技术。果园对靶变量喷雾包括对药量和风力的对靶变量调控,其中,药量对靶变量调控技术已经逐渐成熟,但是,在风力调控方面的研究较少。对于现有的具有自动对靶风力调控功能的喷雾机而言,大多是通过单独地调节风机的转速,或者单独地调节出风面积,以此来实现对风力的调节,但是,该单一调节方式输出风力的风速与风量之间存在“强耦合”关系,这种“强耦合”关系主要体现在,单独调节出风口面积时,出风口面积减少导致风量减小,但风速增加,反之风量增加风速减小;在单独调节风机转速时,风机转速增加导致出口的风速与风量同步增加,反之同步减小。由此,该“强耦合”关系使得无法实现对风速与风量的独立调节。
然而,在实际对果树进行喷施作业中,不同类型的果树冠层具有不同的风速与风量需求,例如:对于枝叶稠密而体积较小的树冠而言,一般需要高风速低风量的风力,而对于枝叶稀疏但体积较大的树冠而言,则需要低风速高风量的风力。在喷药过程中,风力过小将导致冠层膛内沉积不足,过大又会将药液吹出冠层,造成农药飘移,带来农田生态环境污染。
由此可见,现有的对靶喷雾机在对果树进行风送喷药时,由于输送的风力存在风速与风量间的“强耦合”关系,从而无法实现对输送的风速与风量的独立调节,难以满足不同类型的果树冠层的风送喷药需求,进而难以达到较好的药物喷施效果。
发明内容
本发明实施例提供一种联合调控风机与出风面积的果园对靶喷雾机及方法,用于解决现有的对靶喷雾机在对果树进行风送喷药时,无法实现对输送风力的风速与风量的独立调节,难以满足不同类型的果树冠层的风送喷药需求的问题。
为了解决上述技术问题,本发明实施例提供了一种联合调控风机与出风面积的果园对靶喷雾机,包括:超声传感阵列,所述超声传感阵列用于扫描果树冠层不同位置的靶标距离信息,并基于接收的相应位置的回波信号,以获取果树的靶标信息,所述靶标信息包括果树的位置信息、冠层轮廓信息、冠层体积信息及冠层稠密信息;风送装置,所述风送装置包括风箱、风机和出风面积调节机构;所述风箱的一端形成进风口,另一端形成出风口;所述出风面积调节机构安装于所述出风口;喷雾装置,所述喷雾装置的喷雾端位于所述风送装置的出风侧;控制装置,所述控制装置的输入端通讯连接所述超声传感阵列,所述控制装置的输出端分别通讯连接所述风机与所述出风面积调节机构。
其中,还包括:移动平台;所述移动平台上安装所述超声传感阵列、所述风送装置、所述喷雾装置及所述控制装置。
其中,所述风送装置的第一端转动安装于底座上,所述风送装置的第二端与所述底座之间通过伸缩驱动机构相连接。
其中,所述风送装置包括多个,并分为两列排布,两列所述风送装置的出风方向呈背向设置。
其中,所述出风面积调节机构包括出风调控单元与翻转驱动机构;所述出风调控单元包括多个,且并排分布于所述出风口;所述翻转驱动机构与所述出风调控单元一一对应,并连接所述出风调控单元,所述翻转驱动机构通讯连接所述控制装置。
其中,所述出风调控单元包括两个挡风板,两个所述挡风板相对应的一边相铰接,两个所述挡风板的另一边连接所述翻转驱动机构。
其中,所述喷雾装置包括多个喷雾头,所述喷雾头用于通过控制阀连通药箱;所述出风调控单元与所述喷雾头一一相对,并沿所述风送装置的出风方向布置。
本发明实施例还提供一种如上所述的联合调控风机与出风面积的果园对靶喷雾机的喷施方法,包括:S1,采集果园中果树的靶标信息和喷雾机的行驶速度信息,靶标信息包括果树的位置信息、冠层轮廓信息、冠层体积信息及冠层稠密信息;S2,基于靶标信息计算对果树冠层不同位置喷施的药量,以控制喷雾装置进行喷药,同时,基于靶标信息计算风送装置对果树冠层不同位置输送的风速与风量,对风机与出风面积调节机构进行联合调控,以控制风送装置在输送的风量恒定下进行风速的按需调控;S3,基于喷雾机的行驶速度信息及果树的位置信息,对果树依次进行对靶喷施作业。
其中,S2进一步包括:根据冠层轮廓信息、冠层体积信息对果树的冠层沿水平方向逐列进行网格划分,每一列形成多个单元网格;根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的药量,以控制单个喷雾头向与其对应的单元网格喷药,同时,根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的风速,以控制单个出风调控单元向与其对应的单元网格输送相应的风速;相应地,S3进一步包括:根据喷雾机的行驶速度信息及果树的位置信息,对果树的冠层进行逐列对靶喷施作业。
其中,S1中所述采集果园中果树的靶标信息进一步包括:在沿着喷雾机的行进方向,基于超声传感阵列扫描果树冠层不同高度位置的靶标距离信息,以获取果树的位置信息、冠层轮廓信息及冠层体积信息;基于超声传感阵列接收的果树相应高度位置的回波信号,以获取果树的冠层稠密信息。
本发明实施例中的上述一个或多个技术方案,至少具有如下技术效果之一:
本发明实施例提供的联合调控风机与出风面积的果园对靶喷雾机及方法,可通过超声传感阵列采集果树的靶标信息,在风送装置及相应的喷雾装置正对果树冠层并进行风送喷雾时,可基于果树的靶标信息计算对果树喷施的药量,以控制喷雾装置进行喷药,并基于果树的靶标信息计算风送装置对果树输送的风速与风量,以协同控制风机输出的转速,控制出风面积调节机构调控出风口的出风面积,从而控制风送装置输送恒定的风量和不同风速的风,进而可基于喷雾机的行驶速度信息及果树的位置信息,对果园的各个果树依次进行对靶喷施作业。
由此可见,本发明所示的喷雾机在对果树进行对靶风送喷药时,不但可基于果树的靶标信息控制对果树对靶喷施的药量,而且可基于果树的靶标信息控制对果树对靶喷施的风速与风量,从而输送风速与风量可解耦控制的风,克服了传统的对果树进行对靶喷雾时风速与风量间存在“强耦合”的问题,满足了对不同类型的果树冠层的风送喷药需求,达到了较好的药物喷施效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所示的联合调控风机与出风面积的果园对靶喷雾机的立体结构示意图;
图2为本发明实施例所示的联合调控风机与出风面积的果园对靶喷雾机的右视结构示意图;
图3为本发明实施例所示的联合调控风机与出风面积的果园对靶喷雾机的控制结构框图;
图4为本发明实施例所示的联合调控风机与出风面积的果园对靶喷雾机在果园内进行喷施作业的结构示意图;
图5为本发明实施例所示的风送喷雾装置的结构示意图;
图6为本发明实施例所示的如上所述的联合调控风机与出风面积的果园对靶喷雾机的人机界面的示意图;
图7为本发明实施例所示的如上所述的联合调控风机与出风面积的果园对靶喷雾机的喷施方法的流程图;
图8为本发明实施例所示的基于超声传感阵列对果树冠层进行体积探测的示意图;
图9为本发明实施例所示的喷雾机向果树冠层的入口处送风的风量需求计算示意图。
图中,1、超声传感阵列;2、风送装置;21、风箱;22、风机;23、出风面积调节机构;231、挡风板;232、翻转驱动机构;3、喷雾装置;31、喷雾头;32、药箱;4、控制装置;5、移动平台;6、底座;7、伸缩驱动机构;8、剪叉式支架。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参见图1、图2及图5,本实施例提供了一种联合调控风机与出风面积的果园对靶喷雾机,包括:超声传感阵列1,超声传感阵列1用于扫描果树冠层不同位置的靶标距离信息,并基于接收的相应位置的回波信号,以获取果树的靶标信息,靶标信息包括果树的位置信息、冠层轮廓信息、冠层体积信息及冠层稠密信息;速度检测装置,速度检测装置用于采集喷雾机的行驶速度信息;风送装置2,风送装置2包括风箱21、风机22和出风面积调节机构23;风箱21的一端形成进风口,另一端形成出风口;出风面积调节机构23安装于出风口;喷雾装置3,喷雾装置3的喷雾端位于风送装置2的出风侧;控制装置4,控制装置4的输入端通讯连接超声传感阵列1与速度检测装置,控制装置4的输出端分别通讯连接风机22与出风面积调节机构23。
具体的,本实施例所示的喷雾机,可通过超声传感阵列1采集果树的靶标信息,在风送装置2及相应的喷雾装置3正对果树冠层并进行风送喷雾时,可基于果树的靶标信息计算对果树喷施的药量,以控制喷雾装置3进行喷药,并基于果树的靶标信息计算风送装置2对果树输送的风速与风量,以协同控制风机22输出的转速,控制出风面积调节机构23调控出风口的出风面积,从而控制风送装置2输送恒定的风量和不同风速的风,进而可基于喷雾机的行驶速度信息及果树的位置信息,对果园的各个果树依次进行对靶喷施作业。
由此可见,本实施例所示的喷雾机在对果树进行对靶风送喷药时,不但可基于果树的靶标信息控制对果树对靶喷施的药量,而且可基于果树的靶标信息控制对果树对靶喷施的风速与风量,以输送风速与风量可解耦控制的风流,克服了传统的对果树进行对靶喷雾时风速与风量间存在“强耦合”的问题,满足了对不同类型的果树冠层的风送喷药需求,达到了较好的药物喷施效果。
由此,本实施例所示的喷雾机自动化程度高,可适用于果园内不同种类、不同高度的果树的喷施作业,大幅度降低作业人员的劳动强度。
如图1所示,本实施例所示的超声传感阵列1、速度检测装置、风送装置2、喷雾装置3及控制装置4均安装于移动平台5上,移动平台5可采用本领域所公知的履带行走机构,以适应果园复杂的行走路况,从而便于对果树进行药物的对靶喷施。
本实施例所示的超声传感阵列1是由多个超声波传感器组成,这些超声波传感器分为两个单列,并以背向相对布置的方式竖直安装于喷雾机的左、右两侧,以分别获取喷雾机的左侧果树和右侧果树的靶标信息,其中,每个超声波传感器均呈水平布置。超声波是一种振动频率超过20kHz的机械波,具有振幅小、波长短、方向性集中等特点。超声波测距是利用其定向传播和反射特性,接收自身发射的返回波,并根据发出和接收回波的时间差以及传播速度,计算出其传播距离,从而得到发射点与被测物体之间的距离。与此同时,超声波传感器具有一定范围波束角,根据波束角大小对超声波传感器进行阵列布置,使超声传感阵列1能够扫描整个果树冠层,以获得果树的位置信息和冠层轮廓信息,并测量出果树冠层不同位置的靶标距离信息。同时,根据超声波传感器回波信号的大小,可计算出果树的冠层稠密信息。
本实施例所示的速度检测装置在图1中未示意出,速度检测装置既可采用本领域所公知的GPS定位模块,可通过监测喷雾机实时的位置变化来获取喷雾机的行驶速度信息,速度检测装置也可以为本领域所公知的用于直接检测喷雾机速度的测速传感器,还可采用编码器或接近开关来检测喷雾机相应行走装置(行走轮)的转速,在此不一一列举。
与此同时,如图3所示,本实施例所示的控制装置4可包括工控机、药量调控系统和风力调控系统,工控机通过串口通讯连接超声传感阵列1,并通过CAN总线分别通讯连接药量调控系统与风力调控系统,其中,药量调控系统用于基于果树的靶标信息实现对喷雾装置3所喷施的药量的控制。风力调控系统用于基于果树的靶标信息实现对风送装置2输送风的风速与风量的控制。
另外,对于喷雾装置3而言,喷雾装置3的喷雾端既可以分离的方式设置于风送装置2的出风侧,也可将其喷雾端直接安装于风送装置2的出风侧。该喷雾装置3可通过控制其喷雾端喷药的流量,来实现对喷施的药量的控制。本实施例所示的喷雾机在基于风送装置2的风机22来控制送风的风速与风量的同时,还可结合出风面积调节机构23对风箱21相应出风口面积的调节,以实现对果树输送可单独调节的风速与风量。由此,在实际送风时,对于树冠大、枝叶稀疏的果树冠层而言,可控制风送装置2输出大风量、小风速的风,而对于树冠小、枝叶稠密的果树冠层而言,可控制风送装置2输出小风量、大风速的风,从而可适用于对不同类型的果树冠层的风送喷药,以确保将药物均匀地输送至果树冠层的各个区域。
优选地,如图2与图5所示,本实施例中风送装置2的第一端转动安装于底座6上,风送装置2的第二端与底座6之间通过伸缩驱动机构7相连接,其中,伸缩驱动机构7可选用液压缸、气缸及电动推杆当中的任一种,并且,可在底座6上安装距离传感器,以实时监测风送装置2相对其第一端的翻转角度,从而控制装置4可基于距离传感器所监测的信息,对伸缩驱动机构7的伸缩量进行实时控制。
具体的,由于在果树的不同生长期均要进行相应的药物喷施,而果树在不同的生长期的高度不相同,果树冠层的形态也不相同,同时在不同地形条件下,果树相对于风送装置2对药物风送的高度也不相同,为了满足对不同高度果树的药物喷施要求,本实施例将风送装置2的第一端与底座6相铰接,并将风送装置2的第二端铰接电动推杆的底座,电动推杆的伸缩端与底座6的相应端铰接。由此,控制装置4可基于距离传感器所采集到的风送装置2偏离于底座6的距离信息,以控制伸缩驱动机构7(电动推杆)的伸缩量,从而在伸缩驱动机构7的伸缩端进行伸缩动作时,可驱动风送装置2相对于其第一端翻转相应的角度,以此可确保风送装置2能够对适应于不同高度的果树进行对靶喷施作业。
进一步的,为了确保风送装置2进行翻转的稳定性与可靠性,本实施例还可进一步设计剪叉式支架8,将剪叉式支架8的底部连接底座6,剪叉式支架8的顶部与风送装置2活动连接,从而在风送装置2进行朝向远离于底座6的翻转时,剪叉式支架8可适应性地展开,在风送装置2进行朝向靠近于底座6的翻转时,剪叉式支架8可适应性地回缩,并在此过程中对风送装置2提供辅助支撑。
优选地,本实施例中风送装置2包括多个,并分为两列排布,相应地,在每个风送装置2的出风侧均设置喷雾装置3的喷雾端,并设置喷雾端的喷施方向与相应的风送装置2的出风方向同向,可将两列风送装置2的出风侧背向设置。
如图4所示,由于果园中栽种的果树通常呈阵列排布,从而在图4中,以两侧树状图形对应表示两列果树,本实施例所示的喷雾机置于两列果树之间,并对果树实施对靶喷施作业。为了提高对果树进行对靶喷施的效率,并缩减设备成本,本实施例所示的喷雾机可将风送装置2具体设置两个,两个风送装置2及其相应的喷雾装置3在对果树进行对靶喷施药物时,对靶喷施的方向分别朝向移动平台5的左侧和右侧,从而可实现同时对左、右两侧的果树进行对靶喷施作业。
在此应指出的是,控制装置4可基于超声传感阵列1所探测到的喷雾机两侧的果树的不同长势,而单独控制相应侧的风送装置2及喷雾装置3独立进行对靶喷施作业。
优选地,如图3及图5所示,对于本实施例所示的风送装置2而言,风箱21的外轮廓呈“八”字形,风箱21的大头端形成出风口,靠近风箱21小头端的侧壁上形成进风口。由于相比于轴流风机而言,离心风机在作业时可产生较大的风速与风量,从而本实施例所示的风机22优选为离心风机,该离心风机包括离心风轮与直流驱动电机,离心风轮转动安装于风箱21内,直流驱动电机安装于风箱21的外侧,直流驱动电机的输出端通过皮带传动机构连接离心风轮,且离心风轮在风箱21内的安装位置与风箱21的进风口相对应。由此,可通过调节直流驱动电机的转速,来实现对离心风轮旋转速度的调节。
优选地,如图5所示,本实施例中出风面积调节机构23包括出风调控单元与翻转驱动机构232;出风调控单元包括多个,且并排分布于风箱21的出风口;翻转驱动机构232与出风调控单元一一对应,并连接出风调控单元,翻转驱动机构232通讯连接控制装置4,其中,出风调控单元包括两个挡风板231,两个挡风板231相对应的一边相铰接,两个挡风板231远离其铰接端的另一边连接翻转驱动机构232。由此,多个出风调控单元将风箱21的出风口分隔成多个出风区域,控制装置4可通过控制每个出风调控单元相应的翻转驱动机构232,以控制相应出风区域的两个挡风板231的开度,从而实现对该出风区域风速的调节。
相应地,在对风箱21的出风口相应位置的风速进行调节时,也可对每个风机22配置相应的编码器,风力调控控制器基于果树相应位置的靶标信息,对风机22的转速进行实时调控,以达到对风箱21的出风口相应位置的风速的调节。
优选地,如图3及图5所示,本实施例所示的喷雾装置3包括多个喷雾头31,出风调控单元与喷雾头31一一相对,并沿风送装置2的出风方向布置。
具体的,在对果树进行药物的对靶喷施时,可根据果树的冠层轮廓信息、冠层体积信息对果树冠层沿水平方向逐列进行网格划分,每一列形成多个单元网格,将喷雾头31与每一列相应的单元网格一一对应,可根据单一列的每个单元网格的体积,计算对每一个单元网格喷施的药量,由相应的喷雾头31执行相应的喷施作业。
在此,通过将喷雾头31与出风调控单元一一对应,则在对相应的单元网格进行风速与风量的调节时,可根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,通过风机22控制向每个单元网格输送的风的风速,并通过控制出风调控单元的开闭状态,来控制向每个单元网格输送的风的风量,对出风调控单元进行开闭控制的操作如下:
将出风调控单元相应的两个挡风板231相向翻转预设的角度,以打开该喷雾头31相应区域的出风口,从而不会风箱21的出风方向造成较大的影响,其中,两个挡风板231相向翻转90°时,两个挡风板231相贴合,以完全打开该喷雾头31相应区域的出风口;而在控制出风调控单元相应的两个挡风板231进行相背离的翻转90°并相互展开时,可闭合该喷雾头31相应出风区域的出风口,从而实现对每个单元网格进行输送的风量的控制。
如图5所示,为了确保对喷雾头31当前出风区域出风面积的可靠调节,在风箱21的出风口设置六个喷雾头31,风箱21的出风口呈立式布置,六个喷雾头31在出风口处从上往下均匀排布,相应地,在风箱21内设置有与其出风口相应的12个挡风板,即两个相邻的挡风板231与一个喷雾头31相对应。在风箱21内设置有与挡风板231相对应的固定轴,将两个相邻的挡风板231相对应的一边转动安装于同一根固定轴上。
对于翻转驱动机构232而言,翻转驱动机构232包括主动翻转机构和从动翻转机构,主动翻转机构和从动翻转机构分布在挡风板231沿其相应的固定轴方向的相对侧,且主动翻转机构和从动翻转机构均具有连杆机构,其中,主动翻转机构相应的连杆机构的一端与挡风板231远离其固定轴的一边相铰接,该连杆机构的另一端连接舵机的输出端,舵机安装于挡风板231相应侧的风箱21上,从动翻转机构相应的连杆机构的一端与挡风板231远离其固定轴的一边相铰接,该连杆机构的另一端与挡风板231相应侧的风箱21转动连接。
如图3与图5所示,由于每个风送装置2相应风箱21内设置有与其出风口相应的12个挡风板,从而每个风送装置2共计配置有12路舵机,可对每路舵机均配置一个编码器。在对风箱21的出风口的相应位置的出风量进行调节时,对于各个挡风板231而言,风力调控控制器可基于编码器,实时监测与该挡风板231相应的舵机的转动角度,并根据果树相应位置的冠层体积信息及冠层稠密信息,控制舵机转动相应的角度,从而驱动挡风板231翻转相应的角度。
与此同时,对于本实施例所示的喷雾头31而言,喷雾头31用于通过控制阀连通药箱32,控制阀可采用电磁阀。药量调控系统包括喷药控制器,喷药控制器基于果树的冠层体积信息及冠层稠密信息,计算喷雾头31所需喷施的药量,并基于流量传感器实时监测的经过电磁阀的药液的流量信息,从而通过固态继电器控制电磁阀的通断状态,其中,在实际控制操作中,喷药控制器具体可通过PWM驱动电路控制电磁阀通断的频率,以此来实现对喷雾头31喷施药量的控制,从而可基于多个喷雾头31实现对果树不同位置的药量的精准控制。
在对药量喷施控制的过程中,喷药控制器进一步通过隔膜泵和压力传感器对药箱32输出的药液进行PID恒压控制,具体的,药箱32依次通过隔膜泵和调压阀向喷雾头31提供药液,在隔膜泵的进口安装过滤器,在隔膜泵的出口安装压力传感器,调压阀为三通阀,从而调压阀还通过回流管连通药箱32。在压力传感器监测到隔膜泵的出口压力过高时,调压阀还通过回流管将一部分药液返回至药箱32,以控制喷雾头31输送药液的压力的恒定,从而在喷雾头31输送药液压力恒定的情况下,也可便于实现对喷雾头31喷施药量的精确控制。
另外,如图6所示,本实施例还基于喷雾机的工作过程,设计了相应的人机界面。通过该人机界面,可进行果树行距、传感器安装高度、传感器与喷雾装置间距的设置,可在人机界面上实时显示上述实施例所示的多个单元网格相应的网格化密度,并显示喷雾机的作业速度、风机转速、出风口面积、风速大小、风量大小及风箱倾斜角度的大小,还可以通过该人机界面完成机具的通讯设置、速度校准、连接超声传感阵列、开始作业和停止作业等功能。
如图7所示,本实施例还提供一种基于如上所述的联合调控风机与出风面积的果园对靶喷雾机的喷施方法,包括:S1,采集果园中果树的靶标信息和喷雾机的行驶速度信息,靶标信息包括果树的位置信息、冠层轮廓信息、冠层体积信息及冠层稠密信息;S2,基于靶标信息计算对果树冠层不同位置喷施的药量,以控制喷雾装置进行喷药,同时,基于靶标信息计算风送装置对果树冠层不同位置输送的风速与风量,对风机与出风面积调节机构进行联合调控,以控制风送装置在输送的风量恒定下进行风速的按需调控;S3,基于喷雾机的行驶速度信息及果树的位置信息,对果树依次进行对靶喷施作业。
具体的,本实施例所示的步骤S1中,采集果园中果树的靶标信息进一步包括:在沿着喷雾机的行进方向,基于超声传感阵列扫描果树冠层不同高度位置的靶标距离信息,以获取果树的位置信息、冠层轮廓信息及冠层体积信息;基于超声传感阵列接收的果树相应高度位置的回波信号,以获取果树的冠层稠密信息。
如图8所示,本实施例给出了基于超声传感阵列对果树冠层进行体积探测的示意图;在图8中,位于左侧的树状图标表示果树冠层,树状图标的右侧表示超声传感阵列,超声传感阵列由多个超声波传感器竖直排布呈单列,每个超声波传感器的探测端均与树状图标相对应。
如图8所示,基于超声波传感器发出的超声波与接收到的回波信号,可探测得到与其探测端相对的果树冠层之间的距离。
接着,设定超声波传感器的探测端与果树的树干的距离为D,可对果树冠层的体积采用积分算法,在每一个扫描步长Δl内,多次采集超声波传感器探测果树靶标的数据,进行中位值平均滤波,获取果树冠层不同高度位置的靶标距离dij,其中,由于超声传感阵列安装于喷雾机上,并随同喷雾机一起沿其行进方向移动,以实现对果树冠层不同高度位置的扫描,从而扫描步长Δl对应喷雾机行驶的距离。
如此可参照如下公式,获取在第i个采样间隔内第j个位置处超声波传感器扫描的靶标横截面的面积Sij
Sij=(D-dij)×Δl;
在此,设定相邻两个超声波传感器的竖直间距为h,假定果树冠层在第j个超声波传感器的上、下各h/2的范围内形状不变,则可得到在第i个采样间隔内第j个位置处超声波传感器扫描的靶标体积Vij,靶标体积Vij的公式如下:
Vij=(D-dij)×h×Δl;
接着,可参照如下公式累加得到果树冠层的总体积V:
式中,1<i≤m,1≤j≤n,m,n分别为大于1的自然数。
与此同时,可参照如下公式所示的超声波传感器回波能量与果树冠层枝叶稠密度之间关系,获取果树的冠层稠密信息。
式中,y为超声波传感器接收到的回波能量,z1为果树的冠层稠密信息,z2为超声波传感器探测的果树靶标距离信息。
进一步的,本实施例基于上述获取的果树的靶标信息,计算风送装置对果树冠层不同位置输送的风速,可参照如下风力调控模型,以通过风机和出风面积调节机构联合调控风送装置输送的风力,其中,在进行调控时,该风力调控模型用于在确保风送装置输送的风量恒定时调控其输出的风速,具体如下所示:
WindSpeed=F(SOUT,Fanspeed);
在上式中,WindSpeed为风箱出风口的风速,其单位为,m/s;Fanspeed为风机的转速,其单位为,r/s;SOUT为风箱的出风口面积,其单位为,m2;F为风量恒定下,风送装置输送的风速分别与风机的转速、出风口面积之间的关系函数。
在此应指出的是,本实施例所示的风力调控模型可通过深度神经网络模型通过训练获取。该风力调控模型的输入量为风送装置输送风的风速,输出量为风机的转速与风箱的出风口面积。
另外,如图9所示,在对风送装置输送风的风速、风量进行调控时,设定喷雾机进行风送的气流的速度与喷雾机的行进速度均保持不变,则果树冠层入口处的风量需求VolumeCanopyIN应不小于果树冠层朝向喷雾机一侧的体积,其中,可将果树冠层朝向喷雾机一侧的形状简化为梯形立方体,从而可得到如下约束条件:
式中,VolumeCanopyIN为果树冠层入口处的风量需求,单位为m3/s;H1为果树冠层的高度,单位为m;H2为果树冠层入口的高度,单位为m;H3为喷雾机出风口的高度,单位为m,v为喷雾机的行进速度,单位为m/s;L为喷雾机与果树的竖直中心之间的距离,单位为m;L1为喷雾机与果树冠层入口之间的距离,单位为m;L2为果树冠层的入口至其竖直中心之间的距离,单位为m;K为果树膛内的风量损失系数。
当然,果树冠层的形状类型也可为其它形式,在此可根据果树冠层的体积、冠层稠密信息,并结合果树冠层的形状类型,建立相应的数学模型,以控制向果树冠层的输送的风速与风量。
进一步的,本实施例还可根据冠层轮廓信息、冠层体积信息对果树的冠层沿水平方向逐列进行网格划分,每一列形成多个单元网格;根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的药量,以控制单个喷雾头向与其对应的单元网格喷药,同时,根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的风速,以控制单个出风调控单元向与其对应的单元网格输送相应的风速;相应地,可根据喷雾机的行驶速度信息及果树的位置信息,对果树的冠层进行逐列对靶喷施作业。如此,在对果园的果树进行对靶风送喷雾时,实现对果树的各个位置的药量与风力的协同按需调控,在确保了较好的喷施效果的同时,还大幅度节约喷施的药量,并防止了因农药飘移而带来的农田生态环境污染。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种联合调控风机与出风面积的果园对靶喷雾机,其特征在于,包括:超声传感阵列,用于扫描果树冠层不同位置的靶标距离信息,并基于接收的相应位置的回波信号,以获取果树的靶标信息,所述靶标信息包括果树的位置信息、冠层轮廓信息、冠层体积信息及冠层稠密信息;
风送装置,包括风箱、风机和出风面积调节机构;所述风箱的一端形成进风口,另一端形成出风口;所述出风面积调节机构安装于所述出风口;
喷雾装置,所述喷雾装置的喷雾端位于所述风送装置的出风侧;
控制装置,所述控制装置的输入端通讯连接所述超声传感阵列,所述控制装置的输出端分别通讯连接所述风机与所述出风面积调节机构;
所述控制装置基于靶标信息计算对果树冠层不同位置喷施的药量,以控制所述喷雾装置进行喷药;所述控制装置还基于靶标信息计算所述风送装置对果树冠层不同位置输送的风速与风量,对所述风机与所述出风面积调节机构进行联合调控,以控制所述风送装置在输送的风量恒定下进行风速的按需调控;
在对所述风送装置输送风的风速、风量进行调控时,在喷雾机进行风送的气流的速度与喷雾机的行进速度均保持不变的情形下,果树冠层入口处的风量需求不小于果树冠层朝向喷雾机一侧的体积;
式中,H 1 为果树冠层的高度;H 2 为果树冠层入口的高度;v为喷雾机的行进速度;L 2 为果树冠层的入口至其竖直中心之间的距离;K为果树膛内的风量损失系数;
所述风送装置用于输送风速与风量可解耦控制的风;
所述出风面积调节机构包括出风调控单元与翻转驱动机构;所述出风调控单元包括多个,且并排分布于所述出风口;所述翻转驱动机构与所述出风调控单元一一对应,并连接所述出风调控单元,所述翻转驱动机构通讯连接所述控制装置;
所述出风调控单元包括两个挡风板,两个所述挡风板相对应的一边相铰接,两个所述挡风板远离其铰接端的另一边连接所述翻转驱动机构;多个所述出风调控单元将所述风箱的出风口分隔成多个出风区域,所述控制装置通过控制每个所述出风调控单元相应的翻转驱动机构,以控制相应出风区域的两个所述挡风板的开度,从而实现对该出风区域的出风量的调节;
所述喷雾装置包括多个喷雾头,所述喷雾头通过控制阀连通药箱;所述出风调控单元与所述喷雾头一一相对,并沿所述风送装置的出风方向布置;
在对果树进行药物的对靶喷施时,根据冠层轮廓信息、冠层体积信息对果树的冠层沿水平方向逐列进行网格划分,每一列形成多个单元网格;根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的药量,以控制单个喷雾头向与其对应的单元网格喷药,同时,根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的风速,以控制单个出风调控单元向与其对应的单元网格输送相应的风速。
2.根据权利要求1所述的联合调控风机与出风面积的果园对靶喷雾机,其特征在于,还包括:移动平台;所述移动平台上安装所述超声传感阵列、所述风送装置、所述喷雾装置及所述控制装置。
3.根据权利要求1所述的联合调控风机与出风面积的果园对靶喷雾机,其特征在于,所述风送装置的第一端转动安装于底座上,所述风送装置的第二端与所述底座之间通过伸缩驱动机构相连接。
4.根据权利要求1所述的联合调控风机与出风面积的果园对靶喷雾机,其特征在于,所述风送装置包括多个,并分为两列排布,两列所述风送装置的出风方向呈背向设置。
5.一种如权利要求1至4任一所述的联合调控风机与出风面积的果园对靶喷雾机的喷施方法,其特征在于,包括:
S1,采集果园中果树的靶标信息和喷雾机的行驶速度信息,靶标信息包括果树的位置信息、冠层轮廓信息、冠层体积信息及冠层稠密信息;
S2,基于靶标信息计算对果树冠层不同位置喷施的药量,以控制喷雾装置进行喷药,同时,基于靶标信息计算风送装置对果树冠层不同位置输送的风速与风量,对风机与出风面积调节机构进行联合调控,以控制风送装置在输送的风量恒定下进行风速的按需调控;
S3,基于喷雾机的行驶速度信息及果树的位置信息,对果树依次进行对靶喷施作业。
6.根据权利要求5所述的喷施方法,其特征在于,
S2进一步包括:根据冠层轮廓信息、冠层体积信息对果树的冠层沿水平方向逐列进行网格划分,每一列形成多个单元网格;
根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的药量,以控制单个喷雾头向与其对应的单元网格喷药,同时,根据单一列的每个单元网格的冠层体积信息及冠层稠密信息,计算对每一个单元网格喷施的风速,以控制单个出风调控单元向与其对应的单元网格输送相应的风速;
相应地,S3进一步包括:根据喷雾机的行驶速度信息及果树的位置信息,对果树的冠层进行逐列对靶喷施作业。
7.根据权利要求5所述的喷施方法,其特征在于,
S1中所述采集果园中果树的靶标信息进一步包括:
在沿着喷雾机的行进方向,基于超声传感阵列扫描果树冠层不同高度位置的靶标距离信息,以获取果树的位置信息、冠层轮廓信息及冠层体积信息;
基于超声传感阵列接收的果树相应高度位置的回波信号,以获取果树的冠层稠密信息。
CN202010665171.1A 2020-07-10 2020-07-10 一种联合调控风机与出风面积的果园对靶喷雾机及方法 Active CN111838112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010665171.1A CN111838112B (zh) 2020-07-10 2020-07-10 一种联合调控风机与出风面积的果园对靶喷雾机及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010665171.1A CN111838112B (zh) 2020-07-10 2020-07-10 一种联合调控风机与出风面积的果园对靶喷雾机及方法

Publications (2)

Publication Number Publication Date
CN111838112A CN111838112A (zh) 2020-10-30
CN111838112B true CN111838112B (zh) 2023-10-20

Family

ID=72982913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010665171.1A Active CN111838112B (zh) 2020-07-10 2020-07-10 一种联合调控风机与出风面积的果园对靶喷雾机及方法

Country Status (1)

Country Link
CN (1) CN111838112B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102986634A (zh) * 2012-12-17 2013-03-27 西北农林科技大学 一种对靶喷雾机风量自动调控装置
CN103004730A (zh) * 2012-12-17 2013-04-03 西北农林科技大学 一种进风口自动调控式对靶喷雾机
JP2013244473A (ja) * 2012-05-28 2013-12-09 Shoshin:Kk スピードスプレーヤの風量設定装置
CN107125229A (zh) * 2017-04-20 2017-09-05 北京农业智能装备技术研究中心 一种果园对靶喷雾机及其对果树冠层的喷雾方法
WO2018010216A1 (zh) * 2016-07-14 2018-01-18 江苏大学 一种高地隙无人驾驶智能履带喷雾机及控制方法
CN110476941A (zh) * 2019-09-30 2019-11-22 华南农业大学 自动对靶变量喷雾控制系统、喷雾机及控制方法
CN110506723A (zh) * 2019-07-31 2019-11-29 江苏大学 一种基于果树冠层叶面积指数的变量喷雾控制系统及方法
CN111084172A (zh) * 2020-01-09 2020-05-01 中国农业大学 一种基于树冠冠层体积的喷雾风量自动调节装置与方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244473A (ja) * 2012-05-28 2013-12-09 Shoshin:Kk スピードスプレーヤの風量設定装置
CN102986634A (zh) * 2012-12-17 2013-03-27 西北农林科技大学 一种对靶喷雾机风量自动调控装置
CN103004730A (zh) * 2012-12-17 2013-04-03 西北农林科技大学 一种进风口自动调控式对靶喷雾机
WO2018010216A1 (zh) * 2016-07-14 2018-01-18 江苏大学 一种高地隙无人驾驶智能履带喷雾机及控制方法
CN107125229A (zh) * 2017-04-20 2017-09-05 北京农业智能装备技术研究中心 一种果园对靶喷雾机及其对果树冠层的喷雾方法
CN110506723A (zh) * 2019-07-31 2019-11-29 江苏大学 一种基于果树冠层叶面积指数的变量喷雾控制系统及方法
CN110476941A (zh) * 2019-09-30 2019-11-22 华南农业大学 自动对靶变量喷雾控制系统、喷雾机及控制方法
CN111084172A (zh) * 2020-01-09 2020-05-01 中国农业大学 一种基于树冠冠层体积的喷雾风量自动调节装置与方法

Also Published As

Publication number Publication date
CN111838112A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111838110B (zh) 基于激光雷达的果园对靶风送喷雾机及其喷施方法
CN111937834B (zh) 一种进、出风口面积联合调节的对靶喷雾机及方法
CN212279614U (zh) 基于激光雷达的果园对靶风送喷雾机
CN102428904B (zh) 除草机器人自动对靶变量喷雾流量控制系统
CN112219830B (zh) 一种梯田果园风送式变量对靶喷雾机及对靶喷雾方法
CN105941379A (zh) 一种风送智能喷雾机器人喷雾协调控制系统及施药方法
CN109757458B (zh) 一种多风管风送仿形喷雾机
CN111838111B (zh) 基于超声传感的果园风力与药量对靶调控喷雾机及方法
US4991341A (en) Control system for uniform spraying of plants
CN104621083B (zh) 一种基于植株特征自适应喷雾风量调节装置及方法
CN111084172A (zh) 一种基于树冠冠层体积的喷雾风量自动调节装置与方法
CN105360095A (zh) 一种温室用单轨植保机器人及其控制方法
CN113341961B (zh) 一种温室自主精准变量风送喷雾机器人结构及规划路径方法
CN102696572A (zh) 一种自走式喷杆喷雾机
CN111838113B (zh) 一种风机转速与出风面积联合调节的对靶喷雾机及方法
CN109997823A (zh) 一种风送变量喷雾试验平台及模拟试验方法
CN110463679A (zh) 一种果园门型立体风送式喷雾机
CN110199977B (zh) 一种自走式激光对靶单侧喷雾机
CN111937835A (zh) 基于超声传感的果园风袋式对靶喷雾机及方法
CN111838112B (zh) 一种联合调控风机与出风面积的果园对靶喷雾机及方法
CN212279615U (zh) 一种风机转速与出风面积联合调节的对靶喷雾机
CN212545259U (zh) 一种应用于大田的不同作物间套作自动调节遮挡喷雾机
CN109644965A (zh) 一种高架栽培侧倾微风送施药机器人及实现方法
CN212488162U (zh) 一种联合调控风机与出风面积的果园对靶喷雾机
CN111937836B (zh) 一种联合调控进、出风面积的果园对靶喷雾机及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant