CN111834881A - 一种微波信号的光学产生装置 - Google Patents

一种微波信号的光学产生装置 Download PDF

Info

Publication number
CN111834881A
CN111834881A CN202010701642.XA CN202010701642A CN111834881A CN 111834881 A CN111834881 A CN 111834881A CN 202010701642 A CN202010701642 A CN 202010701642A CN 111834881 A CN111834881 A CN 111834881A
Authority
CN
China
Prior art keywords
optical fiber
port
optical
fiber coupler
brillouin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010701642.XA
Other languages
English (en)
Inventor
徐荣辉
张先强
汪杰君
秦祖军
陈明
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202010701642.XA priority Critical patent/CN111834881A/zh
Publication of CN111834881A publication Critical patent/CN111834881A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种微波信号的光学产生装置,包括窄线宽可调激光器(1)、第一三端口光纤耦合器(2)、三端口光环形器(3)、第一光纤放大器(4),第一布里渊增益光纤(5)、第二三端口光纤耦合器(6)、第二光纤放大器(7)、第三三端口光纤耦合器(8),第二布里渊增益光纤(9),第四三端口光纤耦合器(10),光电探测器(11),窄线宽可调激光器输出的激光作为布里渊泵浦光,通过在第一布里渊增益光纤发生两次受激布里渊散射和第二布里渊增益光纤发生一次受激布里渊散射,通过光纤放大器的线性放大作用,可以产生三阶布里渊斯托克斯光,三阶斯托克斯光与第一三端口光纤耦合器中传输的泵浦光拍频,可以在光电探测器上得到微波信号。该光生微波信号的方法与结构简单,成本低,在光无线通信、微波光子及光纤传感中均具有应用前景。

Description

一种微波信号的光学产生装置
技术领域
本发明涉及通信技术、光纤激光技术及微波光子技术,具体为一种微波信号的光学产生装置。
背景技术
随着互联网技术的迅猛发展和如今5G技术的崛起,现代通信技术已迫切需要快速的朝着大容量、超带宽、高速率的方向发展。基于这种需求的不断拓展,微波这种重要的无限传输媒介得到了迅速的发展,与此同时光纤光子技术也在蓬勃发展并迅速与微波技术融合发展出一种新的微波光子技术并迅速成为研究热点。
为了光学产生高频的微波信号,国内外科学家提出了各种方法,有直接调制法(又称为内调制法)、外调制倍频法、光外差法、光电振荡器法、多环路振荡器等。其中最主要的研究方法有外调制法和光外差这两种;外调制法微波生成方案主要是通过对调制器调制产生多个载波的光边带,经光子滤波器滤波后,对两个特定的光边带进行拍频而获得倍频信号,外调制法需要可调谐光滤波器滤除多余的边带,微波光子滤波器的结构复杂,而且降低了微波信号的可调谐范围。光外差法是指两个具有固定频率差的光学频率耦合后,经光纤传输,在接收机端用光电探测器拍频得到频率为两激光器输出频率之差,其中激光源信号频率的变化和噪声对拍频信号的稳定度和纯净度影响很大。
发明内容
本发明提出一种微波信号的光学产生装置,结构简单,成本低廉,根据布里渊光纤布里渊频移的不同可以实现30GHz以上微波信号输出。
本发明为实现上述目的采用以下技术方案:
一种微波信号的光学产生装置,包括窄线宽可调激光器(1)、第一光纤耦合器(2)、三端口光环形器(3)、第一光放大器(4)、第一布里渊光纤(5)、第二光纤耦合器(6)、第二光放大器(7)、第三光纤耦合器(8)、第二布里渊光纤(9)、第四光纤耦合器(10)、光电探测器(11)。
本微波信号的光学产生装置中,各组成部分的连接关系为:窄线宽可调激光器(1)的输出端与第一光纤耦合器(2)A端的A1端口相连,第一光纤耦合器(2)B端的B1端口与三端口光环形器(3)的第一端口(31)相连,三端口光环形器(3)的第二端口(32)与第一光纤放大器(4)的一端相连,第一光放大器的另一端连接第一布里渊光纤(5)一端之间,第一布里渊光纤(5)的另一端连接第二光纤耦合器(6)C端的C1端口,第二光纤耦合器(6)D端的D1端口连接三端口光环形器(3)的第三端口(33),第二光纤耦合器(6)D端的D2端口与第二光放大器(7)的输入端相连,第二光放大器的输出端连接第三光纤耦合器(8)F端的F1端口,第三光纤耦合器(8)E端的E1端口连接第二布里渊光纤(9),第三光纤耦合器(8)F端的F2端口连接第四光纤耦合器(10)H端的H1端口,第四光纤耦合器(10)H端的H2端口与第一光纤耦合器(2)B端的B2端口相连,第四光纤耦合器(10)G端的G1端口连接光电探测器(11)的输入端口,光电探测器的输出端口可连接到频谱分析仪。
本微波信号光学产生装置,其微波信号光学产生过程:窄线宽可调激光器输出的激光经第一光纤耦合器(2)分光,一部分光经B2端口输出用作拍频光,一部分光经B1端口输出,用作布里渊泵浦光(BP),BP经三端口光环形器进入第一光放大器进行放大,放大后的BP注入第一布里渊光纤的一端并在其中发生布里渊散射,当放大后的BP功率足够大时,可发生受激布里渊散射,产生与BP反向传输且频率下移布里渊频移的一阶斯托克斯光(S1),S1经三端口光环形器和第二光纤耦合器注入第一布里渊光纤的另一端并在其中发生布里渊散射,当S1功率足够大时,可发生受激布里渊散射,产生与S1反向传输且频率下移布里渊频移的二阶斯托克斯光(S2),S2从第二光纤耦合器D端的D2端口输出,经第二光放大器放大,之后经第三光纤耦合器,注入第二布里渊光纤(9),当放大后的S2功率足够大时,发生受激布里渊散射,产生与S2反向传输且频率下移布里渊频移的三阶斯托克斯光(S3),S3由第三光纤耦合器F端的F2端口传输至第四光纤耦合器H端的H1端口,并与来自第一光纤耦合器B2端口的BP在第四光纤耦合器发生拍频,拍频光经第四光纤耦合器的G1端口输出至光电探测器(11)实现光电转换得到微波信号,微波信号可以在频谱分析上进行观测。
附图说明
图1是微波信号光学产生装置的结构示意图。
图中的附图标记解释为:1-窄线宽可调激光器,2-第一光纤耦合器,A1-第一光纤耦合器A端的端口,B1-第一光纤耦合器B端的端口,B2-第一光纤耦合器B端的端口,3-三端口光环形器,31-三端口光环形器的一端口,32-三端口光环形器的二端口,33-三端口光环形器的三端口,4-第一光放大器,5-第一布里渊光纤,6-第二光纤耦合器,C1-第二光纤耦合器C端的端口,D1-第二光纤耦合器D端的端口,D2-第二光纤耦合器D端的端口,7-第二光放大器,8-第三光纤耦合器,E1-第三光纤耦合器E端的端口,F1-第三光纤耦合器F端的端口,F2-第三光纤耦合器F端的端口,9-第二布里渊光纤,10-第四光纤耦合器,G1-第四光纤耦合器G端的端口,H1-第四光纤耦合器H端的端口,H2-第四光纤耦合器H端的端口,11-光电探测器。
具体实施方式
下面结合附图对本发明的技术方案做进一步的说明。
一种微波信号的光学产生装置,包括窄线宽可调激光器(1)、第一光纤耦合器(2)、三端口光环形器(3)、第一光放大器(4)、第一布里渊光纤(5)、第二光纤耦合器(6)、第二光放大器(7)、第三光纤耦合器(8)、第二布里渊光纤(9)、第四光纤耦合器(10)、光电探测器(11);本微波信号的光学产生装置中,各组成部分的连接关系为:窄线宽可调激光器(1)的输出端与第一光纤耦合器(2)A端的A1端口相连,第一光纤耦合器(2)B端的B1端口与三端口光环形器(3)的第一端口(31)相连,三端口光环形器(3)的第二端口(32)与第一光纤放大器(4)的一端相连,第一光放大器的另一端连接第一布里渊光纤(5)一端之间,第一布里渊光纤(5)的另一端连接第二光纤耦合器(6)C端的C1端口,第二光纤耦合器(6)D端的D1端口连接三端口光环形器(3)的第三端口(33),第二光纤耦合器(6)D端的D2端口与第二光放大器(7)的输入端相连,第二光放大器的输出端连接第三光纤耦合器(8)F端的F1端口,第三光纤耦合器(8)E端的E1端口连接第二布里渊光纤(9),第三光纤耦合器(8)F端的F2端口连接第四光纤耦合器(10)H端的H1端口,第四光纤耦合器(10)H端的H2端口与第一光纤耦合器(2)B端的B2端口相连,第四光纤耦合器(10)G端的G1端口连接光电探测器(11)的输入端口,光电探测器的输出端口可连接到频谱分析仪。
本微波信号光学产生装置,其微波信号光学产生过程:窄线宽可调激光器输出的激光经第一光纤耦合器(2)分光,一部分光经B2端口输出用作拍频光,一部分光经B1端口输出,用作布里渊泵浦光(BP),BP经三端口光环形器进入第一光放大器进行放大,放大后的BP注入第一布里渊光纤的一端并在其中发生布里渊散射,当放大后的BP功率足够大时,可发生受激布里渊散射,产生与BP反向传输且频率下移布里渊频移的一阶斯托克斯光(S1),S1经三端口光环形器和第二光纤耦合器注入第一布里渊光纤的另一端并在其中发生布里渊散射,当S1功率足够大时,可发生受激布里渊散射,产生与S1反向传输且频率下移布里渊频移的二阶斯托克斯光(S2),S2从第二光纤耦合器D端的D2端口输出,经第二光放大器放大,之后经第三光纤耦合器,注入第二布里渊光纤(9),当放大后的S2功率足够大时,发生受激布里渊散射,产生与S2反向传输且频率下移布里渊频移的三阶斯托克斯光(S3),S3由第三光纤耦合器F端的F2端口传输至第四光纤耦合器H端的H1端口,并与来自第一光纤耦合器B2端口的BP在第四光纤耦合器发生拍频,拍频光经第四光纤耦合器的G1端口输出至光电探测器(11)实现光电转换得到微波信号,微波信号可以在频谱分析上进行观测。
所述的窄线宽可调激光器为线宽处于C波段的半导体激光器,线宽不高于1MHz,其输出波长和功率均可调谐。
所述的第一光放大器和第二光放大器均由一个980nm泵浦激光器,一个1550nm/980nm波分复用器,一段一定长度的掺铒光纤或其他线性增益光纤连接而成。第一光放大器为双向光放大设计,第二光放大器为单向光放大设计。
所述第一布里渊光纤和第二布里渊光纤为具有相同布里渊频移值的单模石英光纤,长度均为20km。
所述光电探测器为带宽为高于30GHz的光电探测器。
以上对本发明的工作过程进行了详细说明,对本领域的普通技术人员来说,依据本发明提供的思想,在具体实施的方式上可能有改变之处,这些改变也应视为本发明的保护范围。

Claims (5)

1.一种微波信号的光学产生装置,包括窄线宽可调激光器(1)、第一光纤耦合器(2)、三端口光环形器(3)、第一光放大器(4)、第一布里渊光纤(5)、第二光纤耦合器(6)、第二光放大器(7)、第三光纤耦合器(8)、第二布里渊光纤(9)、第四光纤耦合器(10)、光电探测器(11)。
2.所述的一种微波信号的光学产生装置,其特征是:窄线宽可调激光器(1)的输出端与第一光纤耦合器(2)A端的A1端口相连,第一光纤耦合器(2)B端的B1端口与三端口光环形器(3)的第一端口(31)相连,三端口光环形器(3)的第二端口(32)与第一光纤放大器(4)的一端相连,第一光放大器的另一端连接第一布里渊光纤(5)一端之间,第一布里渊光纤(5)的另一端连接第二光纤耦合器(6)C端的C1端口,第二光纤耦合器(6)D端的D1端口连接三端口光环形器(3)的第三端口(33),第二光纤耦合器(6)D端的D2端口与第二光放大器(7)的输入端相连,第二光放大器的输出端连接第三光纤耦合器(8)F端的F1端口,第三光纤耦合器(8)E端的E1端口连接第二布里渊光纤(9),第三光纤耦合器(8)F端的F2端口连接第四光纤耦合器(10)H端的H1端口,第四光纤耦合器(10)H端的H2端口与第一光纤耦合器(2)B端的B2端口相连,第四光纤耦合器(10)G端的G1端口连接光电探测器(11)的输入端口,光电探测器的输出端口可连接到频谱分析仪。
3.所述的一种微波信号的光学产生装置,其特征是:窄线宽可调激光器输出的激光经第一光纤耦合器(2)分光,一部分光经B2端口输出用作拍频光,一部分光经B1端口输出,用作布里渊泵浦光(BP),BP经三端口光环形器进入第一光放大器进行放大,放大后的BP注入第一布里渊光纤的一端并在其中发生布里渊散射,当放大后的BP功率足够大时,可发生受激布里渊散射,产生与BP反向传输且频率下移布里渊频移的一阶斯托克斯光(S1),S1经三端口光环形器和第二光纤耦合器注入第一布里渊光纤的另一端并在其中发生布里渊散射,当S1功率足够大时,可发生受激布里渊散射,产生与S1反向传输且频率下移布里渊频移的二阶斯托克斯光(S2),S2从第二光纤耦合器D端的D2端口输出,经第二光放大器放大,之后经第三光纤耦合器,注入第二布里渊光纤(9),当放大后的S2功率足够大时,发生受激布里渊散射,产生与S2反向传输且频率下移布里渊频移的三阶斯托克斯光(S3),S3由第三光纤耦合器F端的F2端口传输至第四光纤耦合器H端的H1端口,并与来自第一光纤耦合器B2端口的BP在第四光纤耦合器发生拍频,拍频光经第四光纤耦合器的G1端口输出至光电探测器(11)实现光电转换得到微波信号,微波信号可以在频谱分析上进行观测。
4.所述的一种微波信号的光学产生装置,其特征是:第一布里渊光纤和第二布里渊光纤均为长度为20km单模石英光纤,且布里渊频移值相同。
5.所述的一种微波信号的光学产生装置,其特征是:第一光放大器为可双向光放大的光放大器,第二光放大器为单向光放大的光放大器。
CN202010701642.XA 2020-07-20 2020-07-20 一种微波信号的光学产生装置 Pending CN111834881A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010701642.XA CN111834881A (zh) 2020-07-20 2020-07-20 一种微波信号的光学产生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010701642.XA CN111834881A (zh) 2020-07-20 2020-07-20 一种微波信号的光学产生装置

Publications (1)

Publication Number Publication Date
CN111834881A true CN111834881A (zh) 2020-10-27

Family

ID=72924408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010701642.XA Pending CN111834881A (zh) 2020-07-20 2020-07-20 一种微波信号的光学产生装置

Country Status (1)

Country Link
CN (1) CN111834881A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117929421A (zh) * 2024-03-25 2024-04-26 中国航天三江集团有限公司 光纤耦合原子气室里德堡原子量子微波测量装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252518A (ja) * 1993-02-26 1994-09-09 Toshiba Corp 異波長光発生装置及び多重伝送光送出装置
CN102856778A (zh) * 2012-09-17 2013-01-02 盐城工学院 产生多带宽高频可调谐微波信号的装置与方法
CN103840365A (zh) * 2014-03-13 2014-06-04 盐城工学院 基于多波长布里渊激光器的可调谐微波信号产生的装置与方法
US20150288135A1 (en) * 2014-04-02 2015-10-08 Honeywell International Inc. Systems and methods for stabilized stimulated brillouin scattering lasers with ultra-low phase noise
US20150311662A1 (en) * 2014-03-06 2015-10-29 California Institute Of Technology Stable microwave-frequency source based on cascaded brillouin lasers
CN105048260A (zh) * 2015-08-03 2015-11-11 杭州电子科技大学 波长间隔可调谐的多波长光纤激光器
CN204835194U (zh) * 2015-08-03 2015-12-02 杭州电子科技大学 一种多波长光纤激光器
CN108923240A (zh) * 2018-07-24 2018-11-30 太原理工大学 基于级联受激布里渊散射效应的波长稳频系统
CN110323661A (zh) * 2019-07-16 2019-10-11 桂林电子科技大学 一种四倍布里渊频移频率波长间隔的多波长光纤激光器
CN110417477A (zh) * 2019-07-16 2019-11-05 桂林电子科技大学 一种40GHz毫米波信号的光学产生方法与装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252518A (ja) * 1993-02-26 1994-09-09 Toshiba Corp 異波長光発生装置及び多重伝送光送出装置
CN102856778A (zh) * 2012-09-17 2013-01-02 盐城工学院 产生多带宽高频可调谐微波信号的装置与方法
US20150311662A1 (en) * 2014-03-06 2015-10-29 California Institute Of Technology Stable microwave-frequency source based on cascaded brillouin lasers
CN103840365A (zh) * 2014-03-13 2014-06-04 盐城工学院 基于多波长布里渊激光器的可调谐微波信号产生的装置与方法
US20150288135A1 (en) * 2014-04-02 2015-10-08 Honeywell International Inc. Systems and methods for stabilized stimulated brillouin scattering lasers with ultra-low phase noise
CN105048260A (zh) * 2015-08-03 2015-11-11 杭州电子科技大学 波长间隔可调谐的多波长光纤激光器
CN204835194U (zh) * 2015-08-03 2015-12-02 杭州电子科技大学 一种多波长光纤激光器
CN108923240A (zh) * 2018-07-24 2018-11-30 太原理工大学 基于级联受激布里渊散射效应的波长稳频系统
CN110323661A (zh) * 2019-07-16 2019-10-11 桂林电子科技大学 一种四倍布里渊频移频率波长间隔的多波长光纤激光器
CN110417477A (zh) * 2019-07-16 2019-11-05 桂林电子科技大学 一种40GHz毫米波信号的光学产生方法与装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN RUMELHARD等: "《微波光子链路:组件与电路》", 30 June 2017, 国防工业出版社 *
THAMER FAHAD AL-MASHHADANI等: "Widely triple Brillouin frequency shift multiwavelength Brillouin erbium fiber laser", 《OPTICAL AND QUANTUM ELECTRONICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117929421A (zh) * 2024-03-25 2024-04-26 中国航天三江集团有限公司 光纤耦合原子气室里德堡原子量子微波测量装置及方法

Similar Documents

Publication Publication Date Title
US8687659B2 (en) All-optical generation of 60 GHz millimeter wave using multiple wavelength Brillouin-Erbium fiber laser
CN111834880A (zh) 一种光学产生微波信号的装置
CN110417477B (zh) 一种40GHz毫米波信号的光学产生装置
CN109149334B (zh) 双输出端口两倍布里渊频移波长间隔的多波长光纤激光器
CN110323661A (zh) 一种四倍布里渊频移频率波长间隔的多波长光纤激光器
CN105703206B (zh) 一种44ghz频率间隔的多波长布里渊光纤激光器
CN105048260A (zh) 波长间隔可调谐的多波长光纤激光器
CN104466620A (zh) 一种基于光学微腔的频率稳定型光生微波信号源
CN105322420B (zh) 一种简易可调的多波长布里渊 - 掺铒光纤激光器
CN109698460B (zh) 一种半开腔多波长布里渊-掺铒光纤随机激光器
CN111834881A (zh) 一种微波信号的光学产生装置
CN204835194U (zh) 一种多波长光纤激光器
CN111834878A (zh) 一种三倍布里渊频移间隔的多波长光纤激光器
CN110112636B (zh) 基于双芯光纤产生两倍布里渊频率微波信号的装置
CN110113104B (zh) 一种基于单模双芯光纤产生可调微波信号的装置
CN109638621B (zh) kHz量级单通带微波光子滤波器
Hansryd et al. Broadband CW pumped fiber optical parametric amplifier with 49 dB gain and wavelength conversion efficiency
CN111834883B (zh) 一种光生微波信号源
CN114336227A (zh) 一种基于低畸变耗散克尔孤子的微波信号产生装置
CN113098609B (zh) 一种40GHz毫米波信号的光学产生装置
CN2850144Y (zh) 一种光纤拉曼放大受激布里渊散射梳状光源
US20050105166A1 (en) Multiple order raman amplifier
CN113188677A (zh) 一种高灵敏度光纤激光温度传感器
CN111969406A (zh) 一种基于拉曼效应的布里渊光频梳生成装置及方法
CN113218533B (zh) 一种基于双倍布里渊频移器的光纤激光温度传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201027