CN111830451A - A kind of inspection method of non-imaging sensor - Google Patents

A kind of inspection method of non-imaging sensor Download PDF

Info

Publication number
CN111830451A
CN111830451A CN201910321704.1A CN201910321704A CN111830451A CN 111830451 A CN111830451 A CN 111830451A CN 201910321704 A CN201910321704 A CN 201910321704A CN 111830451 A CN111830451 A CN 111830451A
Authority
CN
China
Prior art keywords
data
analyzed
time series
background
imaging sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910321704.1A
Other languages
Chinese (zh)
Other versions
CN111830451B (en
Inventor
李传荣
朱小华
李子扬
唐伶俐
李晓辉
张静
杜鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Opto Electronics of CAS
Original Assignee
Academy of Opto Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Opto Electronics of CAS filed Critical Academy of Opto Electronics of CAS
Priority to CN201910321704.1A priority Critical patent/CN111830451B/en
Publication of CN111830451A publication Critical patent/CN111830451A/en
Application granted granted Critical
Publication of CN111830451B publication Critical patent/CN111830451B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种非成像传感器的检验方法,包括:获取非成像传感器探测数据,包括待分析数据和背景数据,并对获取的数据进行预处理,其中,待分析数据与背景数据为同一区域的探测数据;对预处理后的待分析数据和背景数据作网格化处理,得到时序待分析数据和时序背景数据;对时序待分析数据和时序背景数据进行滤波并归一化;计算归一化后的时序待分析数据与时序背景数据的差值平均值、差值标准差和相关系数;根据计算结果检验非成像传感器是否正常工作。该方法简洁高效且通用,在外场条件不足、标准目标有限情况下,能实现非成像传感器的在轨检测,同时,可利用自身探测数据高频次开展传感器运行状态分析。

Figure 201910321704

A non-imaging sensor inspection method, comprising: acquiring non-imaging sensor detection data, including to-be-analyzed data and background data, and preprocessing the acquired data, wherein the to-be-analyzed data and the background data are detection data of the same area; Perform grid processing on the preprocessed data to be analyzed and background data to obtain time series data to be analyzed and time series background data; filter and normalize the time series data to be analyzed and time series background data; calculate the normalized time series The average value of the difference, the standard deviation of the difference and the correlation coefficient between the data to be analyzed and the time series background data; check whether the non-imaging sensor works normally according to the calculation result. The method is simple, efficient and versatile. It can realize the on-orbit detection of non-imaging sensors when the external field conditions are insufficient and the standard target is limited.

Figure 201910321704

Description

一种非成像传感器的检验方法A kind of inspection method of non-imaging sensor

技术领域technical field

本发明涉及卫星监测领域,尤其涉及一种非成像传感器检验方法。The invention relates to the field of satellite monitoring, in particular to a non-imaging sensor inspection method.

背景技术Background technique

电磁监测卫星上通常搭载有多种空间电磁类探测传感器,可为空间环境监测、地震预报预测和地球科学研究提供空间探测数据支持。由于受空间环境辐射影响,传感器在卫星运转周期内其工作状态、物理性能会发生变化,进而影响传感器探测数据的准确性及其在各项应用中的可靠性。因此,周期性追踪传感器性能是保障电磁卫星传感器探测工作高效运行的必要环节。Electromagnetic monitoring satellites are usually equipped with a variety of space electromagnetic detection sensors, which can provide space detection data support for space environment monitoring, earthquake prediction and prediction and earth science research. Due to the influence of radiation from the space environment, the working state and physical properties of the sensor will change during the satellite operation cycle, which in turn affects the accuracy of the sensor detection data and its reliability in various applications. Therefore, periodic tracking of sensor performance is a necessary link to ensure the efficient operation of electromagnetic satellite sensor detection.

目前,受卫星传感器、空间、能耗、技术等等多方面限制,电磁监测卫星尚不具备星上定标能力,针对非成像传感器的检测方法仍多以实验室检测为主、有限次野外测试为辅,如DEMETER卫星。前者在实验室中模拟空间环境对传感器进行仿真检测,无法传递检测结果以满足卫星运转后非成像传感器性能变化检测需求。后者利用室外特定布景条件下的试验场通过真实观测数据对星上传感器运行状态进行评价,并且可以补偿传感器实际工作中产生的多种漂移偏差,通过建立合理的数学模型预改这些偏差,提高电磁卫星空间观测的精准性。然而,利用试验场开展检验对场地及测量过程具有较严格的要求,同时野外测量需要耗费大量人力物力,无法满足非成像传感器高频次检测和分析需求。At present, due to the limitations of satellite sensors, space, energy consumption, technology, etc., electromagnetic monitoring satellites do not yet have on-board calibration capabilities. The detection methods for non-imaging sensors are still mostly laboratory detection and limited field tests. Supplemented, such as the DEMETER satellite. The former simulates the space environment in the laboratory to simulate the detection of the sensor, and cannot transmit the detection results to meet the needs of the non-imaging sensor performance change detection after the satellite is in operation. The latter uses the test field under specific outdoor background conditions to evaluate the operation status of the on-board sensors through real observation data, and can compensate for various drift deviations generated in the actual work of the sensors. The accuracy of electromagnetic satellite space observations. However, using the test field to carry out inspection has strict requirements on the site and the measurement process, and the field measurement requires a lot of manpower and material resources, which cannot meet the high-frequency detection and analysis requirements of non-imaging sensors.

近年来,针对成像传感器,发展起来一种无场地的传感器检测技术,即交叉定标,该技术不需要地面试验场,利用地表同一标准目标就可以进行遥感成像传感器之间的在轨检测分析工作。但是,电磁监测卫星传感器面向空间离散点位观测,数据采样频率高,不同于常规的卫星数据,不具备成像特点。因此,需要专门针对电磁监测卫星非成像传感器探测特点,利用其高频次离散点位观测特点,设计一种基于探测数据自身的传感器在轨检验方法,实现卫星运转期间电磁探测类传感器的周期性、高频次的性能检测和分析能力。In recent years, for imaging sensors, a field-free sensor detection technology, namely cross-calibration, has been developed. This technology does not require a ground test site, and can perform on-orbit detection and analysis between remote sensing imaging sensors using the same standard target on the ground. . However, the electromagnetic monitoring satellite sensor is oriented to the observation of discrete points in space, and the data sampling frequency is high, which is different from conventional satellite data and does not have imaging characteristics. Therefore, it is necessary to design a sensor on-orbit inspection method based on the detection data itself based on the detection characteristics of non-imaging sensors of electromagnetic monitoring satellites, and use its high-frequency discrete point observation characteristics to realize the periodicity of electromagnetic detection sensors during satellite operation. , High-frequency performance testing and analysis capabilities.

发明内容SUMMARY OF THE INVENTION

(一)要解决的技术问题(1) Technical problems to be solved

针对于现有的技术问题,本发明提供一种非成像传感器的检验方法,用于至少部分解决以上技术问题。In view of the existing technical problems, the present invention provides a non-imaging sensor inspection method, which is used to at least partially solve the above technical problems.

(二)技术方案(2) Technical solutions

本发明提供一种非成像传感器的检验方法,包括:The present invention provides a non-imaging sensor inspection method, comprising:

S1:获取非成像传感器探测的待分析数据和背景数据,并对待分析数据和背景数据进行预处理,其中待分析数据与背景数据为同一区域的探测数据;S2:对预处理后的待分析数据和背景数据作网格化处理,得到时序待分析数据和时序背景数据;S3:对时序待分析数据和时序背景数据进行滤波并归一化;S4:计算归一化后的时序待分析数据与时序背景数据的差值平均值、差值标准差和相关系数;S5:根据差值平均值、差值标准差和相关系数检验非成像传感器是否正常工作。S1: Acquire the data to be analyzed and the background data detected by the non-imaging sensor, and preprocess the data to be analyzed and the background data, wherein the data to be analyzed and the background data are the detection data of the same area; S2: The preprocessed data to be analyzed Perform grid processing with the background data to obtain the time series data to be analyzed and the time series background data; S3: filter and normalize the time series data to be analyzed and the time series background data; S4: calculate the normalized time series data to be analyzed and The difference value average value, the difference value standard deviation and the correlation coefficient of the time series background data; S5: Check whether the non-imaging sensor works normally according to the difference value average value, the difference value standard deviation and the correlation coefficient.

可选地,待分析数据和背景数据存储格式为文本文件格式,在步骤S1中,对待分析数据和背景数据进行预处理包括:S1-1:对待分析数据和背景数据进行读写处理,提取“时间”、“轨道号”、“经度”、“纬度”、“探测值”关键参数,形成纯数据文件;S1-2;对待分析数据和背景数据进行异常数据剔除处理。Optionally, the storage format of the data to be analyzed and the background data is a text file format. In step S1, the preprocessing of the data to be analyzed and the background data includes: S1-1: read and write the data to be analyzed and the background data, extract " Time", "track number", "longitude", "latitude", and "detection value" key parameters to form a pure data file; S1-2; abnormal data elimination processing is performed on the data to be analyzed and the background data.

可选地,的对探测数据进行异常数据剔除处理,包括:根据Kp指数和Dst指数两个地磁指数划定磁暴磁扰条件;根据磁暴磁扰条件剔除待分析数据和背景数据中的异常数据。Optionally, performing abnormal data elimination processing on the detection data includes: delimiting magnetic storm magnetic disturbance conditions according to two geomagnetic indices, Kp index and Dst index; and removing abnormal data in the data to be analyzed and background data according to the magnetic storm magnetic disturbance conditions.

可选地,S2包括:S2-1:根据卫星重返周期和非成像传感器采样频率特点,对预处理后的待分析数据进行空间网格和时间窗口设置,其中,在空间网格,时间窗口在时间轴上移动;S2-2:针对空间网格中,时间轴上一时间对应的时间窗口,对该时间窗口内的待分析数据求平均值,得到当前空间网格、当前时间段内的平均待分析数据;S2-3:重复步骤S2-2,对预处理后的待分析数据,依次计算时间轴上各时间对应时间窗口内的待分析数据平均值得到多个平均待分析数据,组成时序待分析数据;S2-4:重复步骤S2-1至S2-3,对预处理后的背景数据进行处理,得到时序背景数据。Optionally, S2 includes: S2-1: According to the characteristics of the satellite reentry cycle and the sampling frequency of the non-imaging sensor, perform spatial grid and time window settings on the preprocessed data to be analyzed, wherein, in the spatial grid, the time window Move on the time axis; S2-2: For the time window corresponding to the time on the time axis in the spatial grid, average the data to be analyzed in the time window to obtain the current spatial grid and the current time period. Average the data to be analyzed; S2-3: Repeat step S2-2, for the preprocessed data to be analyzed, sequentially calculate the average value of the data to be analyzed in the time window corresponding to each time on the time axis to obtain a plurality of average data to be analyzed, consisting of Time series data to be analyzed; S2-4: Repeat steps S2-1 to S2-3 to process the preprocessed background data to obtain time series background data.

可选地,S3包括:S3-1:采用卷积平滑或单纯移动平均或线性加权平滑或高斯滤波平滑或巴特沃斯滤波平滑中的至少一种方法对时序待分析数据和时序背景数据进行滤波;S3-2:利用映射函数

Figure BDA0002033398620000031
对时序待分析数据和时序背景数据进行归一化,其中,x和x*分别为归一化前后的时序待分析数据和时序背景数据,xmax和xmin分别为时序待分析数据和时序背景数据对应最大值和最小值。Optionally, S3 includes: S3-1: Use at least one method in convolution smoothing or simple moving average or linear weighted smoothing or Gaussian filtering smoothing or Butterworth filtering smoothing to filter the time series data to be analyzed and the time series background data ;S3-2: Use the mapping function
Figure BDA0002033398620000031
Normalize the time series data to be analyzed and the time series background data, where x and x * are the time series data to be analyzed and the time series background data before and after normalization, respectively, and x max and x min are the time series data to be analyzed and the time series background, respectively The data corresponds to the maximum and minimum values.

可选地,时序待分析数据及时序背景数据均包括电子浓度数据和离子浓度数据,S4包括:S4-1:利用公式

Figure BDA0002033398620000032
计算归一化后的时序待分析数据,得到待分析差值平均值μanalysis;利用公式
Figure BDA0002033398620000033
计算归一化后的时序待分析数据,得到待分析相关系数Ranalysis;Optionally, the time series data to be analyzed and the time series background data both include electron concentration data and ion concentration data, and S4 includes: S4-1: using the formula
Figure BDA0002033398620000032
Calculate the normalized time series data to be analyzed, and obtain the average value of the difference to be analyzed μ analysis ; use the formula
Figure BDA0002033398620000033
Calculate the normalized time series data to be analyzed to obtain the correlation coefficient R analysis to be analyzed;

S4-2:利用公式

Figure BDA0002033398620000034
计算归一化后的时序背景数据,得到背景差值平均值μbg;利用公式
Figure BDA0002033398620000035
计算归一化后的时序背景数据,得到背景差值标准差σbg;利用公式
Figure BDA0002033398620000036
计算归一化后的时序背景数据,得到背景相关系数Rbg;S4-2: Utilize formula
Figure BDA0002033398620000034
Calculate the time series background data after normalization, obtain the background difference mean value μ bg ; use the formula
Figure BDA0002033398620000035
Calculate the normalized time series background data to obtain the background difference standard deviation σ bg ; use the formula
Figure BDA0002033398620000036
Calculate the normalized time series background data to obtain the background correlation coefficient R bg ;

其中,X、Y分别表示电子浓度数据和离子浓度数据,μXY为两者的差值平均值,σXY为两者的差值标准差,Z为两者的差值,RXY为两者的相关系数,Cov(X,Y)为两者的协方差,D(X)、D(Y)分别为两者的方差。Among them, X and Y represent electron concentration data and ion concentration data, respectively, μ XY is the average value of the difference between the two, σ XY is the standard deviation of the difference between the two, Z is the difference between the two, and R XY is the two The correlation coefficient of , Cov(X, Y) is the covariance of the two, D(X), D(Y) are the variance of the two respectively.

可选地,待分析差值平均值、待分析相关系数、背景差值平均值、背景插值标准差及背景相关系数满足条件:Optionally, the average value of the difference to be analyzed, the correlation coefficient to be analyzed, the average value of the background difference, the standard deviation of the background interpolation, and the background correlation coefficient meet the conditions:

μbgbg≤μanalysis≤μbgbg μ bgbg ≤μ analysis ≤μ bgbg

Ranalysis≥Rbg R analysis ≥R bg

则判定非成像传感器正常工作,否则提示非成像传感器存在异常。Then it is determined that the non-imaging sensor is working normally, otherwise it is prompted that the non-imaging sensor is abnormal.

(三)有益效果(3) Beneficial effects

本发明提供一种非成像传感器的检验方法,该方法简洁高效且通用,在外场条件不足、标准目标有限的情况下,能够实现非成像传感器的在轨检测。同时,考虑到待检验传感器的特点,可直接利用自身探测数据高频次开展传感器运行状态分析。The invention provides a non-imaging sensor inspection method, which is simple, efficient and universal, and can realize on-orbit detection of the non-imaging sensor under the condition of insufficient external field conditions and limited standard targets. At the same time, considering the characteristics of the sensor to be tested, the sensor operating state analysis can be carried out directly by using its own detection data at a high frequency.

附图说明Description of drawings

图1是本发明实施例基于时序数据的非成像传感器检验方法的原理图。FIG. 1 is a schematic diagram of a non-imaging sensor inspection method based on time series data according to an embodiment of the present invention.

图2是本发明实施例基于时序数据的非成像传感器检验方法的流程图。FIG. 2 is a flowchart of a non-imaging sensor inspection method based on time series data according to an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to specific embodiments and accompanying drawings.

本发明实施例提出一种基于时序数据的非成像传感器在轨检验方法,该方法仅利用空间环境平静期相同卫星平台上的传感器自身探测数据,不需要构建地面试验场,不受检测条件、人力物力等因素的制约,可以随时随地进行检测和分析。解决了现有非成像传感器检测技术方案中试验外场布设有限、标准目标缺失、实验室检测结果无法传递等问题。而且,通过直接基于相同卫星平台上传感器自身的时序探测数据,还能有效降低同类型卫星在轨数量不足、覆盖范围重叠率低的影响,满足实际应用的需求。The embodiment of the present invention proposes a non-imaging sensor on-orbit inspection method based on time series data. The method only uses the sensor's own detection data on the same satellite platform during the quiet period of the space environment, does not need to build a ground test field, and is not subject to detection conditions, manpower Constrained by factors such as material resources, detection and analysis can be carried out anytime, anywhere. The problems of the existing non-imaging sensor detection technology solutions, such as the limited layout of the test field, the lack of standard targets, and the inability to transmit laboratory test results, are solved. Moreover, by directly based on the time-series detection data of the sensors on the same satellite platform, the influence of insufficient number of satellites in orbit and low coverage overlap rate of the same type of satellites can be effectively reduced to meet the needs of practical applications.

该方法的基本原理如图1所示,首先,获取同一卫星平台上的非成像传感器探测(等离子体分析仪和朗缪尔探针)的数据,即待分析数据和背景数据(基础数据)。本实施例获取的已经稳定运行和成熟应用的DEMETER(Detection of Electro-Magnetic EmissionTransmitted from Earthquake Regions,DEMETER)卫星上的两个传感器数据探测的数据,其次,对待分析数据和背景数据进行预处理,并剔除其中的异常数据。再次,对待分析数据和背景数据进行网格化处理,将网格点数据转化为网格化时序数据,从而得到时序待分析数据和时序背景数据。然后,对时序待分析数据和时序背景数据进行平滑处理及归一化处理后。最后,在背景场数据的基础上,开展相关性及阈值分析,通过相关性边界处理,直接检测待分析数据的波动合理性,从而分析同平台传感器在轨运行的性能状态。The basic principle of the method is shown in Figure 1. First, the data detected by the non-imaging sensors (plasma analyzer and Langmuir probe) on the same satellite platform, namely the data to be analyzed and the background data (basic data) are acquired. The data detected by the two sensors on the DEMETER (Detection of Electro-Magnetic Emission Transmitted from Earthquake Regions, DEMETER) satellite that has been stably operated and matured in application obtained in this embodiment, secondly, the data to be analyzed and the background data are preprocessed, and Eliminate abnormal data. Thirdly, grid processing is performed on the data to be analyzed and the background data, and the grid point data is converted into gridded time series data, thereby obtaining the time series data to be analyzed and the time series background data. Then, the time series data to be analyzed and the time series background data are smoothed and normalized. Finally, on the basis of the background field data, correlation and threshold analysis are carried out, and through correlation boundary processing, the rationality of the fluctuation of the data to be analyzed can be directly detected, so as to analyze the performance status of the sensors on the same platform in orbit.

图2示是本发明实施例基于时序数据的非成像传感器检验方法的流程图。FIG. 2 is a flowchart of a non-imaging sensor inspection method based on time series data according to an embodiment of the present invention.

如图2所示,非成像传感器检验方法可以包括以下步骤:As shown in Figure 2, the non-imaging sensor inspection method may include the following steps:

S1,获取非成像传感器探测的待分析数据和背景数据,并对数据进行预处理。S1, acquire the data to be analyzed and the background data detected by the non-imaging sensor, and preprocess the data.

在上述操作S1中,基于DEMETER卫星平台的朗缪尔探针和等离子体分析仪两个非成像传感器,选取当前同区域/点位的探测数据,作为待分析数据;选取上一年相同位置的历史探测数据,作为背景数据。按照非成像传感器数据存储特征,待分析数据和背景数据均选取夜间段的电子浓度数据和离子浓度数据。In the above operation S1, based on the two non-imaging sensors of the Langmuir probe and the plasma analyzer of the DEMETER satellite platform, the current detection data in the same area/point is selected as the data to be analyzed; Historical detection data, as background data. According to the data storage characteristics of the non-imaging sensor, the data to be analyzed and the background data are selected from the electron concentration data and ion concentration data of the night segment.

上述获取的数据是非成像传感器直接探测的,属于Level-1科学数据,属于文本文件格式,为了方便后续各项操作,需要进行数据读取处理以形成纯数据文件,得到纯数据的待分析数据和背景数据。具体读取操作是:利用matlab软件编写文本文件读写程序,根据Level-1科学数据格式,用fscanf语句读取直接探测的数据,并用fprintf将“时间”、“轨道号”、“经纬度”、“探测值”等数据写入文本。The data obtained above are directly detected by non-imaging sensors, belong to Level-1 scientific data, and belong to the text file format. In order to facilitate subsequent operations, data reading processing is required to form a pure data file, and the pure data to be analyzed and the data are obtained. Background data. The specific reading operation is: use matlab software to write a text file reading and writing program, according to the Level-1 scientific data format, use the fscanf statement to read the directly detected data, and use fprintf to convert the "time", "track number", "latitude and longitude", Data such as "probe value" are written to text.

由于磁暴磁扰等空间环境变化会引起空间电子和空间离子异常扰动,获取的待分析数据和背景数据中或存在以下异常数据,因此,需要对这些异常数据进行剔除。本实施例利用Kp指数(Kp index)和Dst指数(Dst index)两个地磁指数对特殊空间环境下的数据进行剔除。具体剔除条件方法:基于Kp≥4和Dst≤-50nT划定磁暴磁扰条件,剔除该时间段内传感器获取的探测数据,从而去除空间环境异常造成的电离层扰动影响,以达到分析平静时期电离层参量的时序变化特征。其中,地磁指数数据可通过日本世界地磁数据中心网站(http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html)进行下载获取。Since changes in the space environment such as magnetic storms and magnetic disturbances will cause abnormal disturbances of space electrons and space ions, the following abnormal data may exist in the acquired data to be analyzed and background data. Therefore, these abnormal data need to be eliminated. In this embodiment, two geomagnetic indices, the Kp index (Kp index) and the Dst index (Dst index), are used to eliminate data in a special space environment. Specific method of exclusion conditions: Based on Kp≥4 and Dst≤-50nT, the magnetic disturbance conditions of the magnetic storm are delineated, and the detection data obtained by the sensor during this time period are eliminated, so as to remove the ionospheric disturbance caused by the abnormal space environment, so as to analyze the ionization in the quiet period. Timing variation characteristics of layer parameters. Among them, the geomagnetic index data can be downloaded from the Japan World Geomagnetic Data Center website (http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html).

S2,分别对预处理后的待分析数据和背景数据进行网格化处理,得到时序待分析数据和时序背景数据。S2: Perform grid processing on the preprocessed data to be analyzed and the background data, respectively, to obtain time-series data to be analyzed and time-series background data.

在上述操作S1中提到待分析数据和背景数据均选取夜间段的电子浓度数据和离子浓度数据,即待分析数据和背景数据均包括电子浓度数据和离子浓度数据。It is mentioned in the above operation S1 that both the data to be analyzed and the background data are selected from the electron concentration data and the ion concentration data of the night period, that is, the data to be analyzed and the background data both include electron concentration data and ion concentration data.

由于非成像传感器探测数据是以毫秒的形式进行采集并以单轨的形式进行存储,数据采样频率高,而且不同传感器之间点位采样频率可能存在不一致,无法一一对应。因此,需要设置空间网格,对待分析数据和背景数据进行网格化处理。Since the detection data of non-imaging sensors is collected in milliseconds and stored in the form of a single track, the data sampling frequency is high, and the sampling frequency of points between different sensors may be inconsistent, which cannot be matched one-to-one. Therefore, it is necessary to set a spatial grid, and perform grid processing on the data to be analyzed and the background data.

网格化处理的方法为:根据卫星重返周期和传感器采样频率特点,设置一个N°×M°的空间网格和X天的时间窗口,其中,在空间网格,时间窗口在时间轴上移动。对该空间网格,当前时间段范围内的点位探测数据(待分析数据和背景数据)求平均值,将该平均值作为该网格当前时间段的探测数据;在时间轴上移动时间窗口,继续求取该网格X天内的数据平均值,作为该网格下一个时间段的探测数据;以此类推,采用该方法对设定的空间网格内的待分析数据和背景数据进行时序网格化处理,得到时序待分析数据和时序背景数据。本实施例中采用2°×2°的空间网格,并以30天(一个月)为时间尺度设定时间窗口,对数据进行聚合处理,得到时序待分析数据和时序背景数据。The grid processing method is as follows: according to the characteristics of the satellite reentry cycle and the sampling frequency of the sensor, a spatial grid of N°×M° and a time window of X days are set, wherein, in the spatial grid, the time window is on the time axis move. Calculate the average value of the point detection data (data to be analyzed and background data) within the current time period of the spatial grid, and use the average value as the detection data of the grid in the current time period; move the time window on the time axis , continue to obtain the average value of the data within X days of the grid, as the detection data of the next time period of the grid; and so on, use this method to perform a time series network on the data to be analyzed and the background data in the set spatial grid. Grid processing to obtain time series data to be analyzed and time series background data. In this embodiment, a 2°×2° spatial grid is used, and a time window is set with a time scale of 30 days (one month), and the data is aggregated to obtain time series data to be analyzed and time series background data.

S3,对时序待分析数据和时序背景数据进行滤波并归一化。S3, filtering and normalizing the time series data to be analyzed and the time series background data.

为了降低数据随机波动对分析检验结果的影响,需要分别对时序待分析数据和时序背景数据进行平滑滤波处理。可采用卷积平滑或单纯移动平均或线性加权平滑或高斯滤波平滑或巴特沃斯滤波平滑中的至少一种方法对时序待分析数据和时序背景数据进行滤波。本实施例采用Savitzky-Golay滤波算法,该方法可以在保证时间序列数据变化趋势和特征不变的情况下,对时序待分析数据和时序背景数据进行平滑处理。具体公式为:In order to reduce the influence of random fluctuation of data on the analysis and test results, it is necessary to perform smoothing filtering on the time series data to be analyzed and the time series background data respectively. The time series data to be analyzed and the time series background data may be filtered by at least one method of convolution smoothing, simple moving average, linear weighted smoothing, Gaussian filtering smoothing, or Butterworth filtering smoothing. This embodiment adopts the Savitzky-Golay filtering algorithm, which can smooth the time series data to be analyzed and the time series background data under the condition that the change trend and characteristics of the time series data remain unchanged. The specific formula is:

Figure BDA0002033398620000061
Figure BDA0002033398620000061

Figure BDA0002033398620000071
Figure BDA0002033398620000071

其中,

Figure BDA0002033398620000072
为拟合值,Xj+i为原始值,Ci为时序化背景数据(时序化待分析数据)中的第i个数据时的系数,m为半个滤波窗口,N为滤波器长度,N≤2m+1;Tk为第k次迭代后的序列拟合结果指数,
Figure BDA0002033398620000073
为未迭代和第k次迭代后序列中时序待分析数据(时序背景数据)中第i个数据。in,
Figure BDA0002033398620000072
is the fitted value, X j+i is the original value, C i is the coefficient of the i-th data in the time series background data (the time series data to be analyzed), m is half the filter window, N is the filter length, N≤2m+1; Tk is the index of the sequence fitting result after the kth iteration,
Figure BDA0002033398620000073
is the i-th data in the time-series data to be analyzed (time-series background data) in the sequence without iteration and after the k-th iteration.

由于电磁探测类非成像传感器探测数据量级差异大,为了使数据分析具有更强的对比性,需要对时序待分析数据和时序背景数据的电子浓度数据和离子浓度数据进行归一化处理,将数值统一归一化到[0,1]之间。线性映射函数为:Due to the large difference in the magnitude of the detection data of electromagnetic detection type non-imaging sensors, in order to make the data analysis more contrastive, it is necessary to normalize the electron concentration data and ion concentration data of the time series data to be analyzed and the time series background data. The values are uniformly normalized to [0, 1]. The linear mapping function is:

Figure BDA0002033398620000074
Figure BDA0002033398620000074

其中,x和x*分别为归一化前后的时序待分析数据和时序背景数据,xmax和xmin分别为所时序待分析数据和时序背景数据对应最大值和最小值。Among them, x and x * are the time series data to be analyzed and the time series background data before and after normalization, respectively, and x max and x min are the corresponding maximum and minimum values of the time series data to be analyzed and the time series background data, respectively.

S4,计算归一化后的时序待分析数据的差值平均值和相关系数,得到待分析差值平均值和待分析相关系数;计算归一化后的时序背景数据的差值平均值、差值标准差和相关系数,得到背景差值平均值、背景差值标准差和背景相关系数。S4, calculate the difference average value and the correlation coefficient of the normalized time series data to be analyzed, and obtain the difference value average value to be analyzed and the correlation coefficient to be analyzed; calculate the difference average value and the difference value of the normalized time series background data The standard deviation of the value and the correlation coefficient were obtained to obtain the mean value of the background difference, the standard deviation of the background difference and the background correlation coefficient.

具体地,利用公式

Figure BDA0002033398620000075
计算时序待分析数据的待分析差值平均值和时序背景数据的背景差值平均值;Specifically, using the formula
Figure BDA0002033398620000075
Calculate the average value of the difference to be analyzed of the time series data to be analyzed and the average value of the background difference of the time series background data;

利用公式

Figure BDA0002033398620000076
计算时序背景数据的背景差值标准差;Use the formula
Figure BDA0002033398620000076
Calculate the background difference standard deviation of time series background data;

利用皮尔逊相关系数(Pearson correlation coefficient)表达式

Figure BDA0002033398620000077
计算时序待分析数据的相关系数和时序背景数据的相关系数;Using Pearson correlation coefficient (Pearson correlation coefficient) expression
Figure BDA0002033398620000077
Calculate the correlation coefficient of the time series data to be analyzed and the correlation coefficient of the time series background data;

其中,X、Y分别表示时序待分析数据和时序背景数据各自的电子浓度数据和离子浓度数据,μXY为电子浓度数据和离子浓度数据的差值平均值,σXY为两者的差值标准差,Z为两者的差值,RXY为两者的相关系数,Cov(X,Y)为两者的协方差,D(X)、D(Y)分别为两者的方差。Wherein, X and Y represent the respective electron concentration data and ion concentration data of the time series data to be analyzed and the time series background data, μ XY is the difference average value of the electron concentration data and the ion concentration data, and σ XY is the difference standard between the two Difference, Z is the difference between the two, R XY is the correlation coefficient of the two, Cov(X, Y) is the covariance of the two, D(X), D(Y) are the variance of the two, respectively.

S5,根据待分析差值平均值、待分析相关系数、背景差值平均值、背景差值标准差和背景相关系数检验非成像传感器是否正常工作。S5, check whether the non-imaging sensor works normally according to the average value of the difference to be analyzed, the correlation coefficient to be analyzed, the average value of the background difference, the standard deviation of the background difference, and the background correlation coefficient.

具体地,若满足条件:Specifically, if the conditions are met:

μbgbg≤μanalysis≤μbgbg μ bgbg ≤μ analysis ≤μ bgbg

Ranalysis≥Rbg R analysis ≥R bg

则判定非成像传感器的性能工作状态良好,否则提示所述非成像传感器存在异常,需要对非成像传感器的性能进一步详细分析。其中,μbg为背景差值平均值,σbg为背景差值标准差,Rbg为背景相关系数,μanalysis为待分析差值平均值、Ranalysis为待分析相关系数。Then it is determined that the performance and working state of the non-imaging sensor is good, otherwise, it indicates that the non-imaging sensor is abnormal, and the performance of the non-imaging sensor needs to be further analyzed in detail. Wherein, μ bg is the mean value of the background difference, σ bg is the standard deviation of the background difference, R bg is the background correlation coefficient, μ analysis is the mean value of the difference to be analyzed, and R analysis is the correlation coefficient to be analyzed.

此外,上述对各步骤和方法的定义并不仅限于实施例中提到的各种具体公式或方式,本领域普通技术人员可对其进行简单地更改或替换,例如:In addition, the above-mentioned definitions of each step and method are not limited to the various specific formulas or methods mentioned in the embodiments, and those of ordinary skill in the art can simply modify or replace them, such as:

1)数据预处理方面,考虑到不同卫星在轨运行时间差异,应用于其它非成像传感器时,背景时序数据也可以采用前一个月或者前两三年的数据;数据文件的读写也可以通过Python、C、C++等其他编程语言实现;1) In terms of data preprocessing, considering the difference in the on-orbit running time of different satellites, when applied to other non-imaging sensors, the background time series data can also use the data of the previous month or the previous two or three years; data files can also be read and written through Implementation in other programming languages such as Python, C, C++;

2)数据网格化处理过程中也可以根据数据量变化,采用旬平均、周平均等不同时间窗口获取同网格内的时序数据;2) In the process of data grid processing, the time series data in the same grid can also be obtained by using different time windows such as ten-day average and weekly average according to the change of data volume;

3)时序数据平滑还可以采用单纯移动平均、线性加权平滑、高斯滤波平滑、巴特沃斯滤波平滑等进行数据平滑处理。3) Time series data smoothing can also use simple moving average, linear weighted smoothing, Gaussian filtering smoothing, Butterworth filtering smoothing, etc. to perform data smoothing processing.

综上所述,本发明实施例提供一种基于时序数据的非成像传感器检验方法,通过对非成像传感器自身探测数据进行网格化处理后,进行滤波及归一化,并对归一化后的时序数据进行相关性计算,及相关性计算结果检验该非成像传感器的工作状态。该方法简洁高效且通用,在外场条件不足、标准目标有限的情况下,能够实现非成像传感器的在轨检测。同时,考虑到待检验传感器的特点,可直接利用自身探测数据高频次开展传感器运行状态分析。To sum up, the embodiments of the present invention provide a non-imaging sensor inspection method based on time series data. The correlation calculation is performed on the time series data, and the correlation calculation results are used to check the working state of the non-imaging sensor. The method is simple, efficient and versatile, and can realize on-orbit detection of non-imaging sensors in the case of insufficient external field conditions and limited standard targets. At the same time, considering the characteristics of the sensor to be tested, the sensor operating state analysis can be carried out directly by using its own detection data at a high frequency.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in further detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (7)

1.一种非成像传感器的检验方法,其特征在于,包括:1. a kind of inspection method of non-imaging sensor, is characterized in that, comprises: S1:获取所述非成像传感器探测的待分析数据和背景数据,并对所述待分析数据和背景数据进行预处理,其中,所述待分析数据与背景数据为同一区域的探测数据;S1: Acquire the data to be analyzed and the background data detected by the non-imaging sensor, and preprocess the data to be analyzed and the background data, wherein the data to be analyzed and the background data are detection data of the same area; S2:对预处理后的待分析数据和背景数据作网格化处理,得到时序待分析数据和时序背景数据;S2: Perform grid processing on the preprocessed data to be analyzed and background data to obtain time series data to be analyzed and time series background data; S3:对所述时序待分析数据和时序背景数据进行滤波并归一化;S3: Filter and normalize the time series data to be analyzed and the time series background data; S4:计算归一化后的所述时序待分析数据与所述时序背景数据的差值平均值、差值标准差和相关系数;S4: Calculate the average value of the difference, the standard deviation of the difference, and the correlation coefficient between the normalized time series data to be analyzed and the time series background data; S5:根据所述差值平均值、差值标准差和相关系数检验所述非成像传感器是否正常工作。S5: Check whether the non-imaging sensor works normally according to the average value of the difference, the standard deviation of the difference and the correlation coefficient. 2.根据权利要求1所述的非成像传感器的性能检验方法,其特征在于,所述待分析数据和背景数据存储格式为文本文件格式,在步骤S1中,对所述待分析数据和背景数据进行预处理包括:2. The performance testing method of a non-imaging sensor according to claim 1, wherein the storage format of the data to be analyzed and the background data is a text file format, and in step S1, the data to be analyzed and the background data are stored in a format of a text file. Preprocessing includes: S1-1:对所述待分析数据和背景数据进行读写处理,提取“时间”、“轨道号”、“经度”、“纬度”、“探测值”关键参数,形成纯数据文件;S1-1: Perform read-write processing on the data to be analyzed and background data, extract key parameters of "time", "track number", "longitude", "latitude", and "detection value" to form a pure data file; S1-2;对所述待分析数据和背景数据进行异常数据剔除处理。S1-2: Perform abnormal data elimination processing on the data to be analyzed and the background data. 3.根据权利要求2所述的非成像传感器的性能检验方法,其特征在于,所述的对所述探测数据进行异常数据剔除处理,包括:3. The method for checking the performance of a non-imaging sensor according to claim 2, wherein the processing of removing abnormal data from the detection data comprises: 根据Kp指数和Dst指数两个地磁指数划定磁暴磁扰条件;According to the two geomagnetic indices Kp index and Dst index, the magnetic disturbance conditions of the magnetic storm are delineated; 根据所述磁暴磁扰条件剔除所述待分析数据和背景数据中的异常数据。Abnormal data in the to-be-analyzed data and the background data is eliminated according to the magnetic storm magnetic disturbance condition. 4.根据权利要求1所述的非成像传感器的性能检验方法,其特征在于,所述步骤S2包括:4. The method for checking the performance of a non-imaging sensor according to claim 1, wherein the step S2 comprises: S2-1:根据卫星重返周期和非成像传感器采样频率特点,对所述预处理后的待分析数据进行空间网格和时间窗口设置,其中,在所述空间网格,时间窗口在时间轴上移动;S2-1: According to the characteristics of the satellite re-entry period and the sampling frequency of the non-imaging sensor, perform spatial grid and time window settings on the preprocessed data to be analyzed, wherein, in the spatial grid, the time window is on the time axis move up; S2-2:针对所述空间网格中,所述时间轴上一时间对应的时间窗口,对该时间窗口内的待分析数据求平均值,得到当前空间网格、当前时间段内的平均待分析数据;S2-2: For the time window corresponding to the time on the time axis in the spatial grid, average the data to be analyzed in the time window to obtain the current spatial grid and the average pending data in the current time period. analyze data; S2-3:重复步骤S2-2,对所述预处理后的待分析数据,依次计算时间轴上各时间对应时间窗口内的待分析数据的平均值得到多个平均待分析数据,组成时序待分析数据;S2-3: Repeat step S2-2, for the preprocessed data to be analyzed, sequentially calculate the average value of the data to be analyzed in the time window corresponding to each time on the time axis to obtain a plurality of average data to be analyzed, and form a time series to be analyzed analyze data; S2-4:重复步骤S2-1至S2-3,对所述预处理后的背景数据进行处理,得到时序背景数据。S2-4: Repeat steps S2-1 to S2-3 to process the preprocessed background data to obtain time-series background data. 5.根据权利要求1所述的非成像传感器的性能检验方法,其特征在于,所述步骤S3包括:5. The performance inspection method of a non-imaging sensor according to claim 1, wherein the step S3 comprises: S3-1:采用卷积平滑或单纯移动平均或线性加权平滑或高斯滤波平滑或巴特沃斯滤波平滑中的至少一种方法对所述时序待分析数据和时序背景数据进行滤波;S3-1: Filter the time series data to be analyzed and the time series background data by adopting at least one method of convolution smoothing, simple moving average, linear weighted smoothing, Gaussian filtering smoothing, or Butterworth filtering smoothing; S3-2:利用映射函数
Figure FDA0002033398610000021
对所述时序待分析数据和时序背景数据进行归一化,其中,x和x*分别为归一化前后的所述时序待分析数据和时序背景数据,xmax和xmin分别为所述时序待分析数据和时序背景数据对应最大值和最小值。
S3-2: Utilize the mapping function
Figure FDA0002033398610000021
The time series data to be analyzed and the time series background data are normalized, wherein x and x * are the time series data to be analyzed and the time series background data before and after normalization, respectively, and x max and x min are the time series, respectively The data to be analyzed and the time series background data correspond to the maximum and minimum values.
6.根据权利要求1所述的非成像传感器的性能检验方法,其特征在于,所述时序待分析数据及时序背景数据均包括电子浓度数据和离子浓度数据,所述步骤S4包括:6. The performance testing method of a non-imaging sensor according to claim 1, wherein the time series data to be analyzed and the time series background data both include electron concentration data and ion concentration data, and the step S4 comprises: S4-1:利用公式
Figure FDA0002033398610000022
计算所述归一化后的时序待分析数据,得到待分析差值平均值μanalysis;利用公式
Figure FDA0002033398610000023
计算所述归一化后的时序待分析数据,得到待分析相关系数Ranalysis
S4-1: Utilize formula
Figure FDA0002033398610000022
Calculate the time series data to be analyzed after the normalization, obtain the difference mean value μ analysis to be analyzed; Utilize the formula
Figure FDA0002033398610000023
Calculate the time series data to be analyzed after the normalization, obtain the correlation coefficient R analysis to be analyzed;
S4-2:利用公式
Figure FDA0002033398610000024
计算所述归一化后的时序背景数据,得到背景差值平均值μbg;利用公式
Figure FDA0002033398610000025
计算所述归一化后的时序背景数据,得到背景差值标准差σbg;利用公式
Figure FDA0002033398610000026
计算所述归一化后的时序背景数据,得到背景相关系数Rbg
S4-2: Utilize formula
Figure FDA0002033398610000024
Calculate the time series background data after the normalization, obtain the background difference mean value μ bg ; Utilize the formula
Figure FDA0002033398610000025
Calculate the normalized time series background data to obtain the background difference standard deviation σ bg ; use the formula
Figure FDA0002033398610000026
Calculate the normalized time series background data to obtain the background correlation coefficient R bg ;
其中,X、Y分别表示所述电子浓度数据和所述离子浓度数据,μXY为两者的差值平均值,σXY为两者的差值标准差,Z为两者的差值,RXY为两者的相关系数,Cov(X,Y)为两者的协方差,D(X)、D(Y)分别为两者的方差。Wherein, X and Y represent the electron concentration data and the ion concentration data respectively, μXY is the average value of the difference between the two, σXY is the standard deviation of the difference between the two, Z is the difference between the two, and R XY is the correlation coefficient of the two, Cov(X, Y) is the covariance of the two, and D(X) and D(Y) are the variance of the two, respectively.
7.根据权利要求6所述的非成像传感器的性能检验方法,其特征在于,所述待分析差值平均值、待分析相关系数、背景差值平均值、背景插值标准差及背景相关系数满足条件:7 . The performance testing method of a non-imaging sensor according to claim 6 , wherein the mean value of the difference to be analyzed, the correlation coefficient to be analyzed, the mean value of the background difference, the standard deviation of the background interpolation and the background correlation coefficient satisfy 7 . condition: μbgbg≤μanalysis≤μbgbg μ bgbg ≤μ analysis ≤μ bgbg Ranalysis≥Rbg R analysis ≥R bg 则判定所述非成像传感器正常工作,否则提示所述非成像传感器存在异常。Then it is determined that the non-imaging sensor is working normally, otherwise it is prompted that the non-imaging sensor is abnormal.
CN201910321704.1A 2019-04-19 2019-04-19 Method for inspecting non-imaging sensor Active CN111830451B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910321704.1A CN111830451B (en) 2019-04-19 2019-04-19 Method for inspecting non-imaging sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910321704.1A CN111830451B (en) 2019-04-19 2019-04-19 Method for inspecting non-imaging sensor

Publications (2)

Publication Number Publication Date
CN111830451A true CN111830451A (en) 2020-10-27
CN111830451B CN111830451B (en) 2023-04-18

Family

ID=72912736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910321704.1A Active CN111830451B (en) 2019-04-19 2019-04-19 Method for inspecting non-imaging sensor

Country Status (1)

Country Link
CN (1) CN111830451B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116643294A (en) * 2023-06-01 2023-08-25 中南大学 Ionosphere disturbance detection method, device and medium based on double coefficients and double sequences

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049551A1 (en) * 2006-07-12 2008-02-28 Everhard Johan Muyzert Workflow for processing streamer seismic data
US20090268877A1 (en) * 2008-04-29 2009-10-29 Schueler Bruno W Method and system for calibrating an x-ray photoelectron spectroscopy measurement
US20140019397A1 (en) * 2012-07-12 2014-01-16 Roger K. Alexander System and method for efficient data collection in distributed sensor measurement systems
CN106021710A (en) * 2016-05-13 2016-10-12 南京航空航天大学 Seismic precursor satellite orbit anomaly identification method based on atmosphere ionosphere parameter
CN106708989A (en) * 2016-12-14 2017-05-24 大连大学 Spatial time sequence data stream application-based Skyline query method
CN108613695A (en) * 2018-03-28 2018-10-02 厦门大学 Redundant sensor fault detection method based on ICA-SPRT
CN108830444A (en) * 2018-04-20 2018-11-16 中国气象局气象探测中心 A kind of assessment of raob data and modification method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049551A1 (en) * 2006-07-12 2008-02-28 Everhard Johan Muyzert Workflow for processing streamer seismic data
US20090268877A1 (en) * 2008-04-29 2009-10-29 Schueler Bruno W Method and system for calibrating an x-ray photoelectron spectroscopy measurement
US20140019397A1 (en) * 2012-07-12 2014-01-16 Roger K. Alexander System and method for efficient data collection in distributed sensor measurement systems
CN106021710A (en) * 2016-05-13 2016-10-12 南京航空航天大学 Seismic precursor satellite orbit anomaly identification method based on atmosphere ionosphere parameter
CN106708989A (en) * 2016-12-14 2017-05-24 大连大学 Spatial time sequence data stream application-based Skyline query method
CN108613695A (en) * 2018-03-28 2018-10-02 厦门大学 Redundant sensor fault detection method based on ICA-SPRT
CN108830444A (en) * 2018-04-20 2018-11-16 中国气象局气象探测中心 A kind of assessment of raob data and modification method and device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YONGGUANG ZHAO ET AL.: "《Radiometric Cross-Calibration of Landsat-8/OLI and GF-1/PMS Sensors Using an Instrumented Sand Site》", 《IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING》 *
张志玮 等: "《基于电磁探测数据的时序分析模型研究》", 《地震学报》 *
徐方舟 等: "《基于DEMETER卫星观测数据的电离层离子温度时间序列预测模型》", 《遥感信息》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116643294A (en) * 2023-06-01 2023-08-25 中南大学 Ionosphere disturbance detection method, device and medium based on double coefficients and double sequences
CN116643294B (en) * 2023-06-01 2024-02-09 中南大学 Ionosphere disturbance detection method, device and medium based on double coefficients and double sequences

Also Published As

Publication number Publication date
CN111830451B (en) 2023-04-18

Similar Documents

Publication Publication Date Title
CN111401471B (en) Spacecraft attitude anomaly detection method and system
CN111814699B (en) Deep learning earthquake prediction method for SWARM electromagnetic satellite data
Hajikhodaverdikhan et al. Earthquake prediction with meteorological data by particle filter-based support vector regression
Kumpf et al. Visual analysis of the temporal evolution of ensemble forecast sensitivities
Mondal et al. On the detection of human influence in extreme precipitation over India
CN109685246A (en) Environmental data predictor method, device and storage medium, server
CN112946784A (en) SuperDARN radar convection diagram short-term forecasting method based on deep learning
Saqib et al. Comparisons of autoregressive integrated moving average (ARIMA) and long short term memory (LSTM) network models for ionospheric anomalies detection: a study on Haiti (M w= 7.0) earthquake
Shenvi et al. Forecasting of ionospheric total electron content data using multivariate deep LSTM model for different latitudes and solar activity
CN107807385A (en) A kind of regional stress field change in time and space inversion method
CN112633147A (en) Magnetic anomaly detection method based on multi-feature fusion and intelligent iterative optimization algorithm
Mir et al. An improved imputation method for accurate prediction of imputed dataset based radon time series
Xu et al. An automatic P-wave onset time picking method for mining-induced microseismic data based on long short-term memory deep neural network
CN111830451B (en) Method for inspecting non-imaging sensor
CN111753776A (en) Structural damage identification method based on echo state and multi-scale convolution joint model
Lee et al. Feature tracking and visualization of the Madden-Julian Oscillation in climate simulation
CN118643267A (en) A mixed gas detection and coordinated early warning method and system in a confined space
Ugwiri et al. Edge sensor signal processing algorithms for earthquake early detection
Wills et al. Separating forced and unforced components of climate change: the utility of pattern recognition methods in large ensembles and observations
Liu et al. Synergistic Hankel structured low-rank approximation with total variation regularization for complex magnetic anomaly detection
Lu et al. An internal detector positioning method in oil pipelines using vibration signal
Yang et al. A new method to identify the source vent location of tephra fall deposits: development, testing, and application to key Quaternary eruptions of Western North America
CN116610909A (en) Electromagnetic method data processing method and system based on gate control circulation unit
Li et al. Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping–particle swarm optimization convolutional neural network
Toride et al. Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant