CN111830283B - 一种基于磁致法拉第旋光效应的加速度传感器 - Google Patents

一种基于磁致法拉第旋光效应的加速度传感器 Download PDF

Info

Publication number
CN111830283B
CN111830283B CN202010722797.1A CN202010722797A CN111830283B CN 111830283 B CN111830283 B CN 111830283B CN 202010722797 A CN202010722797 A CN 202010722797A CN 111830283 B CN111830283 B CN 111830283B
Authority
CN
China
Prior art keywords
optical
magneto
magnetic field
mass block
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010722797.1A
Other languages
English (en)
Other versions
CN111830283A (zh
Inventor
郭浩
刘俊
唐军
武亮伟
马宗敏
李中豪
温焕飞
石云波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202010722797.1A priority Critical patent/CN111830283B/zh
Publication of CN111830283A publication Critical patent/CN111830283A/zh
Application granted granted Critical
Publication of CN111830283B publication Critical patent/CN111830283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/105Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于磁致法拉第旋光效应的加速度传感器,具体为:双端固支悬臂梁质量块结构8的中心质量块上嵌入磁性薄膜7;悬臂梁质量块结构上方设有玻璃基底6,玻璃基底表面沉积有磁光晶体5,磁光晶体一端通过光纤Ⅰ4a连接起偏器3,起偏器的入射光方向设有平凸镜Ⅰ2a,平凸镜Ⅰ的入射光方向设有激光器1;磁光晶体另一端通过光纤Ⅱ4b连接弹光调制器10,弹光调制器的出射光方向依次设有检偏器11、平凸镜Ⅱ2b、光电探测器12、前置放大器13、锁相放大器14。当有加速度信号时,诱导磁性薄膜磁场变化,从而引起磁光晶体线偏振光发生旋光效应,产生旋光角,通过检测加速度诱导的磁致旋光角,实现对微弱加速度参数高精度测量。

Description

一种基于磁致法拉第旋光效应的加速度传感器
技术领域
本发明涉及加速度传感器技术领域,具体为一种基于磁致法拉第旋光效应的加速度传感器。
背景技术
加速度传感器作为一种位置和速度测量的惯性传感器件,在惯性导航、空间引力波探测、卫星重力梯度测量、高轨卫星精密定轨和导航、航天器微重力环境监测等领域中起着至关重要的作用。加速度计是武器装备的“眼睛”,决定目标打击的精准度和毁伤威力,也是卫星、航天器的“大脑”核心,可以实时监测飞行轨道。因此,加速度传感器性能是标志着国防军事实力,也是世界各国争相追逐的核心技术之一。
目前,加速度传感方法主要有MEMS式、光学式以及冷原子干涉式。MEMS加速度传感器灵敏度低、热稳定性差,制约其精度进一步提高。冷原子干涉式加速度传感器精度高,但其复杂而庞大的光学检测系统成为其工程化应用的主要技术瓶颈。微光学加速度传感技术(MOEMS)兼顾了MEMS技术的微型化、低成本和光学式高精度检测优点,成为加速度传感器发展的主要方向之一。目前高灵敏度的微光学加速度计主要采用衍射相位光栅检测方法,但受限于纳米量级的光栅加工工艺难,侧壁粗糙度大,光栅周期不均匀等技术难题,制约着微光学加速度计灵敏度进一步提升,以及批量化、低成本批量化生产应用。近年来,随着光量子精密测量技术的不断发展,基于法拉第旋光效应的旋光角检测精度不断提升,以及高维尔德(Verdet)常数的磁光晶体的合成,为微光学传感技术检测提供了新的测量方法。本发明利用法拉第磁致旋光效应,提出一种基于加速度诱导磁致旋光效应的新原理高精度微光学加速度计技术。
发明内容
本发明目的是提供一种基于磁致法拉第旋光效应的加速度传感器,利用磁性薄膜嵌入式加速度计悬臂梁质量块结构,当有加速度信号时,诱导磁性薄膜磁场变化,从而引起磁光晶体线偏振光发生旋光效应,产生旋光角,通过测量旋光角来实现对加速度信号的高精度测量。
本发明是采用如下技术方案实现的:
一种基于磁致法拉第旋光效应的加速度传感器,包括双端固支悬臂梁质量块结构,所述双端固支悬臂梁质量块结构的中心质量块上嵌入磁性薄膜;所述双端固支悬臂梁质量块结构上方设有玻璃基底,所述玻璃基底表面沉积有磁光晶体,所述磁光晶体一端通过光纤Ⅰ连接起偏器,所述起偏器的入射光方向设有平凸镜Ⅰ,所述平凸镜Ⅰ的入射光方向设有激光器;所述磁光晶体另一端通过光纤Ⅱ连接弹光调制器,所述弹光调制器的出射光方向依次设有检偏器、平凸镜Ⅱ、光电探测器、前置放大器、锁相放大器。
工作时,激光器产生的激光通过平凸镜、起偏器后,通过光纤垂直入射进入磁光晶体中,偏振光会在内部分解为左旋圆和右旋圆两束偏振光,当提供加速度运动信号时,引起质量块上磁性薄膜结构的磁场变化,磁光晶体材料变为各向异性介质,偏振光中的左旋圆偏振光部分和右旋圆偏振光部分在各向异性介质中传播时具有不同的传输特性,导致出射线偏振光的振动方向相对入射线偏振光发生改变,引起旋光效应,产生法拉第旋光角。出射的偏振光沿光路进入弹光调制器调制后,通过检偏器、平凸镜,最终被光电探测器接收。在弱光检测中,光经过光电探测器转换为电信号,此信号极其微弱。要实现光电转换,并有效地利用这种信号,必须对光电器件采取适当偏置,然后再将已转换的电信号进行放大处理。即由前置放大器对信号进行放大处理,同时以弹光调制器驱动频率为参考,通过数字锁相放大器中得到倍频信号就可求得被测法拉第旋光角的角度,对法拉第旋转角进行解算和分析,测试得到加速度信息。
本发明设计合理,采用磁光晶体来进行加速度敏感测量,利用加速度诱导磁性薄膜结构的磁场变化,产生磁致法拉第旋光效应。通过光纤耦合输入与输出,并结合弹光调制旋光角测量方法实现信息测量,系统简单、易集成。相比于目前微光学加速度计光学衍射、干涉等光路系统、光学仪器、光学元器件测试系统,具有集成化、小型化的优点,具有很好的实际应用价值。
附图说明
图1表示基于磁致法拉第旋光效应加速度传感器的工作流程图。
图2表示基于磁致法拉第旋光效应加速度传感器的结构示意图。
图3表示磁性薄膜的制备过程图。
图4表示双端固支悬臂梁质量块结构的加工工艺流程图。
图中:1-激光器,2a-平凸镜Ⅰ,2b-平凸镜Ⅱ,3-起偏器,4a-光纤Ⅰ,4b-光纤Ⅱ,5-磁光晶体,6-玻璃基底,7-磁性薄膜,8-双端固支悬臂梁质量块结构,9-提供加速度信号的装置,10-弹光调制器,11-检偏器,12-光电探测器,13-前置放大器,14-锁相放大器。
具体实施方式
下面结合附图对本发明的具体实施例进行详细说明。
一种基于磁致法拉第旋光效应的加速度传感器,包括激光器、平凸镜、起偏器、光纤、磁性薄膜、双端固支悬臂梁质量块结构、磁光晶体、玻璃基底、弹光调制器、检偏器、光电探测器、前置放大器、锁相放大器等。
具体如图2所示,双端固支悬臂梁质量块结构8的中心质量块上嵌入磁性薄膜7;双端固支悬臂梁质量块结构8上方设有玻璃基底6,玻璃基底6表面沉积有磁光晶体5,磁光晶体5一端通过光纤Ⅰ4a连接起偏器3,起偏器3的入射光方向设有平凸镜Ⅰ2a,平凸镜Ⅰ2a的入射光方向设有激光器1;磁光晶体5另一端通过光纤Ⅱ4b连接弹光调制器10,弹光调制器10的出射光方向依次设有检偏器11、平凸镜Ⅱ2b、光电探测器12、前置放大器13、锁相放大器14。
对于磁光晶体,当没有外界磁场时,线偏振光沿磁光晶体介质入射后,在介质内部分解为左旋圆和右旋圆两束偏振光,且具有相同的传输特性;当存在外界磁场时,磁光晶体介质层表现出各向异性,导致线偏振光中的左旋圆偏振光部分和右旋圆偏振光部分在各向异性介质中传播时不再具有相同的传输特性,出射线偏振光的振动方向相对入射线偏振光发生改变,从而产生法拉第旋光角。出射线偏振光先后通过弹光调制器、检偏器、平凸镜后,被光电探测器接收,将光信号转换为电信号。转换的电信号由前置放大器放大后,运用锁相放大器技术处理,以弹光调制器的二倍频作为参考信号,通过分析调制信号的主要倍频成分幅值的变化来获得法拉第旋光角,最后对法拉第旋光角进行解算和分析,测试得到加速度信息。
本发明所述的基于磁致法拉第旋光效应的加速度传感器,采用磁光晶体来进行加速度敏感。当线偏振光入射至一维磁光晶体中之后,在外磁场作用下磁光介质层表现出各向异性,导致出射线偏振光的振动方向相对入射线偏振光发生改变,从而引起磁光晶体线偏振光发生法拉第旋光效应,产生旋光角。根据这一特性,本发明利用微纳加工工艺制备磁性薄膜嵌入式加速度计悬臂梁结构,当有加速度信号时,诱导磁性薄膜磁场变化,从而引起磁光晶体线偏振光发生旋光效应,产生旋光角,通过检测加速度诱导的磁致旋光角,来实现对微弱加速度参数的高精度测量。
具体实施时,磁性薄膜为钕铁硼薄膜,采用分子束外延技术在Si基地上生长;制备如图3所示,首先在Si基底上采用MBE方式外延生长一层2μm厚的钕铁硼薄膜;随后采用图像化光刻技术和RIE刻蚀技术制备钕铁硼微结构;对微结构施加B1大小的磁场强度;重复生长一层2μm厚的钕铁硼薄膜,光刻并RIE刻蚀微结构,并对微结构施加B2大小的磁场强度,B2小于B1;采用相同的工艺过程,并对加工的微结构施加B3大小的磁场强度,B3小于B2;重复之前工艺过程,得到最后的微结构,同时对加工后的微结构施加B4大小的磁场强度,B4小于B3;即完成微纳米钕铁硼磁性薄膜的制备。该磁性薄膜使用微加工工艺嵌入双端固支悬臂梁质量块结构的中心质量块上。
双端固支悬臂梁质量块结构的加工工艺如图4所示,首先在硅衬底上外延生长钕铁硼薄,采取方法对正面器件加以保护,在背面适当布局的掩模下,用湿法腐蚀和干法深刻蚀相结合的办法,从背面成型并释放梁和质量块结构,最终制备出双端固支悬臂梁质量块结构。
光纤采用光纤端面耦合方法实现磁光晶体与光纤进行端面对准连接。
磁光晶体为YIG磁光晶体,首先采用化学气相淀积法在玻璃基底上生长YIG磁光材料薄膜,并利用硬掩膜方法制备脊型磁光晶体波导结构。玻璃基底置于悬臂梁质量块结构之上。
弹光调制器通过光纤接收出射偏振光,经过检偏器、平凸镜,最后由光电探测器接收;前置放大器接收光电探测器的信号并放大后接入锁相放大器。
加速度的测量方法步骤如下:
(1)、激光器产生的激光通过平凸镜、起偏器后,通过光纤端面耦合的方法与磁光晶体连接,线偏振激光垂直入射进入YIG磁光晶体中。
(2)、当提供微小加速度信号后,即固定在转台的悬臂梁质量块和磁性薄膜产生位移引起磁性薄膜周围磁场变化,进而引起磁光晶体线偏振光发生法拉第旋光效应,产生旋光角。
(3)、出射线偏振光通过光纤耦合接入弹光调制器(PEM)调制后,透过PEM的光经过检偏器、平凸镜后,被光电探测器探测,光电探测器将光信号转换为电信号,并利用前置放大器将光电探测器输出的交流信号进行放大。选择弹光调制器的二倍频作为研究对象,运用锁相放大器技术处理,通过分析调制信号的主要倍频成分幅值的变化来获得法拉第旋转角的大小。
实施时,将双端固支悬臂梁质量块结构8位于提供加速度信号的装置9上,可以提 供微小的轴向加速度信号。激光器1发出的激光经过平凸镜Ⅰ2a后通过起偏器3,进而通过光 纤4a接入磁光晶体5中。当有加速度信号时,即悬臂梁质量块结构8和磁性薄膜7产生位移, 从而引起磁薄膜7周围磁场变化,导致磁光晶体5中发生法拉第旋光效应,产生旋光角。将出 射偏振光通过弹光调制器10调制后,通过检偏器11、平凸镜Ⅱ2b后进入光电探测器12。光电 探测器12将光信号转换为电信号,由前置放大器13放大后,运用锁相放大器14技术处理得 到光学旋光角,最后根据旋光角与磁场的公式θ=VBL,从而得到磁场B的大小,其中V为维尔 德常数,L为光在晶体中传播的距离。当加速度信号使磁性薄膜磁场变化时,根据公式F=ma= kx,其中k为悬臂梁的弹性系数,x为悬臂梁质量块的弹性形变,而磁场B=xS,S为磁场梯度变 化斜率。再基于旋光角与磁场公式,建立了加速度计量程解算的模型,得到了加速度与旋光 角的关系式:
Figure 343914DEST_PATH_IMAGE001
,通过解析计算得到加速度信息。
而且,本发明的特点在于对微小加速度信号的测量,有助于提高加速度检测精度。具体实验时,针对1μg的加速度信息检测,并利用现阶段旋光角10-8rad的测量精度,根据旋光角与磁场的公式θ=VBL,其中V为维尔德常数,L为光在磁光晶体中传播的距离。结合本发明使用的磁光晶体物理参数维尔德常数V和磁光晶体长度L,通过旋光角θ的变化,得到磁场B的变化。同时再根据B=xS,S为磁场梯度变化斜率,从而得到1μg加速度信息下,质量块的位移大小x,并以此指标设计双端悬臂梁质量块结构,以此建立起旋光角与加速度的线性比例关系,从而通过检测的旋光角计算求得加速度信息,实现基于法拉第旋光效应的加速度传感器对微小加速度的检测。
以上仅为本发明的具体实施例,但并不局限于此。任何以本发明为基础解决基本相同的技术问题,或实现基本相同的技术效果,所作出地简单变化、等同替换或者修饰等,均属于本发明的保护范围内。

Claims (1)

1.一种基于磁致法拉第旋光效应的加速度传感器,其特征在于:包括双端固支悬臂梁质量块结构(8),所述双端固支悬臂梁质量块结构(8)的中心质量块上嵌入磁性薄膜(7);所述双端固支悬臂梁质量块结构(8)上方设有玻璃基底(6),所述玻璃基底(6)表面沉积有磁光晶体(5),所述磁光晶体(5)一端通过光纤Ⅰ(4a)连接起偏器(3),所述起偏器(3)的入射光方向设有平凸镜Ⅰ(2a),所述平凸镜Ⅰ(2a)的入射光方向设有激光器(1);所述磁光晶体(5)另一端通过光纤Ⅱ(4b)连接弹光调制器(10),所述弹光调制器(10)的出射光方向依次设有检偏器(11)、平凸镜Ⅱ(2b)、光电探测器(12)、前置放大器(13)、锁相放大器(14);
其中,磁性薄膜为钕铁硼薄膜,采用分子束外延技术在Si基底上生长;首先在Si基底上采用MBE方式外延生长一层2μm厚的钕铁硼薄膜;随后采用图像化光刻技术和RIE刻蚀技术制备出位于Si基底上两边部分的钕铁硼微结构,对该两边部分的微结构施加B1大小的磁场强度,磁场方向向左;在位于Si基底上中间部分重复生长一层2μm厚的钕铁硼薄膜,光刻并RIE刻蚀微结构,并对中间部分的微结构施加B2大小的磁场强度,B2小于B1,磁场方向向右;采用相同的工艺过程,在位于Si基底上左边部分和中间部分之间加工微结构,并对加工的微结构施加B3大小的磁场强度,B3小于B2,磁场方向向下;重复之前工艺过程,在位于Si基底上右边部分和中间部分之间加工微结构,得到最后的微结构,同时对加工后的微结构施加B4大小的磁场强度,B4小于B3,磁场方向向上;即完成微纳米钕铁硼磁性薄膜的制备;该磁性薄膜使用微加工工艺嵌入双端固支悬臂梁质量块结构的中心质量块上,对正面器件加以保护,在背面掩模下,采用湿法腐蚀和干法深刻蚀相结合,从背面成型并释放梁和质量块结构,最终制备出双端固支悬臂梁质量块结构;
磁光晶体为YIG磁光晶体,首先采用化学气相淀积法在玻璃基底上生长YIG磁光材料薄膜,并利用硬掩膜方法制备脊型磁光晶体波导结构;
将双端固支悬臂梁质量块结构(8)位于提供加速度信号的装置(9)上,提供轴向加速度信号;激光器(1)发出的激光经过平凸镜Ⅰ(2a)后通过起偏器(3),进而通过光纤Ⅰ (4a)接入磁光晶体(5)中;当有加速度信号时,即双端固支悬臂梁质量块结构(8)和磁性薄膜(7)产生位移,从而引起磁性 薄膜(7)周围磁场变化,导致磁光晶体(5)中发生法拉第旋光效应,产生旋光角;将出射偏振光通过弹光调制器(10)调制后,通过检偏器(11)、平凸镜Ⅱ(2b)后进入光电探测器(12);光电探测器(12)将光信号转换为电信号,由前置放大器(13)放大后,运用锁相放大器(14)处理得到光学旋光角,最后根据旋光角与磁场的公式θ=VBL,从而得到磁场B的大小,其中V为维尔德常数,L为光在磁光晶体中传播的距离;当加速度信号使磁性薄膜磁场变化时,根据公式F=ma=kx,其中k为悬臂梁的弹性系数,x为悬臂梁质量块的弹性形变,而磁场B=xS,S为磁场梯度变化斜率,再基于旋光角与磁场公式,建立了加速度计量程解算的模型,得到加速度与旋光角的关系式:a=θk/mSVL,通过解析计算得到加速度信息。
CN202010722797.1A 2020-07-24 2020-07-24 一种基于磁致法拉第旋光效应的加速度传感器 Active CN111830283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010722797.1A CN111830283B (zh) 2020-07-24 2020-07-24 一种基于磁致法拉第旋光效应的加速度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010722797.1A CN111830283B (zh) 2020-07-24 2020-07-24 一种基于磁致法拉第旋光效应的加速度传感器

Publications (2)

Publication Number Publication Date
CN111830283A CN111830283A (zh) 2020-10-27
CN111830283B true CN111830283B (zh) 2022-08-16

Family

ID=72924808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010722797.1A Active CN111830283B (zh) 2020-07-24 2020-07-24 一种基于磁致法拉第旋光效应的加速度传感器

Country Status (1)

Country Link
CN (1) CN111830283B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991412A (zh) * 2021-09-15 2022-01-28 中国科学院福建物质结构研究所 一种基于yig磁光晶体的中红外调q激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964750A (zh) * 2015-06-25 2015-10-07 中北大学 一种弹光调制测旋光的装置及方法
CN105136681A (zh) * 2015-08-31 2015-12-09 中北大学 一种弹光调制和电光调制级联测微小线性双折射的装置
CN106940387A (zh) * 2017-04-10 2017-07-11 三峡大学 一种迈克尔逊干涉式光纤加速度传感器
WO2019046212A1 (en) * 2017-08-28 2019-03-07 Lawrence Livermore National Security, Llc GAS COOLED FARADAY ROTATOR AND METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864869A (en) * 1988-01-04 1989-09-12 General Electric Co. Flowmeter with faraday effect optical switch readout
US7183765B2 (en) * 2003-06-26 2007-02-27 The Regents Of The University Of California Micro-position sensor using faraday effect
EP1669769A1 (en) * 2004-12-13 2006-06-14 Services Pétroliers Schlumberger A magneto-optical sensor
CN101819849A (zh) * 2010-05-12 2010-09-01 中国科学院苏州纳米技术与纳米仿生研究所 一种强磁性薄膜介质及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964750A (zh) * 2015-06-25 2015-10-07 中北大学 一种弹光调制测旋光的装置及方法
CN105136681A (zh) * 2015-08-31 2015-12-09 中北大学 一种弹光调制和电光调制级联测微小线性双折射的装置
CN106940387A (zh) * 2017-04-10 2017-07-11 三峡大学 一种迈克尔逊干涉式光纤加速度传感器
WO2019046212A1 (en) * 2017-08-28 2019-03-07 Lawrence Livermore National Security, Llc GAS COOLED FARADAY ROTATOR AND METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于FPGA数字锁相实现的弹光调制测旋光技术研究;吕润发;《万方学位论文库》;20170829;第6-15页 *

Also Published As

Publication number Publication date
CN111830283A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN110850497B (zh) 基于原子干涉效应的绝对重力仪、陀螺仪敏感器及方法
CN108519565B (zh) 基于量子弱测量的弱磁场强度测量分析仪及方法
CN100468044C (zh) 半导体材料残余应力的测试装置及方法
CN101464151B (zh) 双信号组合调制的微型谐振式光学陀螺的检测装置及方法
CN102721827B (zh) 一种光纤加速度计
CN111830283B (zh) 一种基于磁致法拉第旋光效应的加速度传感器
CN103439530B (zh) 光学加速度计
Wu et al. MOEMS accelerometer based on microfiber knot resonator
CN111735987B (zh) 一种基于磁旋光微光学加速度计的加速度信息闭环检测系统
US10018686B1 (en) Ultra-low noise sensor for magnetic fields
CN111060747A (zh) 一种基于电子自旋的高灵敏核自旋进动检测方法
CN102253001B (zh) 多普勒振镜正弦调制多光束激光外差二次谐波测量磁致伸缩系数的装置及方法
Fluitman et al. Optical waveguide sensors
CN113310483A (zh) 一种数字闭环光纤陀螺本征频率实时跟踪装置及方法
CN1228609C (zh) 无源谐振型光纤陀螺拍频检测方法
Wu et al. A MOEMS accelerometer based on the magneto-optical rotation effect
Wang et al. Bio-inspired fiber attitude sensor for direction-distinguishable pitching and rolling sensing
CN111735988B (zh) 一种基于磁旋光微光学加速度计磁、热噪声双路差分抑制系统
US20050029436A1 (en) Micro-position sensor using faraday effect
Song et al. Optical waveguide-type laser interference velocimeter for measurement of ultra-low speeds
CN113466929A (zh) 一种基于量子弱值放大的三分量光纤式地震加速度计
CN102053283B (zh) 一种白光干涉型光纤重力仪
Zheng A study of residual stresses in thin anisotropic (silicon) plates
CN112305467B (zh) 基于碲酸盐光纤法拉第旋转效应的磁场传感装置及其使法
Lin et al. Sensitivity Enhancement of Ultrahigh-Order Mode Based Magnetic Field Sensor via Vernier Effect and Coarse Wavelength Sampling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant