CN111829665A - 一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质 - Google Patents

一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质 Download PDF

Info

Publication number
CN111829665A
CN111829665A CN202010686793.2A CN202010686793A CN111829665A CN 111829665 A CN111829665 A CN 111829665A CN 202010686793 A CN202010686793 A CN 202010686793A CN 111829665 A CN111829665 A CN 111829665A
Authority
CN
China
Prior art keywords
temperature
value
forehead
sensor
human body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010686793.2A
Other languages
English (en)
Inventor
陈海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Automatic Driving Research Institute Co ltd
Original Assignee
Shandong Automatic Driving Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Automatic Driving Research Institute Co ltd filed Critical Shandong Automatic Driving Research Institute Co ltd
Priority to CN202010686793.2A priority Critical patent/CN111829665A/zh
Publication of CN111829665A publication Critical patent/CN111829665A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本发明公开了一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质。包括:计算n个有效额温的样本平均值;对传感器参数标定并测算相对温度;采集第n+1个的传感器数值并计算实际体温;判断传感器数值是否在有效范围内;将在有效范围内的有效值计入样本并剔除最早样本动态更新样本库。发明提供的方法能够有效解决室外、远距离进行红外体温探测的难题,基于将人的额头作为虚拟黑体,对标的是腋下温度,额头传递的体温只要真实反映腋温的相对变化即可进行测温。避开了腋温与额温间复杂的数学关系;同时用于测算的样本是动态的、分时段存储的,可以随着环境的变化不断重新标定温度,进而使得测量更加准确。

Description

一种基于用人体作为虚拟黑体的体温测量的方法、装置及存 储介质
技术领域
本发明涉及计算机视觉技术领域,涉及一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质。
背景技术
红外热成像技术广泛应用于测量固体表面的温度,具有非接触测量、响应快、测温范围宽、灵敏度高以及空间分辨率高等优点,因此已经在安全预测、医疗卫生、航空航天、无损探伤、质量监测等领域得到了广泛的应用。
新冠疫情爆发,而疫情感染人群最普遍的特征就是发热,因此对于不同场所人群体温的测量与筛查就显得尤为重要。红外热成像技术因其具有的非接触、响应速度快、操作简便等特点,被相关单位作为机场、港口、车站等公共场所排查患者和疑似病人的重要工具。利用红外热成像技术研发测量人体体温的产品,包括前沿公司浙江大华技术股份有限公司和海康威视做出的产品都主要采用以下两种方案:
(1)绝对值温度标定法,也可称为具体参数标定法。由公式(3)可以得知传感器测得的电压值会受到被测物体本身的温度、大气温度、环境温度、被测物体与传感器间的距离,光照强度等影响,因此该种方案采取的方式是:选择在实验室中对传感器的电压值与温度值不断进行标定,因为处在室温恒定的实验室中,能够有效屏蔽掉除被测物体本身温度以外其他的影响因素,即仅将被测物体本身温度作为变量;标定的过程采用黑体作为参照物,通过不断的改变黑体的温度、距离等相关参数,从而获得传感器电压值与温度间的关系,以达到在室内温度近似为25℃的环境下,实现对人体额头温度绝对值的测量,再通过额温和腋温的转换公式,得出人体的温度。该种方法不需要在测量现场布设黑体,将标定好的仪器直接在测量现场使用。如图1所示。
(2)现场标定测量法。该方法基于测量人体额头温度和黑体之间的相对温度来实现对人体额头温度的测量,也就是说黑体的温度是恒定的,加上差值,得到人体额头的温度。再通过额温和腋温的转换公式,得出人体的温度。如图2所示。
虽然这两种方案在一定环境下能够测得人体体温,但仍存在以下的缺陷:
1.方案(1)是通过在试验室标定的,试验室的各种参数是比较稳定的,而室外的环境变化很快,环境温度、大气温度、照度都会随时间不停的变化着。因此该方案的产品不能够实现室外的使用。
2.方案(2)虽然通过在测量现场使用黑体,比在试验室使用黑体标定要准确一些,因为在一定程度上解决了环境参数(如大气温度、环境温度、光照度等)的影响,精度较方案(1)有所提升,但黑体和人体是有很大差别的,首先是黑体和人体的辐射率不同,其次人的额头不仅有温度的辐射还有对红外线的反射。还有人体存在热对流、热交换等而黑体没有,因此将黑体作为参照物或在实际应用中通过黑体来标定人体温度,所测得的结果准确度有限。
3.方案(1)和方案(2)都没有办法实现远距离测温。对于方案(1)而言,对于远距离的标定,由公式(3)也可以得知传感器电压值与距离的二次方成反比,因此距离越远测得的精度也就较低。方案(2)利用黑体,而黑体本身体辐射表面积很小,若距离太远热像仪无法捕捉到黑体的真实温度则也会使得温度测量不够精准。
4.从医学角度而言,测量人体体温时一般测量的是腋温。上述两种方案都是通过额温来进行对标,额温跟腋温求得的对应曲线也是试验室环境下的,而额头温度在室外不仅包括自身温度,还包括反射外部光线、风力对温度的影响等,所以在室外是没有办法找到额温与腋温间对应的数学关系,因此测得的温度也是不准确的。
综上所述,这两种方案是没有办法在室外和远距离的场景下进行人体体温的精确测量的,而在疫情防控过程中,室外以及远距离这两种场景是大量存在的。
发明内容
1、本发明的目的
本发明为了解决无法室外、远距离进行红外体温探测、随着环境的变化温度标定不精确,腋温与额温间需要复杂的数学关系的问题,而提出了一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质。
2、本发明所采用的技术方案
本发明公开了一种基于用人体作为虚拟黑体的体温测量的方法,包括:
计算n个有效额温的样本平均值;
对传感器参数标定并测算相对温度;
采集第n+1个的传感器数值并计算实际体温;
判断传感器数值是否在有效范围内;
将在有效范围内的有效值计入样本并剔除最早样本动态更新样本库。
更进一步,采用热成像传感器采集样本为n个的有效额温对应于体温的平均值。
更进一步,采集第n+1个额温,该额头温度首先得到读取传感器电压数值与标定参数的差值,再通过相对温度计算出最后的结果完成传感器参数标定。
更进一步,测得传感器数值有效范围内,加入样本库中并按照时间段进行分隔。
更进一步,有效额温的样本平均值为动态值。
更进一步,采集第n+1个额温跟有效范围设定的阈值进行比较,超出动态阈值x℃,并大于正常体温温度范围m℃的样本,则视为异常不存入样本库。体温超出的人员为疑似发烧人员进行处置,达到高温人员的筛查目的。
更进一步,TC为芯片实际测量的温度值,TS为运算结果输出的传感器显示的温度值,
Figure BDA0002587852470000031
为实际测量后的平均值,设K为动态系数,则存在TS=TC+K;人体的实际平均温度Tt,样本实际测量值TC[n]={TC[1],TC[2]......TC[n]},求样本实际输出值TS[n]={TS[1],TS[2]......TS[n]};
步骤1、将TC数组排序,去掉一个最大值,去掉一个最小值,求样本平均值得
Figure BDA0002587852470000032
步骤2、
Figure BDA0002587852470000033
步骤3、TS=TC+K。
本发明提出了一种基于用人体作为虚拟黑体的体温测量系统,包括存储器和处理器,存储器存储有计算机程序,所述处理器执行所述计算机程序时实现所述的方法步骤。
本发明公开了一种计算机可度存储介质,其上存储有计算机程序,所述的计算机程序被处理器执行时实现如权利要求1-7任一所述的方法步骤。
3、本发明所采用的有益效果
(1)将人体额头作为虚拟黑体,以腋温为基准点,来进行传感器数值的标定。在一定的样本数下,人群的腋温精准的指向36.5℃。直接对标腋温进行测量,因此更加接近于真实温度,测量的精度较高。
(2)将人体额温的标定过程是动态的、分时段存储的。样本是实时变化的且样本库不断更新,以适应周边环境的变化。随着样本量的不断增加所测得的人体温度精度也不断提高。
(3)采用人体额头来进行远距离标定,能够实现远距离测温。
(4)采用机器学习技术。分时段不断存储的样本库与当前环境的大气温度、环境温度、光照强度等参数是一一对应的,因此当处于人流量不连续的时段,可以采用机器学习技术来根据当前参数选择相同参数点的样本库来标定温度。
综上,本发明提供的方法能够有效解决室外、远距离进行红外体温探测的难题,基于将人的额头作为虚拟黑体,对标的是腋下温度,额头传递的体温只要真实反映腋温的相对变化即可进行测温。避开了腋温与额温间复杂的数学关系;同时用于测算的样本是动态的、分时段存储的,可以随着环境的变化不断重新标定温度,进而使得测量更加准确。
附图说明
图1为现有技术一示意图;
图2为现有技术二示意图;
图3为本发明流程图;
图4为检测界面示意图。
具体实施方式
下面结合本发明实例中的附图,对本发明实例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域技术人员在没有做创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实例作进一步地详细描述。
实施例:
红外热成像测温通过利用能够测量红外线辐射强度的传感器,将接收到的红外波段的热辐射能量转换为电信号,经过放大、整型,模数转换后成为数字信号,在显示器上通过图像显示出来;传感器的电压值和温度值成正线性相关,通过简单的计算即可转换为温度值。红外热成像系统显示的图像中读出的温度是物体表面的辐射温度,并不是物体内部的真实温度。目前使用的红外热成像仪,需要先用高精度黑体对热像仪进行标定,标定的过程就是找出黑体温度与光电转换器件输出电压的对应关系,从而利用标定好的数据来确定被测物体的表面温度。所谓黑体,就是在任何温度下能吸收任何波长辐射的物体。黑体的辐射率为1,黑体的反射率为0。黑体表面单位面积上所发射的各种波长的总辐射功率与其热力学温度T的四次方成正比:
Eb=σT4 (1)
黑体的内外部温度是一致的,真实温度可由显示面板读出。
红外测温技术的理论依据如下:
Eλ=A0d-2ελL(T0)+τ(1-αλ)L(Tu)+εL(Ta)] (2)
其中,ελ为表面发射率,αλ为表面吸收率,τ为大气的光谱透射率,ε为大气发射率,T0为被测物体表面温度,Tu为环境温度,Ta为大气温度,d为该目标到测量仪器之间的距离,L为光照强度。通常一定条件下,A0d-2为一个常值,A0为热像仪最小空间张角所对应的目标的可视面积。热像仪通常工作在某一个很窄的波段范围内,本发明采用的为8~14μm之间,ελ、αλ、τ通常可认为与λ无关,得到热像仪的响应电压为:
VS=K{τa[εf(T0)+(1-α)f(Tu)]+εaf(Ta)} (3)
其中K=ARA0d-2
Figure BDA0002587852470000051
AR为热像仪透镜的面积。依据普朗克辐射定量得到:
Figure BDA0002587852470000052
被测表面真实温度的计算公式为公式(5)所示:
Figure BDA0002587852470000053
其中,n=4.09。
由以上公式的推到可以看出,热像仪(传感器)所测得的电压值与温度时间是相互对应的,可以反映被测物体的温度。
本发明通过对n个正常体温人员的额温进行测量,并求出其传感器电压的平均值,该电压的平均值对应人体体温为(36.5℃),然后对比第n+1个人员,如果第n+1个人员的额头电压值超过了前n个,电压值对应的相对温度超出幅度大于医学规定的温度范围(例如37.3℃)便认为第n+1个人员体温高温异常。如果第n+1个人员的传感器电压值,对应体温在正常体温的范围内(如36℃—37℃),该n+1个人员的额温值进入样本,顶替最早的第1个样本,实现样本的动态变化。这样标定值随着环境的变化不断的变化,确保了测温的精度。
本发明采用机器学习技术,进行对人体额温进行大样本采样作为标定值来对传感器参数进行校准,通过测量额温的相对温度,来体现腋温(36.5℃),并且样本是动态、分时段存储的,随着样本的不断增加,温度测量的精度也在逐渐变高。该方案基于两个已知条件:
1)人体体温绝大多数分布在36-37℃,服从正态分布
2)样本体温异常者是小概率事件。
具体实现方法如下:
1.进行对额温的大样本采样,并对标腋温。实际测量n个人的体温,用热成像传感器采集他们的额温,通过在当前环境下测量n个人的额头温度,并对其计算平均值,该平均值对应的传感器电压值,即为36.5℃的腋温值。从而实现了传感器的现场标定工作。
2.第n+1个人进入热像仪视野(可以是远距离)后,测量其额温,该额头温度首先得到读取传感器电压数值与标定参数的差值,其次再通过相对温度计算出最后的结果。
3.样本是动态的,正常体温人员的额温参数值进入样本库,只要测得体温是有效的(即不发烧或温度没有过低),就加入样本库中并按照时间段进行分隔,进而不断的用人体来对温度进行标定,测量人体温度的精度也会越来越准确,整体是一个动态学习的过程。
4.当某一时间段有较少人经过时,该时间段与前一时间段相比环境会发生一定程度的改变。因此基于机器学习技术,在样本库中调用与此时间段、环境最接近的样本库来标定传感器,以此来提高测量的精度。
流程如图3所示:算n个有效额温的样本平均值;对传感器参数标定并测算相对温度;采集第n+1个的传感器数值并计算实际体温;判断传感器数值是否在有效范围内;将在有效范围内的有效值计入样本并剔除最早样本动态更新样本库。
(一)算法成立的条件
1.已知:通常情况下对于物理量的测量,其测量结果是正态分布的;
2.已知:小样本取样进行动态阈值的计算中,异常样本量不能大于10%。(医院和发热门诊不适用)
3.在实际使用中需要在同等距离的条件下算法成立。算法原理及程序框架
抽取小样本量,在同一距离,n人(样本数视实验结果可调整)为一组。测量出n人的体温,去掉最高值与最低值,算出数学平均值,作为当前的阈值,注意这里的平均值是一个动态的值,是不断变化的。后面的测量样本跟当前阈值进行比较,超出动态阈值1℃,并大于正常体温温度范围30%(0.3℃)的样本,则视为异常。
(二)数学公式
TC=芯片实际测量的温度值(电压值),TS=运算结果输出的温度值(传感器显示的温度值),
Figure BDA0002587852470000071
设K为动态系数,则存在TS=TC+K。
已知:人体的实际平均温度Tt=36.5℃,样本实际测量值
TC[n]={TC[1],TC[2]......TC[n]},求样本实际输出值TS[n]={TS[1],TS[2]......TS[n]}。
(三)算法
1.将TC数组排序,去掉一个最大值,去掉一个最小值,求算数平均值得
Figure BDA0002587852470000072
2.
Figure BDA0002587852470000073
3.TS=TC+K。
将本发明布设在某一室外公共场所,挑选n个体温正常的人作为大样本(已经提前测试过腋温,体温正常)在热像仪前进行体温测试,将显示器度数一一记录后计算其平均值,该值即为与36.5℃标定好的参数值。
随后,只要人开始走动就进行采样读数,基于相对温度的原理来计算出一个个样本的实际温度,随着样本数量的不断增多以及设定好的时间段逐渐建立样本库。其中,超出动态阈值1℃并大于正常体温温度范围30%(0.3℃)的样本,以及体温过低者视为异常,不计入样本库中。样本的数量越多,测量的温度越准确。
若存在长时间无人经过的情况,环境温度有可能会发生变化,此时可以调取该时间段的其他样本库来进行标定并测量计算,从而弥补可能存在的动态不连续过程。本发明的产品通过了公安部三所的计量检测,如图4所示,在室外环境下,远距离(13米),测温精度±0.4摄氏度,并且可在几秒中高效率完成,完全满足国标的要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种基于用人体作为虚拟黑体的体温测量的方法,其特征在于包括:
计算n个有效额温的样本平均值;
对传感器参数标定并测算相对温度;
采集第n+1个的传感器数值并计算实际体温;
判断传感器数值是否在有效范围内;
将在有效范围内的有效值计入样本并剔除最早样本动态更新样本库。
2.根据权利要求1所述的基于用人体作为虚拟黑体的体温测量的方法,其特征在于:采用热成像传感器采集样本为n个的有效额温对应于体温的平均值。
3.根据权利要求1所述的基于用人体作为虚拟黑体的体温测量的方法,其特征在于:采集第n+1个额温,该额温首先得到读取传感器电压数值与标定参数的差值,再通过相对温度计算出最后的结果完成传感器参数标定。
4.根据权利要求1或3所述的基于用人体作为虚拟黑体的体温测量的方法,其特征在于:测得传感器数值有效范围内,加入样本库中并按照时间段进行分隔。
5.根据权利要求1所述的基于用人体作为虚拟黑体的体温测量的方法,其特征在于:有效额温的样本平均值为动态值。
6.根据权利要求1或5所述的基于用人体作为虚拟黑体的体温测量的方法,其特征在于:采集第n+1个额温跟有效范围设定的阈值进行比较,超出动态阈值x℃,并大于正常体温温度范围m℃的样本,则视为异常不存入样本库。
7.根据权利要求1所述的基于用人体作为虚拟黑体的体温测量的方法,其特征在于:TC为芯片实际测量的温度值,TS为运算结果输出的传感器显示的温度值,
Figure FDA0002587852460000011
为实际测量后的平均值,设K为动态系数,则存在TS=TC+K;人体的实际平均温度Tt,样本实际测量值TC[n]={TC[1],TC[2]......TC[n]},求样本实际输出值TS[n]={TS[1],TS[2]......TS[n],具体为:
步骤1、将TC数组排序,去掉一个最大值,去掉一个最小值,求样本平均值得
Figure FDA0002587852460000012
步骤2、
Figure FDA0002587852460000013
步骤3、TS=TC+K。
8.一种基于用人体作为虚拟黑体的体温测量系统,包括存储器和处理器,存储器存储有计算机程序,其特征在于;所述处理器执行所述计算机程序时实现如权利要求1-7任一所述的方法步骤。
9.一种计算机可度存储介质,其上存储有计算机程序,其特征在于:所述的计算机程序被处理器执行时实现如权利要求1-7任一所述的方法步骤。
CN202010686793.2A 2020-07-16 2020-07-16 一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质 Pending CN111829665A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010686793.2A CN111829665A (zh) 2020-07-16 2020-07-16 一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010686793.2A CN111829665A (zh) 2020-07-16 2020-07-16 一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质

Publications (1)

Publication Number Publication Date
CN111829665A true CN111829665A (zh) 2020-10-27

Family

ID=72923434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010686793.2A Pending CN111829665A (zh) 2020-07-16 2020-07-16 一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质

Country Status (1)

Country Link
CN (1) CN111829665A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583902A (zh) * 2020-12-05 2021-03-30 众源科技(广东)股份有限公司 一种基于ar技术的智慧园区管控系统
CN113609452A (zh) * 2021-07-30 2021-11-05 成都市晶林科技有限公司 一种体温筛查系统误差实时修正方法
WO2022121711A1 (zh) * 2020-12-07 2022-06-16 华为技术有限公司 一种测温方法、装置、设备及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439912A2 (en) * 1989-11-30 1991-08-07 Texas Instruments Incorporated Circuit and method for normalizing detector output
CN101112306A (zh) * 2007-06-27 2008-01-30 杨福生 无创体核温度测量的方法、装置和标定设备及其标定方法
WO2016206218A1 (zh) * 2015-06-26 2016-12-29 青岛海尔股份有限公司 冰箱和基于红外传感器的温度测量方法
US20170343418A1 (en) * 2016-05-27 2017-11-30 Erin Hurbi Thermal camera calibration palette
CN107490436A (zh) * 2017-08-10 2017-12-19 成都市晶林科技有限公司 一种红外测温系统大气透射率校正方法
CN111272290A (zh) * 2020-03-13 2020-06-12 西北工业大学 基于深度神经网络的测温红外热像仪标定方法及装置
CN111366270A (zh) * 2020-03-19 2020-07-03 北京波谱华光科技有限公司 一种温度异常筛选方法、系统及计算机存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0439912A2 (en) * 1989-11-30 1991-08-07 Texas Instruments Incorporated Circuit and method for normalizing detector output
CN101112306A (zh) * 2007-06-27 2008-01-30 杨福生 无创体核温度测量的方法、装置和标定设备及其标定方法
WO2016206218A1 (zh) * 2015-06-26 2016-12-29 青岛海尔股份有限公司 冰箱和基于红外传感器的温度测量方法
US20170343418A1 (en) * 2016-05-27 2017-11-30 Erin Hurbi Thermal camera calibration palette
CN107490436A (zh) * 2017-08-10 2017-12-19 成都市晶林科技有限公司 一种红外测温系统大气透射率校正方法
CN111272290A (zh) * 2020-03-13 2020-06-12 西北工业大学 基于深度神经网络的测温红外热像仪标定方法及装置
CN111366270A (zh) * 2020-03-19 2020-07-03 北京波谱华光科技有限公司 一种温度异常筛选方法、系统及计算机存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583902A (zh) * 2020-12-05 2021-03-30 众源科技(广东)股份有限公司 一种基于ar技术的智慧园区管控系统
WO2022121711A1 (zh) * 2020-12-07 2022-06-16 华为技术有限公司 一种测温方法、装置、设备及系统
CN113609452A (zh) * 2021-07-30 2021-11-05 成都市晶林科技有限公司 一种体温筛查系统误差实时修正方法
CN113609452B (zh) * 2021-07-30 2022-04-29 成都市晶林科技有限公司 一种体温筛查系统误差实时修正方法

Similar Documents

Publication Publication Date Title
Vollmer Infrared thermal imaging
US7422365B2 (en) Thermal imaging system and method
CN111829665A (zh) 一种基于用人体作为虚拟黑体的体温测量的方法、装置及存储介质
Wyatt Radiometric calibration: theory and methods
Kaplan Practical applications of infrared thermal sensing and imaging equipment
CN103076101B (zh) 一种红外热像仪像元点的标定方法
RU2523775C2 (ru) Способ и система коррекции на основе квантовой теории для повышения точности радиационного термометра
CN102538983B (zh) Ccd测温装置
CN102830064A (zh) 一种中高温红外发射率测试装置
CN111609939B (zh) 一种个体体温异常筛查方法、装置、设备
CN112595420A (zh) 一种红外体温筛选仪及校正方法
CN105352988A (zh) 一种建筑物外墙保温性能评估系统及方法
Larsen et al. Determining the infrared reflectance of specular surfaces by using thermographic analysis
CN112179498B (zh) 一种基于路面为虚拟黑体的车辆温度测量方法、系统及装置
Banfi et al. An experimental technique based on globe thermometers for the measurement of mean radiant temperature in urban settings
Ballestrín et al. Heat flux and temperature measurement technologies for concentrating solar power (CSP)
JP7014394B2 (ja) 温度測定方法及び装置
CN110608800B (zh) 大气吸收带太阳辐射照度的测量方法、装置和系统
Scharf et al. Four-band fiber-optic radiometry for determining the “true” temperature of gray bodies
Hejazi et al. Scope and limitations of thermal imaging using multiwavelength infrared detection
CN112857586A (zh) 一种基于fpga的红外测温装置及温度补偿校准方法
CN213932844U (zh) 一种红外体温筛选仪
Zhao et al. Making thermal imaging more equitable and accurate: resolving solar loading biases
US20240003747A1 (en) Methods and Systems for Measurement of Nonthermal Far Infrared Radiation
Ballestrín et al. Heat flux and high temperature measurement technologies for concentrating solar power

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination