CN111819903A - 针对新无线电无执照(nr-u)物理上行链路共享信道(pusch)的多个起始码元 - Google Patents

针对新无线电无执照(nr-u)物理上行链路共享信道(pusch)的多个起始码元 Download PDF

Info

Publication number
CN111819903A
CN111819903A CN201980015961.0A CN201980015961A CN111819903A CN 111819903 A CN111819903 A CN 111819903A CN 201980015961 A CN201980015961 A CN 201980015961A CN 111819903 A CN111819903 A CN 111819903A
Authority
CN
China
Prior art keywords
uplink
transmitting
symbols
wireless communication
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980015961.0A
Other languages
English (en)
Other versions
CN111819903B (zh
Inventor
K·巴塔德
张晓霞
J·孙
A·N·塞加拉简
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN111819903A publication Critical patent/CN111819903A/zh
Application granted granted Critical
Publication of CN111819903B publication Critical patent/CN111819903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了与在由多个网络操作实体共享的介质上在上行链路方向上进行调度和通信相关的无线通信系统和方法。第一无线通信设备向第二无线通信设备传送指示传输时隙中的上行链路分配的消息,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小。第一无线通信设备在该传输时隙中从第二无线通信设备接收上行链路通信信号,该上行链路通信信号包括基于该分配大小的上行链路数据部分以及与该传输时隙中的LBT延迟相关联的填充符部分。

Description

针对新无线电无执照(NR-U)物理上行链路共享信道(PUSCH) 的多个起始码元
相关申请的交叉引用
本申请要求于2019年2月26日提交的美国非临时专利申请No.16/285931、以及于2018年3月1日提交的印度专利申请No.201841007755的优先权和权益,这些申请的全部内容通过援引如同在下文全面阐述那样且出于所有适用目的被纳入于此。
技术领域
本申请涉及无线通信系统,尤其涉及在由多个网络操作实体共享的介质上在上行链路(UL)方向上进行调度和通信。
引言
无线通信系统被广泛部署以提供各种类型的通信内容,诸如语音、视频、分组数据、消息接发、广播等等。这些系统可以能够通过共享可用的系统资源(例如,时间、频率和功率)来支持与多个用户的通信。无线多址通信系统可包括数个基站(BS),每个基站同时支持多个通信设备的通信,这些通信设备可另外被称为用户装备(UE)。
为了满足对经扩展移动宽带连通性的不断增长的需求,无线通信技术正从LTE技术发展到下一代新无线电(NR)技术。一种用于扩展连通性的技术可以是由于较低频率正变得过度拥挤而将频率操作范围扩展到较高频率。另外,NR可在共享频谱和/或无执照频谱中置备在网络运营实体之间共享的动态介质。
在网络操作实体之间共享通信介质或频谱的一种办法是采用先听后讲(LBT)规程以确保在传送消息之前特定信道是畅通的。例如,BS可以调度供UE在特定时间段中进行传送的UL准予。UE可在所调度时间段之前执行LBT。当LBT成功(例如,该信道畅通)时,UE可在所调度时间段期间向BS传送UL信号。然而,UE可以或者不可以在所调度时间段的开始处开始传输,这取决于LBT完成时间。如此,可用传输历时可能会有所不同。由于UE通常会在所调度的传输时间之前生成用于传输的传输块(TB)或分组,因此该TB或分组可容纳或可不容纳在可用传输历时内。
一些示例的简要概述
以下概述了本公开的一些方面以提供对所讨论的技术的基本理解。此概述不是本公开的所有构想到的特征的详尽综览,并且既非旨在标识出本公开的所有方面的关键性或决定性要素亦非试图界定本公开的任何或所有方面的范围。其唯一目的是以概述形式给出本公开的一个或多个方面的一些概念作为稍后给出的更详细描述之序言。
例如,在本公开的一方面,一种无线通信方法包括:由第一无线通信设备向第二无线通信设备传送指示传输时隙中的上行链路分配的消息,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及由第一无线通信设备在该传输时隙中从第二无线通信设备接收上行链路通信信号,该上行链路通信信号包括基于该分配大小的上行链路数据部分和与该传输时隙中的LBT延迟相关联的填充符部分。
在本公开的附加方面,一种无线通信方法包括:由第一无线通信设备从第二无线通信设备接收指示传输时隙中的上行链路分配的消息,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及由第一无线通信设备在该传输时隙中向第二无线通信设备传送上行链路通信信号,该上行链路通信信号包括基于该分配大小的上行链路数据部分和基于该传输时隙中的LBT延迟的填充符部分。
在本公开的附加方面,一种装备包括:用于向第二无线通信设备传送指示传输时隙中的上行链路分配的消息的装置,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及用于在该传输时隙中从第二无线通信设备接收上行链路通信信号的装置,该上行链路通信信号包括基于该分配大小的上行链路数据部分和与该传输时隙中的LBT延迟相关联的填充符部分。
在本公开的附加方面,一种装备包括:用于从第二无线通信设备接收指示传输时隙中的上行链路分配的消息的装置,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及用于在该传输时隙中向第二无线通信设备传送上行链路通信信号的装置,该上行链路通信信号包括基于该分配大小的上行链路数据部分和基于该传输时隙中的LBT延迟的填充符部分。
在结合附图研读了下文对本发明的具体示例性实施例的描述之后,本发明的其他方面、特征和实施例对于本领域普通技术人员将是明显的。虽然本发明的特征在以下可能是针对某些实施例和附图来讨论的,但本发明的全部实施例可包括本文所讨论的一个或多个有利特征。换言之,虽然可能讨论了一个或多个实施例具有某些有利特征,但也可以根据本文讨论的本发明的各种实施例使用一个或多个此类特征。以类似方式,尽管示例性实施例在下文可能是作为设备、系统或方法实施例进行讨论的,但是应当领会,此类示例性实施例可以在各种设备、系统、和方法中实现。
附图简述
图1解说了根据本公开的一些实施例的无线通信网络。
图2解说了根据本公开的一些实施例的上行链路(UL)传输方案的示例。
图3是根据本公开的各实施例的示例性用户装备(UE)的框图。
图4是根据本公开的各实施例的示例性基站(BS)的框图。
图5是解说根据本公开的一些实施例的UL调度和传输方案的时序图。
图6是解说根据本公开的一些实施例的UL调度和传输方案的时序图。
图7是解说根据本公开的一些实施例的UL传输方案的时序图。
图8是解说根据本公开的一些实施例的UL传输方案的时序图。
图9是解说根据本公开的一些实施例的UL传输方案的时序图。
图10是解说根据本公开的一些实施例的UL传输方案的时序图。
图11是解说根据本公开的一些实施例的UL传输方案的时序图。
图12是根据本公开的一些实施例的UL通信方法的信令图。
图13是根据本公开的各实施例的UL通信方法的流程图。
图14是根据本公开的各实施例的UL通信方法的流程图。
详细描述
以下结合附图阐述的详细描述旨在作为各种配置的描述,而无意表示可实践本文中所描述的概念的仅有配置。本详细描述包括具体细节以提供对各种概念的透彻理解。然而,对于本领域技术人员将显而易见的是,没有这些具体细节也可以实践这些概念。在一些实例中,以框图形式示出众所周知的结构和组件以便避免湮没此类概念。
本公开一般涉及提供或参与两个或更多个无线通信系统(也称为无线通信网络)之间的获授权共享接入。在各个实施例中,各技术和装置可被用于无线通信网络,诸如码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交FDMA(OFDMA)网络、单载波FDMA(SC-FDMA)网络、LTE网络、GSM网络、第五代(5G)或新无线电(NR)网络以及其他通信网络。如本文所描述的,术语“网络”和“系统”可以被可互换地使用。
OFDMA网络可实现诸如演进型UTRA(E-UTRA)、IEEE 802.11、IEEE802.16、IEEE802.20、flash-OFDM等无线电技术。UTRA、E-UTRA和全球移动通信系统(GSM)是通用移动电信系统(UMTS)的部分。具体而言,长期演进(LTE)是使用E-UTRA的UMTS版本。UTRA、E-UTRA、GSM、UMTS和LTE在来自名为“第三代伙伴项目”(3GPP)的组织提供的文献中描述,而cdma2000在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。这些各种无线电技术和标准是已知的或正在开发。例如,第三代伙伴项目(3GPP)是各电信协会集团之间的合作,其旨在定义全球适用的第三代(3G)移动电话规范。3GPP长期演进(LTE)是旨在改善通用移动电信系统(UMTS)移动电话标准的3GPP项目。3GPP可定义下一代移动网络、移动系统、和移动设备的规范。本公开关注从LTE、4G、5G、NR及之后的无线技术的演进,其具有在使用新的和不同的无线电接入技术或无线电空中接口的集合的网络之间对无线频谱的共享接入。
具体而言,5G网络构想了可以使用基于OFDM的统一空中接口来实现的多样化部署、多样化频谱以及多样化服务和设备。为了达成这些目标,除了开发用于5G NR网络的新无线电技术之外,还考虑对LTE和LTE-A的进一步增强。5G NR将能够缩放以便为以下各项提供覆盖:(1)具有超高密度(例如,约1M个节点/km2)、超低复杂度(例如,约数十比特/秒)、超低能量(例如,约10+年的电池寿命)、以及能够到达具有挑战性的位置的深度覆盖的大规模物联网(IoT);(2)包括具有强大安全性(以保护敏感的个人、金融、或机密信息)、超高可靠性(例如,约99.9999%可靠性)、超低等待时间(例如,约1ms)、以及具有宽范围的移动性或缺乏移动性的用户的关键任务控制;以及(3)具有增强型移动宽带,其包括极高容量(例如,约10Tbps/km2)、极端数据速率(例如,多Gbps速率,100+Mbps用户体验速率)、以及具有高级发现和优化的深度认知。
可以实现5G NR以:使用具有可缩放的参数集和传输时间区间(TTI)的经优化的基于OFDM的波形;具有共用、灵活的框架以使用动态的、低等待时间的时分双工(TDD)/频分双工(FDD)设计来高效地复用服务和特征;以及具有高级无线技术,诸如大规模多输入多输出(MIMO)、稳健的毫米波(mmWave)传输、高级信道编码和设备中心式移动性。5G NR中的参数集的可缩放性(以及副载波间隔的缩放)可以高效地解决跨多样化频谱和多样化部署来操作多样化服务。例如,在小于3GHz FDD/TDD实现的各种室外和宏覆盖部署中,副载波间隔可以按15kHz发生,例如在1、5、10、20MHz等带宽上。对于大于3GHz的TDD的其他各种室外和小型蜂窝小区覆盖部署,副载波间隔可以在80/100MHz带宽上按30kHz来发生。对于其他各种室内宽带实现,通过在5GHz频带的无执照部分上使用TDD,副载波间隔可以在160MHz带宽上按60kHz来发生。最后,对于以28GHz的TDD使用mmWave分量进行传送的各种部署,副载波间隔可以在500MHz带宽上按120kHz来发生。
5G NR的可缩放参数集促进了可缩放的TTI以满足多样化等待时间和服务质量(QoS)要求。例如,较短的TTI可用于低等待时间和高可靠性,而较长的TTI可用于较高的频谱效率。长TTI和短TTI的高效复用允许传输在码元边界上起始。5G NR还构想了在相同的子帧中具有上行链路/下行链路调度信息、数据、和确收的自包含集成子帧设计。自包含集成子帧支持在无执照的或基于争用的共享频谱中的通信,支持可以在每蜂窝小区的基础上灵活配置的自适应上行链路/下行链路以在上行链路和下行链路之间动态地切换来满足当前话务需要。
以下进一步描述本公开的各种其他方面和特征。应当显而易见的是,本文的教导可以用各种各样的形式来体现,并且本文中所公开的任何具体结构、功能或这两者仅是代表性的而非限定性的。基于本文的教导,本领域普通技术人员应领会,本文所公开的方面可独立于任何其他方面来实现并且这些方面中的两个或更多个方面可以用各种方式组合。例如,可使用本文中所阐述的任何数目的方面来实现装置或实践方法。另外,可使用作为本文中所阐述的一个或多个方面的补充或与之不同的其他结构、功能性、或者结构和功能性来实现此种装置或实践此种方法。例如,方法可作为系统、设备、装置的一部分、和/或作为存储在计算机可读介质上供在处理器或计算机上执行的指令来实现。不仅如此,一方面可包括权利要求的至少一个元素。
本申请描述了用于在由多个网络操作实体共享的介质或频谱上在上行链路(UL)方向上进行调度和通信的机制。在所公开的实施例中,BS可以考虑调度期间的LBT延迟。例如,BS可以基于UE处的可允许LBT延迟来确定传输时隙中针对该UE的分配。为了计及UE处的潜在LBT延迟,该分配可包括包含比传输时隙中可用的码元少的码元的缩短的历时或减小的大小。BS可在较早传输时隙中向UE传送UL准予。UE可在所调度的传输时隙之前执行LBT规程。当LBT成功并且在所调度的传输时隙中的可允许LBT延迟之前完成时,UE可向BS传送UL通信信号。UL通信信号包括携带与分配大小相对应的经编码UL信息比特的UL数据部分。当LBT规程在比可允许LBT延迟早的时间完成时,UL通信可包括填充符部分,以使得在LBT完成之后,UL通信信号在所调度的传输时隙中的全部剩余历时里占用介质。填充符部分用于保持下一传输时隙内对介质的接入。填充符部分可包括填充符数据(例如,非信息数据)、导频码元、和/或经编码UL信息比特的至少一部分的重复。填充符部分可在UL数据部分之前、UL数据部分之后、或UL数据部分之内被传送。
在一个实施例中,BS可以确定传输时隙内针对基于可允许LBT延迟的UL分配的多个候选起始码元。UE可以基于LBT规程的完成时间来从用于UL传输的该多个候选起始码元当中选择起始码元。BS可在接收到UL通信信号之际执行盲检测以检测UL数据部分的开始。
在一个实施例中,BS可以基于可允许LBT延迟来确定传输时隙中针对UL分配的经延迟起始码元。只要LBT规程在可允许LBT延迟之内完成,UE就可在经延迟起始码元开始传送UL数据部分,而不管LBT规程的完成时间。当LBT规程在经延迟起始码元之前完成时,UE可在UL信号之前插入填充符信号。由于经延迟起始码元独立于UE处的LBT完成时间,因此BS可以检测传输时隙中是否存在UL传输信号。在检测到存在UL传输信号时,BS可以基于经延迟起始码元来恢复和解码UL数据,而无需对起始码元进行盲检测。
本申请的各方面可以提供若干益处。例如,具有缩短历时的分配可以允许UE在传输时间之前生成用于传输的传输块(TB),并在完成成功LBT规程之后传送该TB而无需应用穿孔或速率匹配。在填充符部分中包括导频信息、和/或经编码信息的重复可以改善性能,例如,BS处的信道估计、频率偏移估计、和/或数据解调性能。
图1解说了根据本公开的一些实施例的无线通信网络100。网络100可以是5G网络。网络100包括数个基站(BS)105和其他网络实体。BS 105可以是与UE 115进行通信的站,并且还可被称为演进型B节点(eNB)、下一代eNB(gNB)、接入点、等等。每个BS 105可为特定地理区域提供通信覆盖。在3GPP中,术语“蜂窝小区”可指BS 105的该特定地理覆盖区域和/或服务该覆盖区域的BS子系统,这取决于使用该术语的上下文。
BS 105可以为宏蜂窝小区或小型蜂窝小区(诸如微微蜂窝小区或毫微微蜂窝小区)、和/或其他类型的蜂窝小区提供通信覆盖。宏蜂窝小区一般覆盖相对较大的地理区域(例如,半径为数千米),并且可允许与网络供应商具有服务订阅的UE无约束地接入。小型蜂窝小区(诸如微微蜂窝小区)一般会覆盖相对较小的地理区域并且可允许由与网络供应商具有服务订阅的UE无约束地接入。小型蜂窝小区(诸如毫微微蜂窝小区)一般也会覆盖相对较小的地理区域(例如,住宅),并且除了无约束接入之外还可提供与该毫微微蜂窝小区有关联的UE(例如,封闭订户群(CSG)中的UE、该住宅中的用户的UE等等)的有约束接入。用于宏蜂窝小区的BS可被称为宏BS。用于小型蜂窝小区的BS可被称为小型蜂窝小区BS、微微BS、毫微微BS、或家用BS。在图1中示出的示例中,BS 105d和105e可以是常规宏BS,而BS 105a-105c可以是启用了三维(3D)、全维(FD)、或大规模MIMO之一的宏BS。BS 105a-105c可利用其较高维度MIMO能力以在标高和方位波束成形两者中利用3D波束成形来增大覆盖和容量。BS105f可以是小型蜂窝小区BS,其可以是家用节点或便携式接入点。BS 105可支持一个或多个(例如,两个、三个、四个、等等)蜂窝小区。
网络100可支持同步或异步操作。对于同步操作,各BS可以具有类似的帧定时,并且来自不同BS的传输可以在时间上大致对齐。对于异步操作,各BS可以具有不同的帧定时,并且来自不同BS的传输可能在时间上并不对齐。
各UE 115分散遍及无线网络100,并且每个UE 115可以是驻定的或移动的。UE 115还可以被称为终端、移动站、订户单元、站、等等。UE 115可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持式设备、平板计算机、膝上型计算机、无绳电话、无线本地环路(WLL)站、等等。在一个方面,UE 115可以是包括通用集成电路卡(UICC)的设备。在另一方面,UE可以是不包括UICC的设备。在一些方面,不包括UICC的UE115也可被称为万物联网(IoE)设备。UE 115a-115d是接入网络100的移动智能电话类型设备的示例。UE115还可以是专门配置用于已连通通信(包括机器类型通信(MTC)、增强型MTC(eMTC)、窄带IoT(NB-IoT)等)的机器。UE 115e-115k是被配置成用于接入网络100的通信的各种机器的示例。UE 115可以能够与任何类型的BS(无论是宏BS、还是小型蜂窝小区等等)通信。在图1中,闪电束(例如,通信链路)指示UE 115与服务BS 105之间的无线传输或BS之间的期望传输以及BS之间的回程传输,服务BS 105是被指定为在下行链路和/或上行链路上服务UE115的BS。
在操作中,BS 105a-105c可使用3D波束成形和协调式空间技术(诸如协调式多点(CoMP)或多连通性)来服务UE 115a和115b。宏BS 105d可执行与BS 105a-105c、以及小型蜂窝小区BS 105f的回程通信。宏BS 105d还可传送由UE 115c和115d订阅和接收的多播服务。此类多播服务可包括移动电视或流视频,或者可包括用于提供社区信息的其他服务(诸如天气紧急情况或警报、诸如安珀警报或灰色警报)。
网络100还可支持具有用于关键任务设备(诸如UE 115e,其可以是无人机)的超可靠和冗余链路的关键任务通信。与UE 115e的冗余通信链路可包括来自宏BS 105d和105e的链路、以及来自小型蜂窝小区BS 105f的链路。其他机器类型设备(诸如UE 115f(例如,温度计)、UE 115g(例如,智能仪表)、和UE 115h(例如,可穿戴设备))可通过网络100直接与BS(诸如小型蜂窝小区BS 105f和宏BS 105e)进行通信,或者通过与将其信息中继到网络的另一用户设备进行通信来处于多跳配置中(诸如UE 115f将温度测量信息传达给智能仪表UE115g,该温度测量信息随后通过小型蜂窝小区BS 105f被报告给该网络)。网络100还可通过动态、低等待时间TDD/FDD通信(诸如在交通工具到交通工具(V2V)中)提供附加的网络效率。
在一些实现中,网络100利用基于OFDM的波形来进行通信。基于OFDM的系统可将系统带宽划分成多个(K个)正交副载波,这些正交副载波通常也被称为副载波、频调、频槽等等。每个副载波可以用数据来调制。在一些实例中,毗邻副载波之间的副载波间隔可以是固定的,并且副载波的总数(K)可取决于系统带宽。系统带宽还可被划分成子带。在其他实例中,副载波间隔和/或TTI的历时可以是可缩放的。
在一实施例中,BS 105可指派或调度(例如,时频资源块(RB)形式的)传输资源以用于网络100中的DL和UL传输。DL是指从BS 105到UE 115的传输方向,而UL是指从UE 115到BS 105的传输方向。该通信可采用无线电帧的形式。无线电帧可被分成多个子帧,例如约10个。每一子帧可被分成诸时隙,例如约2个。每个时隙可被进一步分成子时隙。在频分双工(FDD)模式中,同时的UL和DL传输可在不同的频带中发生。例如,每一子帧包括处于UL频带中的UL子帧和处于DL频带中的DL子帧。在时分双工(TDD)模式中,UL和DL传输使用相同的频带在不同的时间段发生。例如,无线电帧中的子帧的子集(例如,DL子帧)可被用于DL传输,并且无线电帧中的子帧的另一子集(例如,UL子帧)可被用于UL传输。
DL子帧和UL子帧可被进一步分为若干区域。例如,每一DL或UL子帧可具有预定义的区域以用于参考信号、控制信息和数据的传输。参考信号是促成BS 105与UE 115之间的通信的预定信号。例如,参考信号可具有特定导频模式或结构,其中诸导频频调可跨越操作带宽或频带,每一导频频调被定位在预定义的时间和预定义的频率处。例如,BS 105可传送因蜂窝小区而异的参考信号(CRS)和/或信道状态信息参考信号(CSI-RS)以使得UE 115能够估计DL信道。类似地,UE 115可传送探通参考信号(SRS)以使得BS 105能够估计UL信道。控制信息可包括资源指派和协议控制。数据可包括协议数据和/或操作数据。在一些实施例中,BS 105和UE 115可使用自包含子帧来通信。自包含子帧可包括用于DL通信的部分和用于UL通信的部分。自包含子帧可以是DL中心式的或者UL中心式的。DL中心式子帧可包括比用于UL通信的历时更长的用于DL通信的历时。UL中心式子帧可包括比用于UL通信的历时更长的用于UL通信的历时。
在一实施例中,网络100可以是部署在有执照频谱上的NR网络。BS 105可以在网络100中传送同步信号(例如,包括主同步信号(PSS)和副同步信号(SSS))以促成同步。BS 105可以广播与网络100相关联的系统信息(例如,包括主信息块(MIB)、剩余最小系统信息(RMSI)、和其他系统信息(OSI))以促成初始网络接入。在一些实例中,BS 105可以同步信号块(SSB)的形式广播PSS、SSS、MIB、RMSI和/或OSI。
在一实施例中,尝试接入网络100的UE 115可通过检测来自BS 105的PSS来执行初始蜂窝小区搜索。PSS可实现时段定时的同步,并且可指示物理层身份值。UE 115可随后接收SSS。SSS可实现无线电帧同步,并且可提供蜂窝小区身份值,该蜂窝小区身份值可以与物理层身份值相组合以标识该蜂窝小区。SSS还可实现对双工模式和循环前缀长度的检测。一些系统(诸如TDD系统)可以传送SSS但不传送PSS。PSS和SSS两者可分别位于载波的中心部分。
在接收到PSS和SSS之后,UE 115可接收MIB,该MIB可在物理广播信道(PBCH)中被传送。MIB可包括用于初始网络接入的系统信息和用于RMSI和/或OSI的调度信息。在解码MIB之后,UE 115可接收RMSI和/或OSI。RMSI和/或OSI可包括与随机接入信道(RACH)规程、寻呼、物理上行链路控制信道(PUCCH)、物理上行链路共享信道(PUSCH)、功率控制、SRS和蜂窝小区禁止相关的无线电资源配置(RRC)配置信息。在获取MIB和/或SIB后,UE 115可执行随机接入规程以建立与BS 105的连接。在建立连接后,UE 115和BS 105可进入正常操作阶段,在正常操作阶段,操作数据可被交换。
在一实施例中,网络100可在共享信道(其可包括有执照谱带、共享谱带、和/或无执照谱带)上操作,并且可支持动态介质共享。BS 105和UE 115可以通过执行LBT规程来在共享信道上进行通信。例如,在BS 105获得共享信道中的接入或传输机会(TXOP)之后,该BS105可以调度UE 115在特定时间段(例如,该TXOP内的传输时隙)中进行UL传输。UE 115可以通过在所调度时间段之前执行LBT规程来监听该信道。当该LBT成功或该信道畅通时,UE115可向该BS 105传送UL通信信号,诸如PUSCH信号或长PUCCH信号。由于LBT规程的完成时间和/或结果事先未知,因此UE 115可能能够或可能不能够在所调度时间段中进行传送。另外,UE 115可能能够或可能不能够在所调度时间段的开始处开始传输。BS 105可以通过考虑利用LBT可能发生的潜在延迟或最大可允许LBT延迟来确定UL调度。本文中更详细地描述了用于在计及LBT延迟的情况下BS 105和UE 115在共享介质中进行通信的机制。
图2是解说根据本公开的一些实施例的UL通信场景200的时序图。场景200可以对应于当BS 105在不考虑LBT延迟的情况下确定UL调度时网络(例如,网络100)中的BS(例如,BS 105)与UE(例如,UE 115)之间在共享介质上的UL通信。在图2中,x轴以某些恒定单位来表示时间。图2出于简化讨论的目的解说了两个传输时隙202,但将认识到,本公开的各实施例可以缩放到任何适当数目的传输时隙202(例如,约3个、4个、5个、10个或更多个)。这些传输时隙202被示为202(n)到202(n+1)。传输时隙202(n)在时间T0开始,而传输时隙202(n+1)在时间T2开始。每个传输时隙202可以跨越适当历时,并且可以取决于实施例而有所不同。在一些实施例中,每个传输时隙202可包括约0.5毫秒(ms)或约1ms的历时。虽然这些传输时隙202被示为在时间上是连贯的,但在一些实施例中,这些传输时隙202可以取决于信道状态(例如,繁忙或畅通)而在时间上间隔开。
作为示例,BS在传输时隙202(n)中向UE传送UE准予212。BS可在传输时隙202(n)的控制部分中传送UL准予212。UL准予212可以指示后续传输时隙202(n+1)中的分配214。BS可以例如基于接收自UE的调度请求中的有效载荷大小来确定用于分配214的分配大小。BS可以例如基于接收自UE的调度请求中的有效载荷大小、针对分配214来分配时间-频率资源以及指派调制编码方案(MCS)。UL准予212可以指示所分配的时间-频率资源和所指派的MCS。该分配和所分配的资源可以跨越频率上的数个副载波或频调以及时间上的数个OFDM码元(例如,PUSCH数据码元)。例如,分配214或该数个所分配码元跨越历时216。
当UE接收到UL准予212时,UE可在传输时隙202(n+1)之前(例如,在时间T1)执行LBT规程222。然而,LBT规程222的结果和/或LBT规程222的完成时间可以取决于共享该介质的其他节点的传输活动而有所不同。
传输时间线220示出了在成功结果(例如,信道畅通)的情况下UE在传输时隙202(n+1)的开始处(例如,在时间T1)完成LBT规程222a的示例。由此,UE可在跨越所分配的历时216的传输时隙202(n+1)中传送UL数据信号224a(例如,PUSCH信号或长PUCCH信号)。
传输时间线230示出了在失败结果(例如,信道被占用)的情况下UE在传输时隙202(n+1)的开始处(例如,在时间T2)完成LBT规程222b的示例。由此,UE可避免在所分配的历时216期间进行传送,如由交叉记号示出的。
传输时间线240示出了在成功结果的情况下UE在时间T3开始LBT规程222c并在传输时隙202(n+1)开始之后(例如,在时间T4)完成LBT规程222c的示例。UE可在传输时隙202(n+1)内的剩余所分配历时216中传送UL数据信号224c。UL数据信号224c具有相比于所分配历时216而言减小的历时226。
在一实施例中,在接收到UL准予212之际,UE可以基于所分配的资源和所指派的MCS来生成用于传输的TB。例如,UE可以基于所分配资源量(例如,时间上的数据码元数目和频率上的副载波数目)和所指派的MCS来确定TB大小。UE可在传输时间之前(例如,在传输时隙202(n)期间)生成TB。由此,当LBT规程222c在稍后时间在传输时隙202(n+1)中完成时,UE可以调整所生成的TB,以使得UL数据信号224c能在历时226内被传送(例如,包括比所分配资源更少数目的数据码元)。由此,在此类实施例中,UE可以用针对减小的分配所更新的TB大小来对减少的码元进行速率匹配。由于TB大小、信道编码、速率匹配可能都需要基于何时LBT通过进行更新,因此此类设计的实现可能是非常有挑战性的。
在一个实施例中,UE可以应用穿孔以减少携带TB所需的数据码元数目。穿孔指的是在传输期间丢弃例如TB的开始处的一个或多个数据码元以计及由LBT规程222c引起的延迟228。可以通过重传来恢复所丢弃的码元。当使用基于码块群(CBG)级确收(ACK)/否定ACK(NACK)反馈的重传时,这些重传可只包括与所丢弃的码元对应的一个或多个码块(CB)。虽然重传能恢复所丢弃的码元,但是重传可能是低效的,并且会使性能(例如,块差错率(BLER)性能)降级。
在一个实施例中,UE可以应用速率匹配以减少携带TB所需的数据码元数目,但不更新TB大小(例如,用固定TB大小对减少的码元进行速率匹配)。例如,UE可执行至TB的速率匹配,以使得可以使用减小的历时226中可用数目的数据码元来携带TB。然而,速率匹配可能需要一些处理时间,并且可用码元数目(例如,减小的历时226)直到LBT规程222c已经完成之后才知晓。由此,就处理时间线而言,UE可能难以在LBT规程222c之后执行速率匹配。
图3是根据本公开的各实施例的示例性UE 300的框图。UE 300可以是如上面所讨论的UE 115。如所示出的,UE 300可包括处理器302、存储器304、UL处理模块308、包括调制解调器子系统312和射频(RF)单元314的收发机310、以及一个或多个天线316。这些元件可例如经由一条或多条总线来彼此直接或间接通信。
处理器302可包括被配置成执行本文所描述的操作的中央处理单元(CPU)、数字信号处理器(DSP)、专用集成电路(ASIC)、控制器、现场可编程门阵列(FPGA)设备、另一硬件设备、固件设备、或者其任何组合。处理器302还可以被实现为计算设备的组合,例如,DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或多个微处理器、或者任何其他此类配置。
存储器304可包括高速缓存存储器(例如,处理器302的高速缓存存储器)、随机存取存储器(RAM)、磁阻RAM(MRAM)、只读存储器(ROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存存储器、固态存储器设备、硬盘驱动器、其他形式的易失性和非易失性存储器、或者不同类型的存储器的组合。在一实施例中,存储器304包括非瞬态计算机可读介质。存储器304可以存储指令306。指令306可包括在由处理器302执行时使处理器302执行本文中结合本公开的各实施例(例如,图5-14的各方面)、参照UE 115所描述的操作的指令。指令306还可被称为代码。术语“指令”和“代码”应当被宽泛地解读为包括任何类型的(诸)计算机可读语句。例如,术语“指令”和“代码”可以指一个或多个程序、例程、子例程、函数、规程等。“指令”和“代码”可包括单条计算机可读语句或许多条计算机可读语句。
UL处理模块308可经由硬件、软件、或其组合来实现。例如,UL处理模块308可被实现为处理器、电路和/或存储在存储器304中并且由处理器302执行的指令306。UL处理模块308可被用于本公开的各个方面,例如,图5-14的各方面。例如,UL处理模块308被配置成从BS(例如,BS 105)接收UL准予,基于所接收到的UL准予来生成TB,执行LBT规程,基于所接收到的UL准予和LBT完成时间来生成填充符(例如,包括填充符比特、导频信息、或TB中携带经编码信息的数据码元的重复),生成用于携带TB和填充符的UL信号,和/或将UL信号传送给该BS,如本文中更详细地描述的。
如所示出的,收发机310可包括调制解调器子系统312和RF单元314。收发机310可被配置成与其他设备(诸如,BS 105)双向地通信。调制解调器子系统312可被配置成根据调制和编码方案(MCS)(例如,低密度奇偶校验(LDPC)编码方案、turbo编码方案、卷积编码方案、数字波束成形方案等)来调制和/或编码来自存储器304和/或UL处理模块308的数据。RF单元314可被配置成处理(例如,执行模数转换或数模转换等等)来自调制解调器子系统312(在带外传输上)或者源自另一源(诸如UE 115或BS 105)的传输的经调制/经编码数据。RF单元314可被进一步配置成结合数字波束成形来执行模拟波束成形。尽管被示为被一起集成在收发机310中,但是调制解调器子系统312和RF单元314可以是分开的设备,它们在UE115处耦合在一起以使得UE 115能够与其他设备进行通信。
RF单元314可将经调制和/或经处理的数据(例如,数据分组(或者,更一般地,可包含一个或多个数据分组和其他信息的数据消息))提供给天线316以供传输至一个或多个其他设备。天线316可进一步接收从其他设备传送的数据消息。天线316可提供接收到的数据消息以供在收发机310处进行处理和/或解调。天线316可包括相似或不同设计的多个天线以便维持多个传输链路。RF单元314可以配置天线316。
图4是根据本公开的各实施例的示例性BS 400的框图。BS 400可以是如以上所讨论的BS 105。如所示出的,BS 400可包括处理器402、存储器404、UL处理模块408、包括调制解调器子系统412和RF单元414的收发机410、以及一个或多个天线416。这些元件可例如经由一条或多条总线来彼此直接或间接通信。
处理器402可具有作为专用类型处理器的各种特征。例如,这些特征可包括被配置成执行本文所描述的操作的CPU、DSP、ASIC、控制器、FPGA设备、另一硬件设备、固件设备、或者其任何组合。处理器402还可以被实现为计算设备的组合,例如,DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或多个微处理器、或者任何其他此类配置。
存储器404可包括高速缓存存储器(例如,处理器402的高速缓存存储器)、RAM、MRAM、ROM、PROM、EPROM、EEPROM、闪存存储器、固态存储器设备、一个或多个硬盘驱动器、基于忆阻器的阵列、其他形式的易失性和非易失性存储器、或者不同类型的存储器的组合。在一些实施例中,存储器404可包括非瞬态计算机可读介质。存储器404可以存储指令406。指令406可包括在由处理器402执行时使处理器402执行本文所描述的操作(例如,图5-14的各方面)的指令。指令406还可被称为代码,其可被宽泛地解读为包括如上面参照图3所讨论的任何类型的(诸)计算机可读语句。
UL处理模块408可经由硬件、软件、或其组合来实现。例如,UL处理模块408可被实现为处理器、电路和/或存储在存储器406中并且由处理器402执行的指令406。UL处理模块408可被用于本公开的各个方面,例如,图5-14的各方面。例如,UL处理模块408被配置成确定可允许LBT延迟,调度上行链路传输,计及可允许LBT延迟地确定上行链路资源,基于可允许LBT延迟来确定各分配的候选起始码元,向UE(例如,UE 115)传送指示所分配资源和/或候选起始码元的UL准予,确定供UE在UL传输中包括填充符(例如,包含填充符比特、导频信息、或经编码UL信息的重复)的配置,和/或基于UL准予来从UE接收UL信号,如在本文中更详细地描述的。
如所示,收发机410可包括调制解调器子系统412和RF单元414。收发机410可被配置成与其他设备(诸如UE 115和/或另一核心网元件)双向地通信。调制解调器子系统412可被配置成根据MCS(例如,LDPC编码方案、turbo编码方案、卷积编码方案、数字波束成形方案等)来调制和/或编码数据。RF单元414可被配置成处理(例如,执行模数转换或数模转换等)来自调制解调器子系统412(在带外传输上)或者源自另一源(诸如UE 115或300)的传输的经调制/经编码的数据。RF单元414可被进一步配置成结合数字波束成形来执行模拟波束成形。尽管被示为被一起集成在收发机410中,但调制解调器子系统412和RF单元414可以是分开的设备,它们在BS 105处耦合在一起以使得BS 105能够与其他设备进行通信。
RF单元414可将经调制和/或经处理的数据(例如,数据分组(或者,更一般地,可包含一个或多个数据分组和其他信息的数据消息))提供给天线416以供传输至一个或多个其他设备。天线416可进一步接收从其他设备传送的数据消息并提供接收到的数据消息以供在收发机410处进行处理和/或解调。天线416可包括相似或不同设计的多个天线以便维持多个传输链路。
图5-6解说了用于BS(例如,BS 105)在计及UE(例如,UE 115和300)处的LBT延迟的情况下调度UL传输的各种机制。在图5和图6中,x轴以某些恒定单位来表示时间。
图5是解说根据本公开的一些实施例的UL调度和传输方案500的时序图。UE 115和300以及BS 105和400可以采用方案500。类似于场景200,调度时间线510示出了BS在传输时隙202(n)中向UE传送UL准予512,其中UL准予512指示后续传输时隙202(n+1)中针对该UE的分配514。然而,分配514具有跨越传输时隙202(n+1)的一部分、而非如场景200中示出的分配214的整个历时216的缩短历时516。
例如,每个传输时隙202可包括约5个码元502(例如,OFDM码元),其索引为S0到S4。BS可以通过考虑UE处的可允许LBT延迟来确定分配大小(例如,历时516、或码元502数目)。例如,BS可以允许约2个码元502的最大LBT延迟,并且由此分配514可包括约3个码元502,如所示出的。
当UE接收到UL准予512时,UE可在传输时隙202(n+1)之前(例如,在时间T1开始)执行LBT规程522(例如,LBT规程222)。类似于场景200,LBT规程522的结果和/或LBT规程522的完成时间可以取决于共享该介质的其他节点的传输活动而有所不同。
传输时间线520示出了在成功结果(例如,信道畅通状态)的情况下UE在传输时隙202(n+1)的开始处(例如,在时间T1)完成LBT规程522a的示例。由此,UE可在传输时隙202(n+1)中传送UL数据信号524a(例如,PUSCH信号或长PUCCH信号)。如所示出的,UL数据信号524a包括基于分配514的3个码元502(例如,其索引为S0、S1和S2)的历时。另外,UE可在UL数据信号524a之后直至传输时隙202(n+1)结束(例如,在时间T5到T7之间,或即在索引为S3和S4的码元502中)传送填充符信号526a(例如,其被示为空白框)。其中传送填充符信号526a的索引为S3和S4的码元502可被称为填充符码元。
传输时间线530示出了在成功结果的情况下UE在传输时隙202(n+1)开始之后的时间T2完成LBT规程522b的示例。由于来自LBT规程522b的延迟在2个码元502的最大LBT延迟之内,因此UE可以在下一码元边界(例如,时间T3)开始传送UL数据信号524b。另外,UE可在传输时隙202(n+1)中传送填充符信号526b。填充符信号526b包括部分526b(1)和部分526b(1)。部分526b(1)在UL数据信号524b之前在时间T2到T3之间被传送(例如,部分码元502)以填充符(例如时间T2与T3之间的)间隙时间,从而将UL数据信号524的起始与码元边界对齐。填充符部分526b(1)用于保持介质占用,使得其他节点不会错误地确定该介质空闲并获得对该介质的接入。部分526b(2)在UL数据信号524b之后直至传输时隙202(n+1)结束(例如,在时间T6到T7之间,或即在索引为S4的码元502中)被传送。
传输时间线540示出了在成功结果的情况下UE在传输时隙202(n+1)开始之后的时间T4完成LBT规程522c的示例。类似于时间线530,来自LBT规程522c的延迟在2个码元502的最大LBT延迟之内。由此,UE可在传输时隙202(n+1)中传送UL数据信号524c。由于LBT规程522c在码元边界处完成并且UL数据信号524c占用传输时隙202(n+1)中的剩余3个码元502(例如,其索引为S2、S3和S4),因此不需要UE传送任何填充符信号(例如,填充符信号526)。
为了促成方案500,BS可以基于UE处的最大可允许LBT延迟560来确定用于分配514的分配大小或历时。BS可以确定数个候选起始码元550、552和554(例如,S0、S1和S2),并且允许UE基于该UE处LBT规程522的完成时间来选择起始码元。BS可以保留与所有候选起始码元550、552和554相对应的资源。BS可在UL准予512中指示候选起始码元550、552和554。在一些其他实施例中,BS可以指示传输时隙202(n+1)内可允许起始码元的范围或集合。该可允许起始码元集合可以是传输时隙202(n+1)中的毗连码元502,或者是传输时隙202(n+1)中的非毗连码元502。另外,BS可将UE配置成在填充符信号526中传送填充符数据、导频、或经编码UL数据的副本(例如,UL数据信号524的一部分),如本文中更详细地描述的。
在UL接收期间,BS可以基于所配置的候选起始码元来执行盲检测以检测UL数据信号的起始。在检测到UL数据信号524的起始之后,BS可以恢复或解码来自UL数据信号524的UL数据。在一实施例中,BS可以基于不同候选起始码元中的解调参考信号(DMRS)检测来确定UL数据信号524的起始码元502。
如在方案500中可以看到的,由于UE被给予具有计及该UE处的LBT延迟的分配大小的分配514,因此该UE可在传输时间之前生成TB,并避免如场景200中(例如,传输时间线240)那样不得不在完成LBT之后应用穿孔和/或速率匹配来减小传输历时(例如,码元数目或TB大小)。由此,方案500可以改善传输性能,并且可能不需要UE上的严格处理时间。
在一实施例中,UL数据信号524a、524b和524c可将导频信息或DMRS包括在特定码元502中。DMRS是从基于其中传送该DMRS的码元的码元索引的加扰序列生成的。在一个实施例中,UL数据信号524中的DMRS是基于传输时隙202(n+1)内的码元索引来生成的。换言之,UL数据信号524a的第一码元502中的DMRS是基于码元索引0生成的,UL数据信号524b的第一码元502中的DMRS是基于码元索引1生成的,并且UL数据信号524c的第一码元502中的DMRS是基于码元索引2生成的。在另一实施例中,UL数据信号524中的DMRS是基于相对于UL数据信号524的起始码元的码元索引来生成的。换言之,UL数据信号524中的DMRS是独立于UL数据信号524的起始码元地从加扰序列生成的。例如,UL数据信号524a、524b或524c的第一码元502中的DMRS是基于码元索引0生成的。
图6是解说根据本公开的一些实施例的UL调度和传输方案600的时序图。UE 115和300以及BS 105和400可以采用方案600。类似于方案500,调度时间线610示出了BS在传输时隙202(n)中向UE传送UL准予612,其中UL准予612指示传输时隙202(n+1)中具有缩短历时616(例如,包括约3个码元502)的分配614。然而,在方案600中,BS可以基于UE处的最大可允许LBT延迟602、而非如方案500中那样有多个候选起始码元550、552、554,来确定用于分配614的经延迟起始码元604和分配大小。例如,对于约5个码元502的传输时隙,最大可允许LBT延迟可以约为2个码元502长,并且分配614可具有约3个码元502的历时。
传输时间线620示出了在成功结果(例如,信道畅通状态)的情况下UE在(例如开始于时间T1的)传输时隙202(n+1)的开始处完成LBT规程622a的示例。由此,UE可在传输时隙202(n+1)中传送UL数据信号624a(例如,PUSCH信号或长PUCCH信号)。如所示出的,UE从时间T1到时间T4传送填充符信号626a,并在经延迟起始码元604(例如,在时间T4)开始UL数据信号624a的传输。
传输时间线630示出了在成功结果的情况下UE在传输时隙202(n+1)开始之后的时间T2完成LBT规程622b的示例。由于LBT规程622b在经延迟起始码元604之前完成,因此UE可在传输时隙202(n+1)中传送UL数据信号624b。类似于传输时间线620,UE可在UL数据信号624b之前在时间T2到时间T4之间传送填充符信号626b。
传输时间线640示出了在成功结果的情况下UE在传输时隙202(n+1)开始之后的时间T4完成LBT规程622c的示例。由于LBT规程622c在经延迟起始码元604开始时完成,因此UE可在传输时隙202(n+1)中传送UL数据信号624c,而无需任何填充符信号。
类似于方案500,方案600允许UE提前生成用于传输的TB,而不必使用穿孔和/或速率匹配来减小传输历时以补偿LBT延迟。由此,方案600可以改善性能而无需UE处的严格的处理时间要求。另外,由于分配614具有固定的经延迟起始码元604,因此在使用方案600时在BS处可能不需要盲检测。由此,与方案500相比,方案600可以减小BS处的实现复杂性。BS可以将UE配置成在填充符信号626中传送填充符数据、导频、或经编码UL数据的副本以进一步改善性能,如在本文中更详细地描述的。
图7-10解说了用于当UL分配(例如,分配514和516)具有减小的大小(例如,减小的历时516和616)时UE(例如,UE 115和300)在传输时隙(例如,传输时隙202)中传送填充符信号(例如,填充符信号526和626)的各种机制。在图7-10中,x轴以某些恒定单位来表示时间。
图7是解说根据本公开的一些实施例的UL传输方案700的时序图。UE115和300以及BS 105和400可以采用方案700。方案700可以结合方案500或600来使用。例如,传输时隙202可包括约12个码元502,其索引为S0到S11,并且BS可向UE指派包括传输时隙202中的约9个码元502(例如,S0到S8)的分配714。UE可以根据分配714来传送UL数据信号724(例如,其被示为数据码元D0到D9)以及在剩余码元502(例如,S9到S11)中传送包括填充符数据730的填充符信号726。填充符数据730并不携带有用信息,并且可以是任意数据。填充符数据730用于占用介质,直到传输时隙202结束。BS可在接收之际丢弃填充符数据730。
图8是解说根据本公开的一些实施例的UL传输方案800的时序图。UE115和300以及BS 105和400可以采用方案800。方案800可以结合方案500或600来使用。方案800被解说为使用与方案700中的时隙和分配配置基本类似的时隙和分配配置。然而,BS可将UE配置成在传送UL数据信号724之后在剩余码元502(例如,S10到S12)中传送包括DMRS 830(例如,导频码元)的填充符信号826。除了在UL数据信号724内的某些码元502中携带的DMRS之外,BS还可以基于这些DMRS 830来确定信道估计。由此,方案800可以改善性能。在一些实施例中,填充符信号826中的DMRS 830可以是UL数据信号724中的DMRS的重复。在一些其他实施例中,填充符信号826中的DMRS830可以是从与UL数据信号724中的DMRS不同的加扰序列生成的。
图9是解说根据本公开的一些实施例的UL传输方案900的时序图。UE115和300以及BS 105和400可以采用方案900。方案900可以结合方案500或600来使用。方案900被解说为使用与方案700和800中的时隙和分配配置基本类似的时隙和分配配置。然而,BS可将UE配置成传送包括UL数据信号724的一部分(例如,一个或多个数据码元)的重复的填充符信号926。如所示出的,填充符信号926可包括UL数据信号724的重复数据码元930。例如,UL数据信号724可包括3个CB,其中第一CB可在码元D0、D1和D2中传送,第二CB可在码元D3、D4和D5中传送,并且第三CB可在码元D6、D7和D8中传送。重复数据码元930可被选择成使得每个CB的一个数据码元被重复以提供跨这些CB的统一改善。如所示出的,重复数据码元930包括分别来自第一、第二和第三CB的码元D1、D4和D7。
图10是解说根据本公开的一些实施例的UL传输方案1000的时序图。UE115和300以及BS 105和400可以采用方案1000。方案1000可以结合方案500或600来使用。方案1000被解说为使用与方案700、800和900中的时隙和分配配置基本类似的时隙和分配配置。类似于方案900,BS可将UE配置成传送包括UL数据信号724的一部分的重复的填充符信号1026。然而,BS可将UE配置成在UL数据信号724内传送填充符信号1026。如所示出的,填充符信号1026包括UL数据信号724内间隔开的多个部分或码元802,其中数据码元502的重复可以跟随在该数据码元502之后以便于实现。例如,重复码元D1 930跟随在UL数据信号724的码元D1 502之后。类似地,重复码元D4 930跟随在UL数据信号724的码元D4 502之后。
如可以看到的,UL传输中的码元位置以及DMRS和/或数据码元数目可以取决于使用方案是700、800、900还是1000而有所不同。然而,所有数据码元(例如,D0到D8)被传送至少一次。当数据码元(例如,D1、D4、和D7)在填充符信号(例如,填充符信号926和1026)中重复时,重复数据码元(例如,重复数据码元930)是对应UL数据信号中的原始数据码元(例如,经编码信息比特)的副本。在填充符信号中包括重复数据码元或DMRS可以改善BS的接收机处的信道估计性能、频率偏移估计性能和/或数据解调性能。
虽然方案700-1000是在方案500的上下文中描述的,但用于在填充符信号中传送填充符数据、重复数据码元、和/或DMRS的机制适于与方案600联用。
虽然方案500-1000是在限制起始码元配置以使得UL数据(例如,PUSCH或长PUCCH)传输容纳到传输时隙的历时内的上下文中描述的,但在一些实施例中,起始码元配置可不具有该相同限制。例如,特定候选起始码元可能需要UE应用穿孔以使得UL数据传输可以在传输时隙内。替换地,特定起始码元配置可以允许分配跨越多个传输时隙,如下面在图11中示出的。
另外,虽然方案500-1000以包括UL数据信号(例如,UL数据信号524、624和724)和填充符信号(例如,填充符信号526、626、726、826、926和1026)的UL传输在传输时隙(例如,传输时隙202)结束时完成的情况进行解说,但是在一些实施例中,在下一传输时隙之前可存在间隙时间。间隙时间可以允许具有下一传输时隙中的分配的UE执行LBT。替换地,BS可将UE配置成在间隙时间传送SRS或PUCCH信号。
如上所述,UE(例如,UE 115和300)可以基于在通过LBT之后可用的码元数目、针对特定TB大小来应用速率匹配,基于UL准予、针对特定TB大小来应用速率匹配,应用穿孔,或者基于具有给定TB大小或给定码元数目的分配来生成TB。然而,UE还可以应用上述机制的组合。在一实施例中,UE可在通过LBT之后基于所分配的传输时隙中剩余码元的数目来确定是否要进行速率匹配。
例如,UE可能需要2码元时间来处理速率匹配。当UE通过LBT并且传输时隙中剩余有10个码元时,UE可针对与8个码元相对应的TB大小(而不是准予中所给定的减小的分配大小)进行速率匹配。UE可在处理速率匹配的同时传送2个填充符码元,并继续传送这8个经速率匹配的码元。替换地,当UE在传输时隙中稍晚地通过LBT时,UE可以应用穿孔或者以基于准予中所给定的减小的分配大小来准备的TB继续。另外,UE可以基于UE是否具有针对后续传输时隙的准予来确定是否要在传输时隙结束时传送填充符码元。例如,当UE具有针对后续传输时隙的经调度准予时,UE可在传输时隙结束时传送填充符码元以占用介质。
作为另一示例,考虑对于具有14个码元的时隙,UE被允许在码元0、2、7、10处起始并且需要2码元时间进行速率匹配的情形。UE最初可以创建将PUSCH与所有14个码元的速率匹配。当LBT在码元0处通过时,UE发送完整PUSCH。当LBT在码元2处通过时,UE发送被穿孔的PUSCH,或者发送所有14个PUSCH码元,其中2个码元占用下一时隙。然而,如果LBT在码元0和码元2处未能通过,则UE知晓下一起始码元在码元7处。因此,UE可以创建与7个码元的长度相对应的新的经速率匹配分组。如果LBT仅在码元7处通过,则UE可以传送7个码元的大小减小的分组。如果LBT在码元10处通过,则UE可以通过穿孔来传送大小减小的分组,或者允许一些码元占用下一时隙。
图11是解说根据本公开的一些实施例的UL调度和传输方案1100的时序图。在图11中,x轴以某些恒定单位来表示时间。UE 115和300以及BS 105和400可以采用方案1100。类似于方案500,调度时间线1110示出了BS在(例如开始于时间T0的)传输时隙202(n)中向UE传送UL准予1112。UL准予1112指示(例如开始于时间T1的)传输时隙202(n+1)中具有可允许候选起始码元1150、152和1154(例如,S0、S1和S4)的缩短历时1116(例如,包括约4个码元502)的分配1114。然而,在方案1100中,BS可以允许传输跨越多个传输时隙202,而不是将传输限制在单个传输时隙202内。
传输时间线1120示出了在成功结果的情况下UE在时间T2完成LBT规程1122的示例。时间T2对应于传输时隙202(n+1)中的最后一个可允许起始码元1154。由此,UE可在候选起始码元1154处开始传送UL数据信号1124(例如,PUSCH信号或长PUCCH信号)。如所示出的,UL数据信号1124包括4个码元502的历时,并且跨越传输时隙202(n+2)和202(n+2)。UE可以传送填充符信号1126,直到传输时隙202(n+2)结束。
图12是根据本公开的一些实施例的UL通信方法1200的信令图。方案1200由网络(例如,网络100)中的BS(例如,BS 105和400)和UE(例如,UE 115和300)来实现。方法1200的步骤可由BS和UE的计算设备(例如,处理器、处理电路、和/或其他合适的组件)来执行。如所解说的,方法1200包括数个枚举步骤,但方法1200的各实施例可在枚举步骤之前、之后和之间包括附加步骤。在一些实施例中,枚举步骤中的一者或多者可以被略去或者以不同的次序来执行。
在步骤1210,BS传送用于UL传输的配置。该配置可以指示UE可如何在UL传输中传送填充符信号(例如,填充符信号526、626、726、826、926、1026和1126)连同UL数据信号(例如,UL数据信号524、624、724和1124)。例如,该配置可包括填充符数据(例如,填充符数据730)、DMRS(例如,DMRS 830)、或对应UL数据信号中所携带的数据码元的副本(例如,重复数据码元930)。
该配置可以指示可在UL数据信号之后(例如,如方案500、700、800、900和1100中示出的)、UL数据信号之前(例如,如方案500和600中示出的)、还是UL数据信号之内(例如,如方案1000中示出的)传送填充符信号。
该配置可以指示可因变于传送DMRS的(例如相对于传输时隙202开始的)码元索引还是因变于从对应UL数据信号起始的相对码元索引来生成DMRS。该配置可以指示填充符信号中的DMRS可以是对应UL数据信号中的DMRS的重复、还是从不同加扰序列生成的与对应UL数据信号中的DMRS不同的DMRS。
在步骤1220,BS确定传输时隙(例如,传输时隙202)中针对UE的UL分配(例如,分配514、614、714和1114)。
在步骤1230,BS传送指示该UL分配的消息(例如,UL准予512和612)。在一实施例中,该消息可包括指示在UL分配可以容纳在该传输时隙内的同时该UL分配的起始码元(例如,起始码元550、552、554、604、1150、1152、1154)是固定还是可以变化的比特。在一实施例中,该消息可包括指示UL分配的候选或可允许起始码元集合的比特集合。例如,起始码元可以是码元范围(例如,诸码元502)中在该传输时隙内的任何码元、该范围内的非毗连码元集合。在一些实施例中,可以用被分配用于UL分配的时间和/或频率资源对起始码元信息进行联合编码。在一些实施例中,该配置可以在RRC消息中传送,并且该UL分配可以经由PDCCH中的下行链路控制信息(DCI)消息(例如,UL准予)来传送。在一些实施例中,该配置和该UL分配消息可在同一消息中被传送。
在步骤1240,UE可以例如在该UL分配所位于的传输时隙开始之前执行LBT规程。
在步骤1250,当该LBT成功时,UE可从该UL分配消息中指示的候选起始码元当中选择起始码元。
在步骤1260,UE基于该UL分配消息来传送UL通信信号,该UL通信信号包括UL数据信号(例如,PUSCH或长PUCCH信号)和填充符信号。该UL传输可以类似于方案500、600、700、800、900、1000、1100和/或1200中示出的传输。
图13是根据本公开的各实施例的UL通信方法1300的流程图。方法1300的步骤可以由无线通信设备的计算设备(例如,处理器、处理电路、和/或其他合适组件)或者用于执行各步骤的其他适当装置来执行。例如,无线通信设备(诸如BS 105或BS 400)可以利用一个或多个组件(诸如处理器402、存储器404、上行链路处理模块408、收发机410、调制解调器412、以及一个或多个天线416)来执行方法1300的步骤。方法1300可以采用与分别参照图5、6、7、8、9、10、11和/或12所描述的方案500、600、700、800、900、1000、1100和/或方法1200中的机制类似的机制。如所解说的,方法1300包括数个枚举步骤,但方法1300的各实施例可在枚举步骤之前、之后和之间包括附加步骤。在一些实施例中,枚举步骤中的一者或多者可以被略去或者以不同的次序来执行。
在步骤1310,方法1300包括由第一无线通信设备向第二无线通信设备传送指示传输时隙(例如,传输时隙202)中的UL分配(例如,UL分配514、614、714和1114)的消息。UL分配包括基于传输时隙中的可允许LBT延迟(例如,延迟560、602和1160)的分配大小。第一无线通信设备可以对应于BS 105,并且第二无线通信设备可以对应于UE 115。分配大小可以对应于历时516、616或1116。
在步骤1320,方法1300包括由第一无线通信设备在该传输时隙中从第二无线通信设备接收UL通信信号。UL通信信号包括基于分配大小的UL数据部分(例如,UL数据信号524、624、724和1124)以及与传输时隙中的LBT延迟(例如,第二无线通信设备处的LBT完成时间)相关联的填充符部分(例如,填充符信号526、626、726、826、926、1026和1126)。
填充符部分可在UL数据部分之前、UL数据部分之后、和/或UL数据部分之内被接收。填充符部分可包括UL数据部分中的经编码信息的重复(例如,重复数据码元930)、导频信息(例如,DMRS 830)、和/或填充符数据(例如,填充符数据730)。UL数据部分可包括PUSCH数据(例如,时间信息比特)或长PUCCH数据(例如,控制信息比特)。
在一实施例中,第一无线通信设备可以进一步确定传输时隙内针对基于可允许LBT延迟的UL分配的一个或多个候选起始码元(例如,候选起始码元550、552、554和604)。该消息可按各种格式指示候选起始码元。例如,该消息可以指示候选起始码元的码元范围(例如,从索引为S0到S4的码元502)。该消息可以指示该范围内的可允许码元集合。该集合可包括该范围内的所有码元、该范围内的毗连码元子集、或该范围内的非毗连码元子集。在一实施例中,第一无线通信设备可以进一步基于候选起始码元来执行盲检测。
在一实施例中,第一无线通信设备可以进一步基于UL通信信号中的导频信息来确定信道估计。该导频信息可与加扰序列相关联。该导频信息可以独立于UL数据部分的起始码元地从加扰序列生成。替换地,该导频信息可以因变于传输时隙内的码元索引来从加扰序列生成。
在一实施例中,第一无线通信设备可以进一步传送指示用于在填充符部分中传送以下各项中的至少一者的配置的消息:填充符数据,UL数据的重复,或导频信息。
图14是根据本公开的各实施例的UL通信方法1400的流程图。方法1400的步骤可以由无线通信设备的计算设备(例如,处理器、处理电路、和/或其他合适组件)或者用于执行各步骤的其他适当装置来执行。例如,无线通信设备(诸如UE 115或UE 300)可以利用一个或多个组件(诸如处理器302、存储器304、上行链路处理模块308、收发机310、调制解调器312、以及一个或多个天线316)来执行方法1400的步骤。方法1400可以采用与分别参照图5、6、7、8、9、10、11和/或12所描述的方案500、600、700、800、900、1000和1100、和/或方法1200中的机制类似的机制。如所解说的,方法1400包括数个枚举步骤,但方法1400的各实施例可在枚举步骤之前、之后和之间包括附加步骤。在一些实施例中,枚举步骤中的一者或多者可以被略去或者以不同的次序来执行。
在步骤1410,方法1400包括由第一无线通信设备从第二无线通信设备接收指示传输时隙(例如,传输时隙202)中的UL分配(例如,UL分配514、614、714和1114)的消息。该UL分配包括基于该传输时隙中的可允许LBT延迟(例如,延迟560、602和1160)的分配大小。第一无线通信设备可以对应于UE 115,并且第二无线通信设备可以对应于BS 105。分配大小可以对应于历时516、616或1116。
在步骤1420,方法1400包括由第一无线通信设备在该传输时隙中向第二无线通信设备传送UL通信信号。UL通信信号包括基于分配大小的UL数据部分(例如,UL数据信号524、624和724)以及基于传输时隙中的LBT延迟(例如,第一无线通信设备处的LBT完成时间)的填充符部分(例如,填充符信号526、626、726、826、926和1026)。
填充符部分可在UL数据部分之前、UL数据部分之后、和/或UL数据部分之内被接收。填充符部分可包括UL数据部分中的经编码信息的重复(例如,重复数据码元930)、导频信息(例如,DMRS 830)、和/或填充符数据(例如,填充符数据730)。UL数据部分可包括PUSCH数据或长PUCCH数据。
在一实施例中,第一无线通信设备可以进一步在传送UL通信信号之前执行LBT规程。第一无线通信设备可以基于LBT规程的完成来确定填充符部分的历时。第一无线通信设备可以基于LBT规程的完成时间来从该消息中的多个候选起始码元当中选择起始码元。
在一实施例中,第一无线通信设备可以进一步基于独立于UL数据部分在该传输时隙内的起始码元的加扰序列来在UL数据部分中传送导频信息。
信息和信号可使用各种各样的不同技艺和技术中的任一种来表示。例如,贯穿上面说明始终可能被述及的数据、指令、命令、信息、信号、比特、码元和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
结合本文中的公开描述的各种解说性框以及模块可以用设计成执行本文中描述的功能的通用处理器、DSP、ASIC、FPGA或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可被实现为计算设备的组合(例如,DSP与微处理器的组合、多个微处理器、与DSP核心协同的一个或多个微处理器,或者任何其他此类配置)。
本文中所描述的功能可以在硬件、由处理器执行的软件、固件、或其任何组合中实现。如果在由处理器执行的软件中实现,则各功能可以作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送。其他示例和实现落在本公开及所附权利要求的范围内。例如,由于软件的本质,上述功能可使用由处理器执行的软件、硬件、固件、硬连线或其任何组合来实现。实现功能的特征也可物理地位于各种位置,包括被分布以使得功能的各部分在不同的物理位置处实现。另外,如本文(包括权利要求中)所使用的,在项目列举(例如,以附有诸如“中的至少一个”或“中的一个或多个”之类的措辞的项目列举)中使用的“或”指示包含性列举,以使得例如[A、B或C中的至少一个]的列举意指A或B或C或AB或AC或BC或ABC(即,A和B和C)。
本公开的进一步实施例包括一种无线通信方法,该方法包括:由第一无线通信设备向第二无线通信设备传送指示传输时隙中的上行链路分配的消息,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及由第一无线通信设备在该传输时隙中从第二无线通信设备接收上行链路通信信号,该上行链路通信信号包括基于该分配大小的上行链路数据部分和与该传输时隙中的LBT延迟相关联的填充符部分。
在一些实施例中,其中该接收进一步包括:在该上行链路数据部分之前接收该填充符部分。在一些实施例中,其中该接收进一步包括:在该上行链路数据部分之后接收该填充符部分。在一些实施例中,其中该接收进一步包括:在该上行链路数据部分之内接收该填充符部分。在一些实施例中,其中该接收进一步包括:在该填充符部分中接收导频信息。在一些实施例中,其中该接收进一步包括:在该上行链路数据部分中接收上行链路数据;以及在该填充符部分中接收该上行链路数据的至少一部分的重复。在一些实施例中,该方法进一步包括:由第一无线通信设备确定该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元,其中该消息指示该一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,其中该接收包括:由第一无线通信设备基于该一个或多个候选起始码元来执行盲检测。在一些实施例中,该方法进一步包括:由第一无线通信设备基于该上行链路通信信号中的导频信息来确定信道估计,该导频信息与独立于该上行链路数据部分的起始码元的加扰序列相关联。在一些实施例中,该方法进一步包括:由第一无线通信设备传送指示用于在该填充符部分中传送以下各项中的至少一者的配置的消息:填充符数据,上行链路数据的重复,或导频信息。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
本公开的进一步实施例包括一种无线通信方法,该方法包括:由第一无线通信设备从第二无线通信设备接收指示传输时隙中的上行链路分配的消息,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及由第一无线通信设备在该传输时隙中向第二无线通信设备传送上行链路通信信号,该上行链路通信信号包括基于该分配大小的上行链路数据部分和基于该传输时隙中的LBT延迟的填充符部分。
在一些实施例中,其中该传送进一步包括:在该上行链路数据部分之前传送该填充符部分。在一些实施例中,其中该传送进一步包括:在该上行链路数据部分之后传送该填充符部分。在一些实施例中,其中该传送进一步包括:传送将该填充符部分包括在该上行链路数据部分内的该上行链路通信信号。在一些实施例中,其中该传送进一步包括:在该填充符部分中传送导频信息。在一些实施例中,其中该传送进一步包括:在该上行链路数据部分中传送上行链路数据;以及在该填充符部分中传送该上行链路数据的至少一部分的重复。在一些实施例中,该方法进一步包括:由第一无线通信设备在传送该上行链路通信信号之前执行LBT规程;以及由第一无线通信设备基于该LBT规程的完成时间来确定该填充符部分的历时。在一些实施例中,其中该消息指示该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,该方法进一步包括:由第一无线通信设备基于该LBT规程的该完成时间来从该一个或多个候选起始码元当中选择起始码元,其中该传送包括:在所选择的起始码元开始传送该上行链路数据部分。在一些实施例中,其中该传送包括:基于独立于该传输时隙内的该上行链路数据部分的起始码元的加扰序列来在该上行链路数据部分中传送导频信息。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
本公开的进一步实施例包括一种装置,该装置包括:收发机,其被配置成:向第二无线通信设备传送指示传输时隙中的上行链路分配的消息,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及在该传输时隙中从第二无线通信设备接收上行链路通信信号,该上行链路通信信号包括基于该分配大小的上行链路数据部分和与该传输时隙中的LBT延迟相关联的填充符部分。
在一些实施例中,其中该收发机被进一步配置成:通过在该上行链路数据部分之前接收该填充符部分来接收该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成:通过在该上行链路数据部分之后接收该填充符部分来接收该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成:通过在该上行链路数据部分之内接收该填充符部分来接收该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成:通过在该填充符部分中接收导频信息来接收该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成通过以下方式来接收该上行链路通信信号:在该上行链路数据部分中接收上行链路数据;以及在该填充符部分中接收该上行链路数据的至少一部分的重复。在一些实施例中,该装置进一步包括:处理器,其被配置成:确定该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元,其中该消息指示该一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,其中该处理器被进一步配置成:基于该一个或多个候选起始码元来执行盲检测。在一些实施例中,该装置进一步包括:处理器,其被配置成:基于该上行链路通信信号中的导频信息来确定信道估计,该导频信息与独立于该上行链路数据部分的起始码元的加扰序列相关联。在一些实施例中,其中该收发机被进一步配置成:传送指示用于在填充符部分中传送以下各项中的至少一者的配置的消息:填充符数据,上行链路数据的重复,或导频信息。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
本公开的进一步实施例包括一种装置,该装置包括:收发机,其被配置成:从第二无线通信设备接收指示传输时隙中的上行链路分配的消息,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及在该传输时隙中向第二无线通信设备传送上行链路通信信号,该上行链路通信信号包括基于该分配大小的上行链路数据部分和基于该传输时隙中的LBT延迟的填充符部分。
在一些实施例中,其中该收发机被进一步配置成:通过在该上行链路数据部分之前传送该填充符部分来传送该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成:通过在该上行链路数据部分之后传送该填充符部分来传送该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成:通过在该上行链路数据部分之内传送该填充符部分来传送该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成:通过在该填充符部分中传送导频信息来传送该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成通过以下方式来传送该上行链路通信信号:在该上行链路数据部分中传送上行链路数据;以及在该填充符部分中传送该上行链路数据的至少一部分的重复。在一些实施例中,该装置进一步包括:处理器,其被配置成:在传送该上行链路通信信号之前执行LBT规程;以及基于该LBT规程的完成时间来确定该填充符部分的历时。在一些实施例中,其中该消息指示该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,其中该处理器被进一步配置成:基于该LBT规程的该完成时间来从该一个或多个候选起始码元当中选择起始码元,并且其中该收发机被进一步配置成:通过在所选择的起始码元开始传送该上行链路数据部分来传送该上行链路通信信号。在一些实施例中,其中该收发机被进一步配置成:通过基于独立于该传输时隙内的该上行链路数据部分的起始码元的加扰序列在该上行链路数据部分中传送导频信息来传送该上行链路通信信号。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
本公开的进一步实施例包括一种其上记录有程序代码的计算机可读介质,该程序代码包括:用于使第一无线通信设备向第二无线通信设备传送指示传输时隙中的上行链路分配的消息的代码,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及用于使第一无线通信设备在该传输时隙中从第二无线通信设备接收上行链路通信信号的代码,该上行链路通信信号包括基于该分配大小的上行链路数据部分和与该传输时隙中的LBT延迟相关联的填充符部分。
在一些实施例中,其中用于使第一无线通信设备接收该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分之前接收该填充符部分。在一些实施例中,其中用于使第一无线通信设备接收该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分之后接收该填充符部分。在一些实施例中,其中用于使第一无线通信设备接收该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分之内接收该填充符部分。在一些实施例中,其中用于使第一无线通信设备接收该上行链路通信信号的代码被进一步配置成:在该填充符部分中接收导频信息。在一些实施例中,其中用于使第一无线通信设备接收该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分中接收上行链路数据;以及在该填充符部分中接收该上行链路数据的至少一部分的重复。在一些实施例中,该计算机可读介质进一步包括:用于使第一无线通信设备确定该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元的代码,其中该消息指示该一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,该计算机可读介质进一步包括:用于使第一无线通信设备基于该一个或多个候选起始码元来执行盲检测的代码。在一些实施例中,该计算机可读介质进一步包括:用于使第一无线通信设备基于该上行链路通信信号中的导频信息来确定信道估计的代码,该导频信息与独立于该上行链路数据部分的起始码元的加扰序列相关联。在一些实施例中,该计算机可读介质进一步包括:用于使第一无线通信设备传送指示用于在该填充符部分中传送以下各项中的至少一者的配置的消息的代码:填充符数据,上行链路数据的重复,或导频信息。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
本公开的进一步实施例包括一种其上记录有程序代码的计算机可读介质,该程序代码包括:用于使第一无线通信设备从第二无线通信设备接收指示传输时隙中的上行链路分配的消息的代码,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及用于使第一无线通信设备在该传输时隙中向第二无线通信设备传送上行链路通信信号的代码,该上行链路通信信号包括基于该分配大小的上行链路数据部分和基于该传输时隙中的LBT延迟的填充符部分。
在一些实施例中,其中用于使第一无线通信设备传送该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分之前传送该填充符部分。在一些实施例中,其中用于使第一无线通信设备传送该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分之后传送该填充符部分。在一些实施例中,其中用于使第一无线通信设备传送该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分之内传送该填充符部分。在一些实施例中,其中用于使第一无线通信设备传送该上行链路通信信号的代码被进一步配置成:在该填充符部分中传送导频信息。在一些实施例中,其中用于使第一无线通信设备传送该上行链路通信信号的代码被进一步配置成:在该上行链路数据部分中传送上行链路数据;以及在该填充符部分中传送该上行链路数据的至少一部分的重复。在一些实施例中,该计算机可读介质进一步包括:用于使第一无线通信设备在传送该上行链路通信信号之前执行LBT规程的代码;以及用于使第一无线通信设备基于该LBT规程的完成时间来确定该填充符部分的历时的代码。在一些实施例中,其中该消息指示该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,该计算机可读介质进一步包括:用于使第一无线通信设备基于该LBT规程的该完成时间来从该一个或多个候选起始码元当中选择起始码元的代码,其中用于使第一无线通信设备传送该上行链路通信信号的代码被进一步配置成:在所选择的起始码元开始传送该上行链路数据部分。在一些实施例中,其中用于使第一无线通信设备传送该上行链路通信信号的代码被进一步配置成:基于独立于该传输时隙内的该上行链路数据部分的起始码元的加扰序列来在该上行链路数据部分中传送导频信息。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
本公开的进一步实施例包括一种装备,该装备包括:用于向第二无线通信设备传送指示传输时隙中的上行链路分配的消息的装置,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及用于在该传输时隙中从第二无线通信设备接收上行链路通信信号的装置,该上行链路通信信号包括基于该分配大小的上行链路数据部分和与该传输时隙中的LBT延迟相关联的填充符部分。
在一些实施例中,其中用于接收该上行链路通信信号的装置被进一步配置成:在该上行链路数据部分之前接收该填充符部分。在一些实施例中,其中用于接收该上行链路通信信号的装置被进一步配置成:在该上行链路数据部分之后接收该填充符部分。在一些实施例中,其中用于接收该上行链路通信信号的装置被进一步配置成:在该上行链路数据部分之内接收该填充符部分。在一些实施例中,其中用于接收该上行链路通信信号的装置被进一步配置成:在该填充符部分中接收导频信息。在一些实施例中,其中用于接收该上行链路通信信号的装置被进一步配置成:在该上行链路数据部分中接收上行链路数据;以及在该填充符部分中接收该上行链路数据的至少一部分的重复。在一些实施例中,该装备进一步包括:用于确定该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元的装置,其中该消息指示该一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,其中该装备进一步包括:用于基于该一个或多个候选起始码元来执行盲检测的装置。在一些实施例中,该装备进一步包括:用于基于该上行链路通信信号中的导频信息来确定信道估计的装置,该导频信息与独立于该上行链路数据部分的起始码元的加扰序列相关联。在一些实施例中,该装备进一步包括:用于传送指示用于在该填充符部分中传送以下各项中的至少一者的配置的消息的装置:填充符数据,上行链路数据的重复,或导频信息。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
本公开的进一步实施例包括一种装备,该装备包括:用于从第二无线通信设备接收指示传输时隙中的上行链路分配的消息的装置,该上行链路分配包括基于该传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及用于在该传输时隙中向第二无线通信设备传送上行链路通信信号的装置,该上行链路通信信号包括基于该分配大小的上行链路数据部分和基于该传输时隙中的LBT延迟的填充符部分。
在一些实施例中,其中用于传送该上行链路通信信号的装置被进一步配置成:在该上行链路数据部分之前传送该填充符部分。在一些实施例中,其中用于传送该上行链路通信信号的装置被进一步配置成:在该上行链路数据部分之后传送该填充符部分。在一些实施例中,其中用于传送该上行链路通信信号的装置被进一步配置成:传送将该填充符部分包括在该上行链路数据部分内的该上行链路通信信号。在一些实施例中,其中用于传送该上行链路通信信号的装置被进一步配置成:在该填充符部分中传送导频信息。在一些实施例中,其中用于传送该上行链路通信信号的装置被进一步配置成:在该上行链路数据部分中传送上行链路数据;以及在该填充符部分中传送该上行链路数据的至少一部分的重复。在一些实施例中,该装备进一步包括:用于在传送该上行链路通信信号之前执行LBT规程的装置;以及用于基于该LBT规程的完成时间来确定该填充符部分的历时的装置。在一些实施例中,其中该消息指示该传输时隙内针对基于该可允许LBT延迟的该上行链路分配的一个或多个候选起始码元。在一些实施例中,其中该消息指示该传输时隙内的码元范围,并且其中该一个或多个候选起始码元在该码元范围内。在一些实施例中,其中该装备进一步包括:用于基于该LBT规程的该完成时间来从该一个或多个候选起始码元当中选择起始码元的装置,其中用于传送该上行链路通信信号的装置被进一步配置成:在所选择的起始码元开始传送该上行链路数据部分。在一些实施例中,其中用于传送该上行链路通信信号的装置被进一步配置成:基于独立于该传输时隙内的该上行链路数据部分的起始码元的加扰序列来在该上行链路数据部分中传送导频信息。在一些实施例中,其中该上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
如本领域普通技术人员至此将领会的并取决于手头的具体应用,可以在本公开的设备的材料、装置、配置和使用方法上做出许多修改、替换和变化而不会脱离本公开的精神和范围。有鉴于此,本公开的范围不应当被限定于本文所解说和描述的特定实施例(因为其仅是作为本公开的一些示例),而应当与所附权利要求及其功能等同方案完全相当。

Claims (30)

1.一种无线通信方法,包括:
由第一无线通信设备向第二无线通信设备传送指示传输时隙中的上行链路分配的消息,所述上行链路分配包括基于所述传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及
由所述第一无线通信设备在所述传输时隙中从所述第二无线通信设备接收上行链路通信信号,所述上行链路通信信号包括基于所述分配大小的上行链路数据部分以及与所述传输时隙中的LBT延迟相关联的填充符部分。
2.如权利要求1所述的方法,其特征在于,所述接收进一步包括以下至少一者:
在所述上行链路数据部分之前接收所述填充符部分;
在所述上行链路数据部分之后接收所述填充符部分;或者
在所述上行链路数据部分之内接收所述填充符部分。
3.如权利要求1所述的方法,其特征在于,所述接收进一步包括:
在所述上行链路数据部分中接收一个或多个数据码元,所述一个或多个数据码元包括上行链路数据和第一导频信息;以及
在所述填充符部分中接收以下各项中的至少一者:第二导频信息,或所述一个或多个数据码元中的至少一个数据码元的重复。
4.如权利要求1所述的方法,其特征在于,进一步包括:
由所述第一无线通信设备确定所述传输时隙内针对基于所述可允许LBT延迟的所述上行链路分配的一个或多个候选起始码元。
5.如权利要求4所述的方法,其特征在于,所述消息指示以下各项中的至少一者:
所述一个或多个候选起始码元;或者
所述传输时隙内的码元范围,所述码元范围包括所述一个或多个候选起始码元。
6.如权利要求4所述的方法,其特征在于,所述接收包括:
由所述第一无线通信设备基于所述一个或多个候选起始码元来执行盲检测。
7.如权利要求1所述的方法,其特征在于,进一步包括:
由所述第一无线通信设备基于所述上行链路通信信号中的导频信息来确定信道估计,所述导频信息与独立于所述上行链路数据部分的起始码元的加扰序列相关联。
8.如权利要求1所述的方法,其特征在于,进一步包括:
由所述第一无线通信设备传送指示用于在所述填充符部分中传送以下各项中的至少一者的配置的消息:填充符数据,上行链路数据的重复,或导频信息。
9.如权利要求1所述的方法,其特征在于,所述上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
10.一种无线通信方法,包括:
由第一无线通信设备从第二无线通信设备接收指示传输时隙中的上行链路分配的消息,所述上行链路分配包括基于所述传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及
由所述第一无线通信设备在所述传输时隙中向所述第二无线通信设备传送上行链路通信信号,所述上行链路通信信号包括基于所述分配大小的上行链路数据部分以及基于所述传输时隙中的LBT延迟的填充符部分。
11.如权利要求10所述的方法,其特征在于,所述传送进一步包括以下至少一者:
在所述上行链路数据部分之前传送所述填充符部分;
在所述上行链路数据部分之后传送所述填充符部分;或者
在所述上行链路数据部分之内传送所述填充符部分。
12.如权利要求10所述的方法,其特征在于,所述传送进一步包括:
在所述上行链路数据部分中传送一个或多个数据码元,所述一个或多个数据码元包括上行链路数据和第一导频信息;以及
在所述填充符部分中传送以下各项中的至少一者:第二导频信息,或所述一个或多个数据码元中的至少一个数据码元的重复。
13.如权利要求10所述的方法,其特征在于,进一步包括:
由所述第一无线通信设备在传送所述上行链路通信信号之前执行LBT规程;以及
由所述第一无线通信设备基于所述LBT规程的完成时间来确定所述填充符部分的历时。
14.如权利要求13所述的方法,其特征在于,所述消息指示以下各项中的至少一者:
所述传输时隙内针对基于所述可允许LBT延迟的所述上行链路分配的一个或多个候选起始码元;或者
所述传输时隙内的码元范围,所述码元范围包括在所述码元范围内的所述一个或多个候选起始码元。
15.如权利要求14所述的方法,其特征在于,进一步包括:
由所述第一无线通信设备基于所述LBT规程的所述完成时间来从以下各项中的至少一者选择起始码元:所述码元范围,或所述一个或多个候选起始码元,
其中所述传送包括:在所选择的起始码元开始传送所述上行链路数据部分。
16.如权利要求10所述的方法,其特征在于,所述传送包括:
基于独立于所述传输时隙内的所述上行链路数据部分的起始码元的加扰序列来在所述上行链路数据部分中传送导频信息。
17.如权利要求10所述的方法,其特征在于,所述上行链路数据部分与物理上行链路共享信道(PUSCH)或长物理上行链路控制信道(PUCCH)中的至少一者相关联。
18.一种装备,包括:
用于向第二无线通信设备传送指示传输时隙中的上行链路分配的消息的装置,所述上行链路分配包括基于所述传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及
用于在所述传输时隙中从所述第二无线通信设备接收上行链路通信信号的装置,所述上行链路通信信号包括基于所述分配大小的上行链路数据部分以及与所述传输时隙中的LBT延迟相关联的填充符部分。
19.如权利要求18所述的装备,其特征在于,用于接收所述上行链路通信信号的装置被进一步配置成通过以下至少一者来接收所述上行链路通信信号:
在所述上行链路数据部分之前接收所述填充符部分;
在所述上行链路数据部分之后接收所述填充符部分;或者
在所述上行链路数据部分之内接收所述填充符部分。
20.如权利要求18所述的装备,其特征在于,用于接收所述上行链路通信信号的装置被进一步配置成:
在所述上行链路数据部分中接收一个或多个数据码元,所述一个或多个数据码元包括上行链路数据和第一导频信息;以及
在所述填充符部分中接收以下各项中的至少一者:第二导频信息,或所述一个或多个数据码元中的至少一个数据码元的重复。
21.如权利要求18所述的装备,其特征在于,进一步包括:
用于确定所述传输时隙内针对基于所述可允许LBT延迟的所述上行链路分配的一个或多个候选起始码元的装置,
其中所述消息指示以下各项中的至少一者:
所述一个或多个候选起始码元;或者
所述传输时隙内的码元范围,所述码元范围包括所述一个或多个候选起始码元。
22.如权利要求18所述的装备,其特征在于,进一步包括:
用于基于所述上行链路通信信号中的导频信息来确定信道估计的装置,所述导频信息与独立于所述上行链路数据部分的起始码元的加扰序列相关联。
23.如权利要求18所述的装备,其特征在于,进一步包括:
用于传送指示用于在所述填充符部分中传送以下各项中的至少一者的配置的消息:填充符数据,上行链路数据的重复,或导频信息。
24.一种装备,包括:
用于从第二无线通信设备接收指示传输时隙中的上行链路分配的消息的装置,所述上行链路分配包括基于所述传输时隙中的可允许先听后讲(LBT)延迟的分配大小;以及
用于在所述传输时隙中向所述第二无线通信设备传送上行链路通信信号的装置,所述上行链路通信信号包括基于所述分配大小的上行链路数据部分以及基于所述传输时隙中的LBT延迟的填充符部分。
25.如权利要求24所述的装备,其特征在于,用于传送所述上行链路通信信号的装置被进一步配置成通过以下至少一者来传送所述上行链路通信信号:
在所述上行链路数据部分之前传送所述填充符部分;
在所述上行链路数据部分之后传送所述填充符部分;或者
在所述上行链路数据部分之内传送所述填充符部分。
26.如权利要求24所述的装备,其特征在于,用于传送所述上行链路通信信号的装置被进一步配置成:
在所述上行链路数据部分中传送一个或多个数据码元,所述一个或多个数据码元包括上行链路数据和第一导频信息;以及
在所述填充符部分中传送以下各项中的至少一者:第二导频信息,或所述一个或多个数据码元中的至少一个数据码元的重复。
27.如权利要求24所述的装备,其特征在于,进一步包括:
用于在传送所述上行链路通信信号之前执行LBT规程的装置;以及
用于基于所述LBT规程的完成时间来确定所述填充符部分的历时的装置。
28.如权利要求27所述的装备,其特征在于,所述消息指示以下各项中的至少一者:
所述传输时隙内针对基于所述可允许LBT延迟的所述上行链路分配的一个或多个候选起始码元;或者
所述传输时隙内的码元范围,所述码元范围包括所述一个或多个候选起始码元。
29.如权利要求28所述的装备,其特征在于,进一步包括:
用于基于所述LBT规程的所述完成时间来从以下各项中的至少一者当中选择起始码元的装置:所述一个或多个候选起始码元,或所述码元范围;以及
用于通过在所选择的起始码元开始传送所述上行链路数据部分来传送所述上行链路通信信号的装置。
30.如权利要求24所述的装备,其特征在于,进一步包括:
用于通过基于独立于所述传输时隙内的所述上行数据链路部分的起始码元的加扰序列在所述上行链路数据部分中传送导频信息来传送所述上行链路通信信号的装置。
CN201980015961.0A 2018-03-01 2019-02-27 针对新无线电无执照(nr-u)物理上行链路共享信道(pusch)的多个起始码元 Active CN111819903B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IN201841007755 2018-03-01
IN201841007755 2018-03-01
US16/285,931 US10939431B2 (en) 2018-03-01 2019-02-26 Multiple start symbols for new radio-unlicensed (NR-U) physical uplink shared channel (PUSCH)
US16/285,931 2019-02-26
PCT/US2019/019850 WO2019168995A1 (en) 2018-03-01 2019-02-27 Multiple start symbols for new radio-unlicensed (nr-u) physical uplink shared channel (pusch)

Publications (2)

Publication Number Publication Date
CN111819903A true CN111819903A (zh) 2020-10-23
CN111819903B CN111819903B (zh) 2023-11-03

Family

ID=67768873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980015961.0A Active CN111819903B (zh) 2018-03-01 2019-02-27 针对新无线电无执照(nr-u)物理上行链路共享信道(pusch)的多个起始码元

Country Status (4)

Country Link
US (2) US10939431B2 (zh)
EP (1) EP3759990B1 (zh)
CN (1) CN111819903B (zh)
WO (1) WO2019168995A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147700A1 (zh) * 2021-01-06 2022-07-14 华为技术有限公司 无线通信方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992847B (zh) * 2016-01-20 2021-01-26 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
US10939431B2 (en) 2018-03-01 2021-03-02 Qualcomm Incorporated Multiple start symbols for new radio-unlicensed (NR-U) physical uplink shared channel (PUSCH)
CN110831231B (zh) * 2018-08-10 2021-08-24 展讯通信(上海)有限公司 上行数据传输方法、用户终端及计算机可读存储介质
US11882430B2 (en) * 2020-06-22 2024-01-23 Qualcomm Incorporated Channel sensing procedures for communications at an integrated access and backhaul node
US11889554B2 (en) 2020-06-22 2024-01-30 Qualcomm Incorporated Common channel sensing procedure for communications at an integrated access and backhaul node
WO2022096118A1 (en) * 2020-11-06 2022-05-12 Nokia Technologies Oy Delay information
US11741093B1 (en) 2021-07-21 2023-08-29 T-Mobile Usa, Inc. Intermediate communication layer to translate a request between a user of a database and the database
US11831573B2 (en) 2021-07-28 2023-11-28 Qualcomm Incorporated Sending reference signals during symbol padding
US11924711B1 (en) 2021-08-20 2024-03-05 T-Mobile Usa, Inc. Self-mapping listeners for location tracking in wireless personal area networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160323915A1 (en) * 2015-02-24 2016-11-03 Qualcomm Incorporated Enhanced prach for standalone contention based communications including unlicensed spectrum
WO2017052444A1 (en) * 2015-09-24 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatuses, and systems for interference-dependent cross-carrier scheduling for license assisted access uplink
US20180027590A1 (en) * 2016-07-25 2018-01-25 Qualcomm Incorporated Latency reduction techniques for lte transmission in unlicensed spectrum

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3439348A4 (en) 2016-03-31 2019-10-30 Ntt Docomo, Inc. USER TERMINAL, WIRELESS BASE STATION, AND WIRELESS COMMUNICATION METHOD
US10687313B2 (en) * 2017-05-30 2020-06-16 Huawei Technologies Co., Ltd. Grant-based uplink transmission in unlicensed band
US11324047B2 (en) * 2017-11-10 2022-05-03 Qualcomm Incorporated NR-unlicensed transmission opportunity structure with flexible starting point
US10939431B2 (en) 2018-03-01 2021-03-02 Qualcomm Incorporated Multiple start symbols for new radio-unlicensed (NR-U) physical uplink shared channel (PUSCH)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160323915A1 (en) * 2015-02-24 2016-11-03 Qualcomm Incorporated Enhanced prach for standalone contention based communications including unlicensed spectrum
WO2017052444A1 (en) * 2015-09-24 2017-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatuses, and systems for interference-dependent cross-carrier scheduling for license assisted access uplink
US20180027590A1 (en) * 2016-07-25 2018-01-25 Qualcomm Incorporated Latency reduction techniques for lte transmission in unlicensed spectrum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147700A1 (zh) * 2021-01-06 2022-07-14 华为技术有限公司 无线通信方法和装置

Also Published As

Publication number Publication date
CN111819903B (zh) 2023-11-03
EP3759990B1 (en) 2024-02-14
US20210160868A1 (en) 2021-05-27
US10939431B2 (en) 2021-03-02
US20190274137A1 (en) 2019-09-05
US11382100B2 (en) 2022-07-05
WO2019168995A1 (en) 2019-09-06
EP3759990A1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
CN111819904B (zh) 用于新无线电无执照(nr-u)中的子带接入的方法和装置
JP6744503B2 (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
CN111819903B (zh) 针对新无线电无执照(nr-u)物理上行链路共享信道(pusch)的多个起始码元
US20220190992A1 (en) Physical downlink control channel (pdcch) monitoring with overlapping resources
CN112204915A (zh) 具有动态trp群集的多传送/接收点(多trp)传输
CN111630798A (zh) 适配自主上行链路通信设计
CN114303412A (zh) 用于nr-u数据承载的信道接入优先级
CN112703807A (zh) 作为非许可上行链路和下行链路的回退的许可补充上行链路
CN111630931B (zh) 用于多波束操作中多个前置码传输的随机接入响应(rar)监视
CN114223162B (zh) 两步rach中的pucch资源配置
US11950249B2 (en) Two-stage grant for uplink data transmission in new radio-unlicensed (NR-U)
CN112544111A (zh) 对多trp的sps支持
CN112930654A (zh) 用于新无线电未授权(nr-u)的具有灵活起始位置的上行链路(ul)发射
US11696332B2 (en) Hybrid resource mapping for RAR
CN113273304B (zh) 与不同的先听后讲时间段相关联的通信信号的传输
CN115918136A (zh) 信道状态信息触发和报告
CN115088276A (zh) 多媒体广播多播服务信令和后向兼容性
CN114667699A (zh) 基于一个或多个码本的上行链路控制信息(uci)的传输

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant