CN111819890A - 用信号通知在测量窗口期间的可用性 - Google Patents

用信号通知在测量窗口期间的可用性 Download PDF

Info

Publication number
CN111819890A
CN111819890A CN201980013797.XA CN201980013797A CN111819890A CN 111819890 A CN111819890 A CN 111819890A CN 201980013797 A CN201980013797 A CN 201980013797A CN 111819890 A CN111819890 A CN 111819890A
Authority
CN
China
Prior art keywords
signal
measurement window
during
base station
ssb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980013797.XA
Other languages
English (en)
Other versions
CN111819890B (zh
Inventor
V·A·乔治乌
A·加拉瓦利亚
A·S·若桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN111819890A publication Critical patent/CN111819890A/zh
Application granted granted Critical
Publication of CN111819890B publication Critical patent/CN111819890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

用于在测量窗口期间从基站向用户设备(UE)传送诸如数据信号、控制信号、或两者之类的基站信号的系统、方法、装置和计算机可读存储介质。在一些方面中,UE用信号向服务基站通知其与测量窗口相对应的可用性。在一些方面中,UE用信号向服务基站通知与测量窗口相关联的保护时段。在其它方面中,服务基站用信号向UE通知保护时段。

Description

用信号通知在测量窗口期间的可用性
相关申请的交叉引用
本申请要求享受以下申请的权益:于2018年2月19日递交的、名称为“SIGNALINGAVAILABILITY DURING A MEASUREMENT WINDOW(用信号通知在测量窗口期间的可用性)”的美国临时专利申请第62/632,358号;以及于2019年2月12日递交的、名称为“SIGNALINGAVAILABILITY DURING A MEASUREMENT WINDOW(用信号通知在测量窗口期间的可用性)”的美国非临时专利申请16/273,790,据此将上述两个申请的公开内容通过引用的方式整体地并入本文,正如下文充分阐述一样并且用于所有应用目的。
技术领域
概括而言,本公开内容的各方面涉及无线通信系统,并且更具体地,本公开内容的各方面涉及提供在测量窗口(诸如在其期间传送一个或多个同步信号块(SSB)的测量窗口)期间改进的无线通信和资源利用的方法、系统、装置和网络。
背景技术
无线通信网络被广泛地部署以提供诸如语音、视频、分组数据、消息传送、广播等各种通信服务。这些无线网络可以是能够通过共享可用的网络资源来支持多个用户的多址网络。这样的网络(其通常是多址网络)通过共享可用的网络资源来支持针对多个用户的通信。
无线通信网络可以包括可以支持针对多个用户设备(UE)的通信的多个基站或节点B。UE可以经由下行链路和上行链路来与基站进行通信。下行链路(或前向链路)指代从基站到UE的通信链路,而上行链路(或反向链路)指代从UE到基站的通信链路。
基站可以在下行链路上向UE发送数据和控制信息,和/或可以在上行链路上从UE接收数据和控制信息。在下行链路上,来自基站的传输可能遭遇由于来自邻居基站的传输或者来自其它无线射频(RF)发射机的传输而导致的干扰。在上行链路上,来自UE的传输可能遭遇来自与邻居基站进行通信的其它UE的上行链路传输或者来自其它无线RF发射机的干扰。该干扰可能使下行链路和上行链路两者上的性能降级。
在一些无线网络中,UE可以从服务基站接收控制和数据信号,并且另外,UE可以从一个或多个相邻基站接收同步信号。例如,UE可以使用波束成形来在某个方向上并且在给定的时间点执行移动性测量以接收同步信号。作为说明性的非限制性示例,移动性测量可以由UE用于信号/信道质量测量、链路监测、波束管理等。当UE正在测量窗口期间使用波束成形来接收同步信号时,UE无法从服务基站接收信号(例如,数据和/或控制信号)。为了说明,在毫米波(mm波)中,当UE正在测量窗口期间进行波束成形时,相同的模拟波束用于整个频率范围,并且带间CA中的所有分量载波都不可用于数据/控制信息的传输。当UE正在执行移动性测量时,测量窗口可能存在其中UE没有正在接收同步信号的一个或多个部分。另外,即使UE在测量窗口期间没有执行移动性测量,服务基站也假设UE正在执行移动性测量,并且避免在测量窗口期间向UE发送信号(例如,数据和/或控制信息)。因此,与移动性测量的执行相关联的开销导致无线网络的低效率,诸如低数据速率、减小的容量和低频谱效率。
由于对移动宽带接入的需求持续增长,随着更多的UE接入长距离无线通信网络以及在社区中部署了更多的短距离无线系统,干扰和拥塞网络的可能性也随之增加。研究和开发持续推动无线通信技术的发展,不仅为了满足对移动宽带接入的不断增长的需求,而且为了改善和增强用户对移动通信的体验。
发明内容
下文概述了本公开内容的一些方面,以便提供对所论述的技术的基本理解。该概述不是对本公开内容的所有预期特征的详尽综述,而且既不旨在标识本公开内容的所有方面的关键或重要元素,也不旨在描绘本公开内容的任何或所有方面的范围。其唯一目的是以概述的形式给出本公开内容的一个或多个方面的一些概念,作为稍后给出的更加详细的描述的前序。
在本公开内容的一个方面中,提供了一种用于无线通信的方法。例如,一种方法可以包括:由用户设备(UE)确定是否在测量窗口期间监测同步信号块(SSB)的至少一部分。所述方法还可以包括:由所述UE在所述测量窗口之前发送信号,所述信号指示所述UE是否将在所述测量窗口期间监测所述SSB的所述至少一部分。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括一个或多个处理器,其被配置为:确定是否在用户设备(UE)处在测量窗口期间监测同步信号块(SSB)的至少一部分。所述装置还可以包括耦合到所述一个或多个处理器的发射机,所述发射机被配置为:在所述测量窗口之前发送信号,所述信号指示所述UE是否将在所述测量窗口期间监测所述SSB的所述至少一部分。
在本公开内容的额外方面中,一种存储指令的非暂时性计算机可读介质,所述指令在由一个或多个处理器执行时使得所述一个或多个处理器执行用于无线通信的操作。所述操作可以包括:用于通过用户设备(UE)确定是否在测量窗口期间监测同步信号块(SSB)的至少一部分的代码。所述操作还可以包括:通过所述UE在所述测量窗口之前发送信号,所述信号指示所述UE是否将在所述测量窗口期间监测所述SSB的所述至少一部分。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括:用于确定是否在用户设备(UE)处在测量窗口期间监测同步信号块(SSB)的至少一部分的单元。所述装置还可以包括:用于在所述测量窗口之前发送信号的单元,所述信号指示所述UE是否将在所述测量窗口期间监测所述SSB的所述至少一部分。
在本公开内容的额外方面中,提供了一种用于无线通信的方法。例如,一种方法可以包括:由基站从用户设备(UE)接收信号,所述信号指示所述UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分。所述方法还可以包括:基于所述信号来在所述测量窗口期间从所述基站向所述UE发送数据信号或控制信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括接收机,其被配置为:通过基站从用户设备(UE)接收信号,所述信号指示所述UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分。所述装置还可以包括耦合到所述接收机的一个或多个处理器,所述一个或多个处理器被配置为:基于所述信号来在所述测量窗口期间发起数据信号或控制信号从所述基站到所述UE的传输。
在本公开内容的额外方面中,一种存储指令的非暂时性计算机可读介质,所述指令在由一个或多个处理器执行时使得所述一个或多个处理器执行用于无线通信的操作。所述操作可以包括:通过基站从用户设备(UE)接收信号,所述信号指示所述UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分。所述操作还可以包括:基于所述信号来在所述测量窗口期间从所述基站向所述UE发送数据信号或控制信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括:用于通过基站从用户设备(UE)接收信号的单元,所述信号指示所述UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分。所述装置还可以包括:用于基于所述信号来在所述测量窗口期间从所述基站向所述UE发送数据信号或控制信号的单元。
在本公开内容的额外方面中,提供了一种用于无线通信的方法。例如,一种方法可以包括:由用户设备(UE)确定与在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述方法还可以包括:由所述UE在所述测量窗口之前发送指示所述保护时段的信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括一个或多个处理器,其被配置为:确定与在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述装置还可以包括耦合到所述一个或多个处理器的发射机,所述发射机被配置为:在所述测量窗口之前发送指示所述保护时段的信号。
在本公开内容的额外方面中,一种存储指令的非暂时性计算机可读介质,所述指令在由一个或多个处理器执行时使得所述一个或多个处理器执行用于无线通信的操作。所述操作可以包括:通过用户设备(UE)确定与在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述操作还可以包括:通过所述UE在所述测量窗口之前发送指示所述保护时段的信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括:用于通过用户设备(UE)确定与在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段的单元。所述装置还可以包括:用于通过所述UE在所述测量窗口之前发送指示所述保护时段的信号的单元。
在本公开内容的额外方面中,提供了一种用于无线通信的方法。例如,一种方法可以包括:由基站从用户设备(UE)接收信号,所述信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述方法还可以包括:基于所述保护时段来在所述测量窗口期间从所述基站向所述UE发送数据信号或控制信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括接收机,其被配置为:通过基站从用户设备(UE)接收信号,所述信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述装置还可以包括耦合到所述接收机的一个或多个处理器,所述一个或多个处理器被配置为:基于所述保护时段来在所述测量窗口期间发起数据信号或控制信号从所述基站到所述UE的传输。
在本公开内容的额外方面中,一种存储指令的非暂时性计算机可读介质,所述指令在由一个或多个处理器执行时使得所述一个或多个处理器执行用于无线通信的操作。所述操作可以包括:通过基站从用户设备(UE)接收信号,所述信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述操作还可以包括:基于所述保护时段来在所述测量窗口期间从所述基站向所述UE发送数据信号或控制信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括:用于通过基站从用户设备(UE)接收信号的单元,所述信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述装置还可以包括:用于基于所述保护时段来在所述测量窗口期间从所述基站向所述UE发送数据信号或控制信号的单元。
在本公开内容的额外方面中,提供了一种用于无线通信的方法。例如,一种方法可以包括:由基站确定与用户设备(UE)在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述方法还可以包括:在所述测量窗口之前从所述基站向所述UE发送指示所述保护时段的保护时段信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括一个或多个处理器,其被配置为:通过基站确定与用户设备(UE)在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述装置还可以包括耦合到所述一个或多个处理器的发射机,所述发射机被配置为:在所述测量窗口之前从所述基站向所述UE发送指示所述保护时段的保护时段信号。
在本公开内容的额外方面中,一种存储指令的非暂时性计算机可读介质,所述指令在由一个或多个处理器执行时使得所述一个或多个处理器执行用于无线通信的操作。所述操作可以包括:通过基站确定与用户设备(UE)在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述操作还可以包括:在所述测量窗口之前从所述基站向所述UE发送指示所述保护时段的保护时段信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括:用于通过基站确定与用户设备(UE)在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段的单元。所述装置还可以包括:用于在所述测量窗口之前从所述基站向所述UE发送指示所述保护时段的保护时段信号的单元。
在本公开内容的额外方面中,提供了一种用于无线通信的方法。例如,一种方法可以包括:由用户设备(UE)从基站接收保护时段信号,所述保护时段信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述方法还可以包括:由所述UE基于所述保护时段来确定在所述测量窗口期间所述UE可用于从所述基站接收数据信号或控制信号的时间段。所述方法还可以包括:由所述UE在所述时间段期间从所述基站接收所述数据信号或所述控制信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括接收机,其被配置为:通过用户设备(UE)从基站接收保护时段信号,所述保护时段信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述装置还可以包括一个或多个处理器,其耦合到所述接收机并且被配置为:通过所述UE基于所述保护时段来确定在所述测量窗口期间所述UE可用于从所述基站接收数据信号或控制信号的时间段。
在本公开内容的额外方面中,一种存储指令的非暂时性计算机可读介质,所述指令在由一个或多个处理器执行时使得所述一个或多个处理器执行用于无线通信的操作。所述操作可以包括:通过用户设备(UE)从基站接收保护时段信号,所述保护时段信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述操作还可以包括:通过所述UE基于所述保护时段来确定在所述测量窗口期间所述UE可用于从所述基站接收数据信号或控制信号的时间段。所述操作还可以包括:通过所述UE在所述时间段期间从所述基站接收所述数据信号或所述控制信号。
在本公开内容的额外方面中,提供了一种被配置用于无线通信的装置。例如,所述装置可以包括:用于通过用户设备(UE)从基站接收保护时段信号的单元,所述保护时段信号指示与所述UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。所述装置还可以包括:用于通过所述UE基于所述保护时段来确定在所述测量窗口期间所述UE可用于从所述基站接收数据信号或控制信号的时间段的单元。
对于本领域技术人员来说,在结合附图回顾本发明的特定示例性实施例的以下描述时,本发明的其它方面、特征和实施例将变得显而易见。虽然下文可能关于某些实施例和图论述了本发明的特征,但是本发明的所有实施例可以包括本文论述的有利特征中的一个或多个。换句话说,虽然可能将一个或多个实施例论述为具有某些有利特征,但是这种特征中的一个或多个还可以根据本文论述的本发明的各个实施例来使用。以类似的方式,虽然下文可能将示例性实施例论述为设备、系统或方法实施例,但是应当理解的是,这样的示例性实施例可以在各种设备、系统和方法中实现。
附图说明
对本公开内容和论述的性质和优点的进一步的理解可以参考以下附图来实现。在附图中,相似的组件或特征可以具有相同的附图标记。此外,相同类型的各种组件可以通过在附图标记之后跟随破折号和第二标记进行区分,所述第二标记用于在相似组件之间进行区分。如果在说明书中仅使用了第一附图标记,则该描述适用于具有相同的第一附图标记的相似组件中的任何一个,而不考虑第二附图标记如何。
图1是示出根据本公开内容的一些实施例的无线通信系统的细节的框图。
图2是概念性地示出根据本公开内容的一些实施例来配置的基站/gNB和UE的设计的框图。
图3是示出在测量窗口期间从基站向UE传送基站信号(例如,数据信号、控制信号、或两者)的各方面的框图;
图4是示出用于指示UE是否将在测量窗口期间监测同步信号块(SSB)的一部分的方法的各方面的流程图;
图5是示出用于传送保护时段的方法的各方面的流程图;
图6是用于由UE在测量窗口期间接收基站信号(例如,数据信号、控制信号、或两者)的示例性方法的流程图;
图7是示出用于在测量窗口期间向UE传送基站信号(例如,数据信号、控制信号、或两者)的方法的各方面的流程图;
图8是示出用于在测量窗口期间向UE传送基站信号(例如,数据信号、控制信号、或两者)的另一方法的各方面的流程图;以及
图9是示出用于传送保护时段的另一方法的各方面的流程图。
具体实施方式
以下结合附图阐述的详细描述旨在作为对各种可能配置的描述,而不旨在限制本公开内容的范围。确切而言,出于提供对所发明的主题的透彻理解的目的,详细描述包括特定细节。对于本领域技术人员将显而易见的是,并不是在每种情况下都需要这些特定细节,以及在一些实例中,为了清楚的呈现,公知的结构和组件以框图形式示出。
概括而言,本公开内容涉及提供或参与一个或多个无线通信系统(也被称为无线通信网络)中的两个或更多个无线设备之间的通信。在各个实施例中,所述技术和装置可以用于诸如以下各项的无线通信网络以及其它通信网络:码分多址(CDMA)网络、时分多址(TDMA)网络、频分多址(FDMA)网络、正交FDMA(OFDMA)网络、单载波FDMA(SC-FDMA)网络、长期演进(LTE)网络、全球移动通信系统(GSM)网络。如本文所描述的,术语“网络”和“系统”可以根据特定的上下文来互换地使用。
例如,CDMA网络可以实现诸如通用陆地无线接入(UTRA)、cdma2000等的无线电技术。UTRA包括宽带CDMA(WCDMA)和低码片率(LCR)。cdma2000涵盖IS-2000、IS-95和IS-856标准。
例如,TDMA网络可以实现诸如GSM之类的无线电技术。3GPP定义了针对GSM EDGE(GSM演进增强型数据速率)无线接入网络(RAN)(也被表示为GERAN)的标准。GERAN是GSM/EDGE连同将基站(例如,Ater和Abis接口)和基站控制器(A接口等)结合的网络的无线电组成部分。无线接入网络表示GSM网络的组成部分,通过无线接入网络,电话呼叫和分组数据从公共交换电话网络(PSTN)和互联网被路由到用户手机(也被称为用户终端或用户设备(UE))以及从用户手机被路由到PSTN和互联网。移动电话运营商的网络可以包括一个或多个GERAN,在UMTS/GSM网络的情况下,GERAN可以与通用陆地无线接入网络(UTRAN)耦合。运营商网络还可以包括一个或多个LTE网络和/或一个或多个其它网络。各种不同的网络类型可以使用不同的无线电接入技术(RAT)和无线电接入网络(RAN)。
OFDMA网络可以实现诸如演进型UTRA(E-UTRA)、IEEE 802.11、IEEE 802.16、IEEE802.20、闪速-OFDM等的无线电技术。UTRA、E-UTRA和GSM是通用移动电信系统(UMTS)的一部分。具体地,LTE是UMTS的使用E-UTRA的版本。在来自名称为“第三代合作伙伴计划”(3GPP)的组织提供的文档中描述了UTRA、E-UTRA、GSM、UMTS和LTE,以及在来自名称为“第三代合作伙伴计划2”(3GPP2)的组织的文档中描述了cdma2000。这些各种无线电技术和标准是已知的或者是正在开发的。例如,第三代合作伙伴计划(3GPP)是在各电信协会组之间的以定义全球适用的第三代(3G)移动电话规范为目标的合作。3GPP长期演进(LTE)是以改进通用移动电信系统(UMTS)移动电话标准为目标的3GPP计划。3GPP可以定义针对下一代移动网络、移动系统和移动设备的规范。
为了清楚起见,下文可能参照示例性LTE实现方式或者以LTE为中心的方式描述了装置和技术的某些方面,并且LTE术语可能在下文描述的部分中用作说明性示例;然而,该描述并不旨在限于LTE应用。事实上,本公开内容涉及在使用不同的无线电接入技术或无线电空中接口的网络之间对无线频谱的共享接入。
此外,应当理解的是,在操作中,根据本文的概念来适配的无线通信网络可以利用许可频谱或免许可频谱的任何组合来操作,这取决于负载和可用性。因此,对于本领域技术人员将显而易见的是,本文描述的系统、装置和方法可以应用于除了所提供的特定示例之外的其它通信系统和应用。
虽然在本申请中通过说明一些示例来描述各方面和各实施例,但是本领域技术人员将理解的是,额外的实现方式和用例可以发生在许多不同的布置和场景中。本文描述的创新可以跨越许多不同的平台类型、设备、系统、形状、大小、封装布置来实现。例如,实施例和/或使用可以经由集成芯片实施例和/或其它基于非模块组件的设备(例如,终端用户装置、运载工具、通信设备、计算设备、工业装备、零售/购买设备、医疗设备、启用AI的设备等)来发生。虽然一些示例可能具体地或者可能没有具体地涉及用例或应用,但是可以存在所描述的创新的各种各样的适用性。实现方式的范围可以从芯片级或模块化组件到非模块化、非芯片级实现方式,并且进一步到并入一个或多个描述的方面的聚合式、分布式或OEM装置或系统。在一些实际设置中,并入所描述的方面和特征的设备还可以必要地包括用于实现和实施所要求保护和描述的实施例的额外的组件和特征。目的在于,本文描述的创新可以在各种各样的实现方式中实施,其包括具有不同大小、形状和组成的大型/小型设备二者、芯片级组件、多组件系统(例如,RF链、通信接口、处理器)、分布式布置、终端用户装置等。
图1示出了根据一些实施例的用于通信的无线网络100。虽然对本公开内容的技术的论述是关于LTE-A网络(在图1中示出)提供的,但是这仅是出于说明性目的。所公开的技术的原理可以用在其它网络部署中,包括第五代(5G)网络。如本领域技术人员所明白的,在图1中出现的组件可能在其它网络布置(包括例如蜂窝式网络布置和非蜂窝式网络布置(例如,设备到设备、或对等、或自组织网络布置等))中具有相关的对应物。
返回图1,无线网络100包括多个基站,诸如,可以包括演进型节点B(eNB)或G节点B(gNB)。这些可以被称为gNB 105。gNB可以是与UE进行通信的站并且还可以被称为基站、节点B、接入点等等。每个gNB 105可以提供针对特定地理区域的通信覆盖。在3GPP中,术语“小区”可以指代gNB的该特定地理覆盖区域和/或为该覆盖区域服务的gNB子系统,这取决于使用该术语的上下文。在本文中的无线网络100的实现方式中,gNB105可以与相同的运营商或不同的运营商相关联(例如,无线网络100可以包括多个运营商无线网络),并且可以使用与邻居小区所使用的频率相同的频率中的一个或多个频率(例如,许可频谱、免许可频谱或其组合中的一个或多个频带)来提供无线通信。
gNB可以提供针对宏小区或小型小区(诸如微微小区或毫微微小区)和/或其它类型的小区的通信覆盖。宏小区通常覆盖相对大的地理区域(例如,半径若干公里)并且可以允许由具有对网络提供商的服务订制的UE进行的不受限制的访问。小型小区(诸如微微小区)将通常覆盖相对较小的地理区域并且可以允许由具有对网络提供商的服务订制的UE进行的不受限制的访问。小型小区(诸如毫微微小区)将通常覆盖相对小的地理区域(例如,住宅)并且除了受限制的访问之外,还可以提供由具有与该毫微微小区的关联的UE(例如,封闭用户组(CSG)中的UE,针对住宅中的用户的UE等)进行的受限制的访问。用于宏小区的gNB可以被称为宏gNB。用于小型小区的gNB可以被称为小型小区gNB、微微gNB、毫微微gNB或家庭gNB。在图1中示出的示例中,gNB 105a、105b和105c分别是用于宏小区110a、110b和110c的宏gNB。gNB 105x、105y和105z是小型小区gNB,它们可以包括分别向小型小区110x、110y和110z提供服务的微微gNB或毫微微gNB。gNB可以支持一个或多个(例如,两个、三个、四个等)小区。
无线网络100可以支持同步操作或异步操作。对于同步操作,gNB可以具有相似的帧定时,并且来自不同gNB的传输在时间上可以近似地对齐。对于异步操作,gNB可以具有不同的帧定时,并且来自不同gNB的传输在时间上可以不对齐。在一些场景中,网络可以被启用或被配置为处理同步操作或异步操作之间的动态切换。
UE 115散布于整个无线网络100中,并且每个UE可以是静止的或移动的。应当认识到的是,尽管在由第三代合作伙伴计划(3GPP)发布的标准和规范中,移动装置通常被称为用户设备(UE),但是这样的装置还可以被本领域技术人员称为移动站(MS)、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户站、接入终端(AT)、移动终端、无线终端、远程终端、手机、终端、用户代理、移动客户端、客户端或某种其它适当的术语。在本文档内,“移动”装置或UE未必需要具有移动能力,而可以是静止的。移动装置的一些非限制性示例(诸如UE 115中的一者或多者的实施例)可以包括移动电话、蜂窝(小区)电话、智能电话、会话发起协议(SIP)电话、膝上型计算机、个人计算机(PC)、笔记本计算机、上网本、智能本、平板型计算机和个人数字助理(PDA)。移动装置可以另外是“物联网”(IoT)设备,诸如汽车或其它交通工具、卫星无线电单元、全球定位系统(GPS)设备、物流控制器、无人机、多翼飞行器、四翼飞行器、智能能量或安全设备、太阳能电池板或太阳能阵列、市政照明、用水或其它基础设施;工业自动化和企业设备;消费者和可穿戴设备,例如,眼镜、可穿戴相机、智能手表、健康或健身跟踪器、哺乳动物可移植设备、姿势跟踪设备、医疗设备、数字音频播放器(例如,MP3播放器)、相机、游戏控制台等;以及数字家庭或智能家庭设备,诸如家庭音频、视频和多媒体设备、电器、传感器、自动售货机、智能照明、家庭安全系统、智能仪表等。移动装置(例如UE 115)能够与宏gNB、微微gNB、毫微微gNB、中继站等进行通信。在图1中,闪电(例如,通信链路125)指示UE与服务gNB(其是被指定为在下行链路和/或上行链路上为UE进行服务的gNB)之间的无线传输、或gNB之间的期望传输。虽然回程通信134被示为可以在gNB之间发生的有线回程通信,但是应当认识到的是,回程通信可以另外或替代地由无线通信来提供。
图2示出了基站/gNB 105和UE 115的设计的框图。这些可以是图1中的基站/gNB之一和UE之一。对于受限关联场景(如上文所提及的),gNB105可以是图1中的小型小区gNB105z,并且UE 115可以是UE 115z,为了接入小型小区gNB 105z,UE 115z被包括在用于小型小区gNB 105z的可接入UE的列表中。gNB 105还可以是某种其它类型的基站。gNB 105可以被配备有天线234a至234t,并且UE 115可以被配备有天线252a至252r。
在gNB 105处,发送处理器220可以从数据源212接收数据以及从控制器/处理器240接收控制信息。控制信息可以是针对物理广播信道(PBCH)、物理下行链路控制信道(PDCCH)等的。数据可以是针对物理下行链路共享信道(PDSCH)等的。发送处理器220可以分别地处理(例如,编码和符号映射)数据和控制信息以获得数据符号和控制符号。发送处理器220还可以生成例如用于主同步信号(PSS)和辅同步信号(SSS)的参考符号。发送(TX)多输入多输出(MIMO)处理器230可以对数据符号、控制符号和/或参考符号执行空间处理(例如,预编码)(如果适用的话),并且可以向调制器(MOD)232a至232t提供输出符号流。每个调制器232可以(例如,针对OFDM等)处理各自的输出符号流以获得输出采样流。每个调制器232可以另外或替代地处理(例如,转换到模拟、放大、滤波以及上变频)输出采样流以获得下行链路信号。来自调制器232a至232t的下行链路信号可以是分别经由天线234a至234t来发送的。
在UE 115处,天线252a至252r可以从gNB 105接收下行链路信号,并且可以分别向解调器(DEMOD)254a至254r提供接收的信号。每个解调器254可以调节(例如,滤波、放大、下变频以及数字化)各自接收的信号以获得输入采样。每个解调器254可以(例如,针对OFDM等)进一步处理输入采样以获得接收的符号。MIMO检测器256可以从所有解调器254a至254r获得接收的符号,对所接收的符号执行MIMO检测(如果适用的话),以及提供检测到的符号。接收处理器258可以处理(例如,解调、解交织以及解码)所检测到的符号,向数据宿260提供针对UE 115的经解码的数据,以及向控制器/处理器280提供经解码的控制信息。
在上行链路上,在UE 115处,发送处理器264可以接收并且处理来自数据源262的数据(例如,用于PUSCH)和来自控制器/处理器280的控制信息(例如,用于PUCCH)。发送处理器264还可以生成用于参考信号的参考符号。来自发送处理器264的符号可以被TX MIMO处理器266预编码(如果适用的话),被调制器254a至254r(例如,针对SC-FDM等)进一步处理,以及被发送给gNB 105。在gNB 105处,来自UE 115的上行链路信号可以被天线234接收,被解调器232处理,被MIMO检测器236检测(如果适用的话),以及被接收处理器238进一步处理,以获得由UE 115发送的经解码的数据和控制信息。处理器238可以向数据宿239提供经解码的数据,并且向控制器/处理器240提供经解码的控制信息。
控制器/处理器240和280可以分别指导gNB 105和UE 115处的操作。控制器/处理器240和/或gNB 105处的其它处理器和模块、和/或控制器/处理器280和/或UE 115处的其它处理器和模块可以执行或指导用于本文描述的技术的各个过程的执行。存储器242和282可以分别存储用于gNB 105和UE 115的数据和程序代码。调度器244可以调度UE进行下行链路和/或上行链路上的数据传输。
参照图3,示出了说明无线网络300的框图,其中减少了由于使用波束成形的UE测量而引起的开销。无线网络包括第一基站305、第二基站310和UE 315。第一基站305可以是关于UE 315的服务gNB,并且第二基站310可以是关于UE 315的相邻gNB。第一基站305和第二基站310可以包括或对应于图1-图2的gNB 105之一。因此,第一基站305和第二基站310中的每一者可以包括一个或多个处理器、接收机、发射机等,如参照图1-图2的gNB 105所描述的。UE 315可以包括或对应于图1-图2的UE 115之一。因此,UE 315可以包括一个或多个处理器、接收机、发射机等,如参照图1-图2的UE 115所描述的。
在无线系统300中,基站305、310和UE 315可以将波束成形用于无线通信。例如,基站305、310中的每一者可以使用诸如模拟波束成形(例如,TX波束)之类的波束成形来发送同步信号(SS)。为了说明,基站305、310可以在FR1(低于6)和/或FR2(mm波)中发送SS。SS可以包括一个或多个SS块(SSB),其可以被分组为SSB集合(SSBS)。例如,特定基站可以发送包括针对该基站所发送的每个波束的SSB的SS,并且特定基站可以向UE 315指示哪些SSB被包括在(由该特定基站支持的)特定小区中。因此,UE 315能够确定将SS用于小区检测,诸如以识别针对特定基站的信号来自何处,并且然后监听那些信号。另外或替代地,SS还可以被UE315用于其它目的。例如,在5GNR网络中,SS还可以用于其它测量,诸如与链路监测、信号质量确定和波束管理有关的测量。
UE 315在与诸如第一基站305之类的服务基站进行通信时可以使用相对窄的波束。与当UE 315正在与第一基站305进行通信时相比,UE 315在扫描来自其它基站(诸如相邻基站(例如,第二基站310))的SS时可以使用相对宽的波束(例如,伪全向PO)。另外或替代地,用于扫描来自相邻基站的SS的波束可以具有与用于与服务基站进行通信的波束相比较低的增益。为了扫描SS,UE 315可以沿不同方向扫描RX波束。例如,在三个不同的时间实例(例如,三个测量窗口)上,UE 315可以将RX波束引导在三个不同的方向上以搜索来自相邻基站的SS。
当UE 315正在不同方向上扫描SS(例如,SSB)时,UE 315的RX波束不是指向服务基站的,并且无法从服务基站(诸如第一基站305)接收数据/控制信息,另外,为了在测量窗口期间监听(例如,监测)来自相邻基站的SS,UE 315必须考虑与相邻基站的定时问题(例如,非同步)和/或传播延迟。例如,如果UE 315距第一基站305 200米并且距第二基站3101km,则UE 315必须考虑改变RX波束方向的时间和来自第二基站310的信号的传播延迟。因此,UE315提供了也被称为保护时段的余量,使得UE 315不会错过与来自服务基站的符号相比要早或晚的来自相邻基站的SS。
在一些情况下,在UE 315已经识别了一个或多个相邻基站之后,UE 315知道一个或多个相邻基站提供了哪些SS(例如,SSB)。因此,为了更新与特定相邻基站相关联的测量,UE 315知道要从特定相邻基站接收什么SSB以及何时SSB与测量窗口一起出现。在一些实现方式中,为了更新特定测量,UE 315需要接收SSB的一个或多个符号(例如,少于SSB的所有符号)。因此,UE 315仅需要在测量窗口的一部分期间将其RX波束引导在特定相邻基站的方向上。
UE 315被配置为确定UE 315是否要处理(例如,监测、接收和处理)SSB的至少一部分。UE 315可以向第一基站305提供诸如信号350之类的信令,该信令指示在测量窗口期间要处理和/或不处理什么SSB。在一些实现方式中,除非第一基站305接收到信号350,否则第一基站305可以假设UE 315不可用于在测量窗口期间从第一基站305接收基站信号(例如,数据信号、控制信号、或两者)。替代地,除非第一基站305接收到信号350,否则第一基站305可以假设UE 315可用于在测量窗口期间从第一基站305接收基站信号(例如,数据信号、控制信号、或两者)。
为了指示UE 315是否可用,信号350可以包括或表示一个或多个比特(例如,一个或多个比特值)。例如,UE 315可以将信号350作为控制信号的一部分发送给第一基站305。一个或多个比特在本文中可以被称为SSB监测指示符352。一个或多个比特的值可以指示UE315是否要处理SSB的一个或多个符号,处理整个SSB、或处理多个测量窗口的SSB。在一些实现方式中,作为说明性的非限制性示例,每个SSB可以包括14个符号。逻辑一的比特值可以对应于关于UE 315要处理特定SSB的指示。替代地,逻辑零的比特值可以对应于关于UE 315要处理特定SSB的指示。
在一些实现方式中,SSB监测指示符352可以包括单个比特,该单个比特向第一基站305指示UE 315在整个测量窗口期间是否可用。在其它实现方式中,SSB监测指示符352可以包括位图,其中位图的每个比特对应于不同的SSB。在又一实现方式中,SSB监测指示符352可以包括位图,其中位图的每个比特对应于不同的符号。SSB监测指示符352可以与单个测量窗口或多个测量窗口相关联。另外,在一些实现方式中,信号350可以包括对保护时段354的指示。在特定实现方式中,保护时段354可以由在SSB监测指示符352之前或之后包括的标记来指示。该标记可以对应于单个比特或多个比特。
在操作期间,UE 315可以确定是否要在测量窗口期间监测(和/或处理)同步信号块(SSB)的一部分。例如,第二基站310可以在测量窗口期间发送SSB的一个或多个符号。基于对是否监测(和/或处理)SSB的一部分的确定,UE 315可以生成并且发送信号350。例如,UE 315可以在测量窗口之前向第一基站305发送信号350。在一些实现方式中,信号350可以包括指示UE 315的确定的SSB监测指示符352。
在图3的无线网络300的示出的右侧描绘了信号350(例如,SSB监测指示符352)的示例380-388。如本文参照示例380-380描述的,值0指示UE 315在测量窗口期间可用于从第一基站305接收数据。然而,应当理解,这并不旨在是限制性的,并且其它实现中,值0可以指示UE 315在测量窗口期间不可用于从第一基站接收数据。
在信号350的第一示例380中,SSB监测指示符352包括单个比特。如第一示例380中所示,信号350指示UE 315在测量窗口期间将不监测整个SSB集合。替代地,如果SSB监测指示符的值是0,则信号350将指示UE 315将在测量窗口的整个SSB集合期间进行监测。
在信号350的第二示例382中,信号350(例如,SSB监测指示符352)包括比特掩码,其中每个比特对应于测量窗口期间的不同SSB。如图所示,信号350(例如,最左边的比特位置)指示UE 315在测量窗口期间将不监测整个对应SSB。另外,信号350(例如,第二最左边的比特位置)指示UE 315将在测量窗口的整个对应SSB期间进行监测。因此,信号350指示UE315在测量窗口期间将监测整个第一SSB并且将不监测整个第二SSB。
在信号350的第三示例384中,信号350(例如,SSB监测指示符352)包括表示两个SSB的比特掩码。如第三示例384所示,每个比特对应于SSB的不同符号。参照最左边的SSB的比特,信号350指示UE 315在测量窗口期间将监测SSB的第一部分(例如,第一符号集合),并且在测量窗口期间将不监测SSB的第二部分(例如,第二符号集合)。另外,应注意,最左边的SSB的比特指示UE 315将监测对应SSB的(一个或多个连续符号的)四个不同部分。参照最右边的SSB的比特,信号350指示UE 315在测量窗口期间将不监测整个对应的SSB。
在信号350的第四示例386中,信号350包括对应于第一测量窗口的第一比特掩码和对应于第二测量窗口的第二比特掩码。如图所示,每个比特掩码对应于第二示例382的比特掩码。替代地,在其它实现方式中,每个比特掩码可以对应于第三示例384的比特掩码。在信号350的第五示例388中,信号350包括对应于SSB监测指示符352(例如,可用性指示符)和保护时段指示符(对应于保护时段354)的比特掩码。如图所示,比特掩码对应于第二示例382的比特掩码。替代地,在其它实现方式中,比特掩码可以对应于第三示例384的比特掩码。保护时段指示符的值可以标识由UE 315确定的保护时段354的持续时间。要注意,可以在示例380-388中的任何一个示例之前或之后包括保护时段指示符。
在信号350的传输之后并且基于对是否监测(和/或处理)SSB的一部分的确定,UE315配置用于波束成形的接收机,并且在测量窗口的第一时间段期间将波束成形接收机指向第二基站310。在第一时间段期间,第二基站310发送包括一个或多个符号的SSB 362,并且UE 315接收SSB 362。作为说明性的非限制性示例,UE 315可以处理SSB 362以确定信号/信道质量测量、链路监测、波束管理等。
在信号350的传输之后并且基于对是否监测(和/或处理)SSB的一部分的确定,UE315将接收机配置为在测量窗口的第二时间段期间从第一基站305接收基站信号370。例如,基站信号370可以包括数据信号、控制信号、或两者。在第二时间段期间,UE 315从第一基站305接收基站信号370,并且处理数据或控制信号以识别数据和/或控制信息。
在一些实现方式中,UE 315可以确定与测量窗口相关联的保护时段354(例如,保护时段值/持续时间)。为了说明,UE 315可以基于由UE标识的传播延迟、与UE相关联的波束切换延迟、或两者来确定保护时段354。在特定实现方式中,UE基于在不同小区的接收到的SSB之间的最大时间差来确定保护时段。UE 315可以向第一基站305发送对保护时段354的指示。例如,如虚线框所指示的,UE 315可以可选地在信号350中包括对保护时段354的指示。
在一些实现方式中,第一基站305可以确定与测量窗口相关联的保护时段。为了说明,第一基站305可以基于在基站之间的距离和其同步水平来确定保护时段。第一基站305可以生成保护时段信号372,该保护时段信号372指示与测量窗口相关联的最大允许保护时段。第一基站305可以向UE 315发送保护时段信号372。在一些实现方式中,UE 315可以将对保护时段354的指示提供给第一基站305,并且第一基站305可以将保护时段信号372提供给UE 315。在这样的实现方式中,UE 315可以使用保护时段354。例如,UE 315可以基于关于保护时段354小于或等于由保护时段信号372指示的最大允许保护时段的确定来使用保护时段354。替代地,UE 315可以使用由保护时段信号372指示的保护时段。例如,UE 315可以使用最大允许保护时段作为保护时段。
在特定实现方式中,UE 315包括一个或多个处理器,其被配置为:确定是否在UE315处在测量窗口期间监测同步信号块(SSB)的至少一部分。UE 315还包括耦合到一个或多个处理器的发射机,该发射机被配置为:在测量窗口之前发送指示UE 315是否将在测量窗口期间监测SSB的至少一部分的信号。在UE 315的一些实现方式中,UE 315还可以包括接收机,其耦合到一个或多个处理器并且被配置为接收无线信号,并且一个或多个处理器还被配置为选择性地将接收机配置用于波束成形。接收机可以包括一个或多个天线或耦合到一个或多个天线。另外或替代地,UE 315可以包括存储器(例如,计算机可读存储介质),其耦合到一个或多个处理器并且存储可由一个或多个处理器执行的一个或多个指令。
在特定实现方式中,第一基站305包括接收机,其被配置为:通过第一基站305从UE315接收指示UE 315是否将在测量窗口期间监测同步信号块(SSB)的至少一部分的信号。第一基站305还包括耦合到接收机的一个或多个处理器,该一个或多个处理器被配置为:基于该信号来在测量窗口期间发起从第一基站305到UE 315的数据或控制信号的传输。
在另一特定实现方式中,UE 315包括一个或多个处理器,其被配置为:确定与在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。UE 315还包括耦合到一个或多个处理器的发射机,该发射机被配置为:在测量窗口之前发送指示保护时段的信号。
在另一特定实现方式中,第一基站305包括接收机,其被配置为:通过第一基站305从UE 315接收信号,该信号指示与UE 315在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。第一基站305还包括耦合到接收机的一个或多个处理器,该一个或多个处理器被配置为:基于保护时段来在测量窗口期间发起从基站305到UE 315的数据或控制信号的传输。
在另一特定实现方式中,第一基站305包括一个或多个处理器,其被配置为:通过第一基站305确定与UE 315在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。第一基站305还包括耦合到一个或多个处理器的发射机,该发射机被配置为:在测量窗口之前从第一基站305向UE 315发送指示保护时段的保护时段信号。
在另一特定实现方式中,UE 315包括接收机,其被配置为:通过UE 315从第一基站305接收保护时段信号,该保护时段信号指示与UE 315在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。UE 315还包括一个或多个处理器,其耦合到接收机并且被配置为:通过UE 315基于保护时段来确定在测量窗口期间UE 315可用于从第一基站305接收数据或控制信号的时间段。
在无线网络300的一些实现方式中,在非CA情况下,SMTC窗口(例如,测量时间配置窗口)与测量间隙不重叠。在这样的实现方式中,在FR2频率内SS-RSRP/SINR测量中,不期望UE(例如,315)在要被测量的SSB符号(在SMTC窗口持续时间内在每个连续的SSB符号之前的X个符号以及在每个连续的SSB符号之后的X个符号(假设针对FR2始终启用useServingCellTimingForSync),其中X为零或正值(例如,正整数))上发送PUCCH/PUSCH或接收PDCCH/PDSCH。为了说明,作为说明性的非限制性示例,在FR2频率内SS-RSRP/SINR测量中,不期望UE(例如,315)在要被测量的SSB符号(在SMTC窗口持续时间内在每个连续的SSB符号之前的X个符号以及在每个连续的SSB符号之后的X个符号(假设针对FR2启用或始终启用useServingCellTimingForSync))上发送PUCCH/PUSCH或接收PDCCH/PDSCH。注意,在一些实现方式中,对应于X的时间段可以被称为保护时段。
在一些实现方式中,X可以等于1。在其它实现方式中,X可以不大于1。在其它实现方式中,X可以大于1。为了说明,X可以大于或等于4。在X可能是相对大的值(例如,大于4)的一些实现方式中,SMTC窗口内的符号(例如,所有符号)可能不可用于数据发送/接收。在X可能是相对大的值(例如,大于4)的其它实现方式中,在包含SSB的时隙内的符号(例如,所有符号)可能不可用于数据发送/接收。关于FR2,保护时段可以被选择使得UE(例如,315)能够选择适当的RX波束以执行SSB测量或数据/控制处理,RX波束可以是不同的。在一些实现方式中,当考虑当前小区同步要求时间段以及FR2中用于数据/控制的最短符号持续时间时,X可以被选择或确定使得X不大于1。
在特定实现方式中,在间隙外部在FR2中用于UE测量的“X”的值不大于1(例如,小于或等于1)。当X相对小时并且当在每个SSB时机处消隐大量符号时,无线网络300可能经历一些低效率,而与UE(例如,315)的实际需求无关。这样的情况的说明性的非限制性示例包括:(1)所有携带SSB的符号以及它们周围的可能的保护时段对于数据/控制都是消隐的,因此在SSB的周期性处理期间(例如,每20ms中的5ms)几乎没有机会仍然传送信息;(2)消隐影响mm波中在带内CA中的所有分量载波,因为相同的模拟波束用于整个频率范围,这进一步减少了在CA情况下的机会;(3)即使UE不使用测量窗口,gNB也不知道这一点,并且需要针对配置的模式假设UE无法处理任何数据;和/或(4)在UE仅处理集合中的几个SSB(例如,UE仅需要在SSB上执行RLM)的情况下,gNB将假设所有SSB均受到影响,并且在那些符号中无法处理任何数据。为了解决这样的低效率,可以提前通知gNB在配置的SMTC测量窗口的下一个时机(和/或后续时机)上是否以及哪些SSB受到/不受到UE操作的影响。
在特定实现方式中,从UE(例如,315)到gNB(例如,305)的信令可以向gNB指示UE在配置的SMTC测量窗口的下一个时机(和/或一个或多个后续时机)处理/不处理哪些SSB。信令的格式可以是关于在下一个SMTC中是否处理SSB的简单指示,或者可以包括关于UE将在其中处理SS或数据/控制的精确SSB或精确符号(当定义保护时段时,包括保护时段)的额外信息(例如,经由位图)。
因此,无线系统300使UE 315能够用信号向第一基站305通知其在测量窗口期间的另外的可用性。在一些实现方式中,可以将信令作为与无线系统300相关联的物理层测量和/或物理层过程的一部分来提供。基于该信令,第一基站305可以在测量窗口的至少第一部分期间向UE 315传送基站信号370(数据/控制信息)。在一些实现方式中,UE 315可以在测量窗口的第一部分期间从第一基站305接收基站信号370,并且可以在测量窗口的第二部分期间从第二基站310接收SSB 362。另外或替代地,无线系统300可以允许UE 315和/或第一基站305指示与测量窗口相关联的保护时段。因此,本文描述的与无线系统300的设备相关的信令与不包括这样的信令的无线系统相比,降低了执行移动性测量的开销。另外,与不包括所描述的信令的这样的无线系统相比,无线系统更高效,具有更高的数据速率、增加的容量、更高的频谱效率和更低的时延。
参照图4-图6,示出了说明无线通信的方法的各方面的流程图。可以由诸如UE 115(例如,处理器280)或UE 315之类的设备来执行图4-图6的方法中的每种方法。设备(例如,UE 115)可以被配置为与对应于第一小区的第一基站(例如,服务gNB)(诸如基站105)进行通信。设备(例如,UE 115)还可以被配置为处理从与第二小区相对应的第二基站(例如,相邻gNB)接收的一个或多个SSB。在一些实现方式中,图4-图6的方法中的每种方法可以作为指令存储在计算机可读介质处。指令在由一个或多个处理器(例如,关于图1和图2描述和示出的UE 115的处理器中的一个或多个处理器)执行时,可以使得一个或多个处理器执行用于无线通信的操作,如上文关于图3所描述的并且在下文更详细地描述的。
参照图4,示出了说明用于指示UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分的方法的各方面的流程图作为方法400。在402处,方法400包括:由用户设备(UE)确定是否在测量窗口期间监测同步信号块(SSB)的至少一部分。例如,方法400可以包括:由UE确定监测SSB的至少一部分;以及生成信号以指示UE将在测量窗口期间监测SSB的至少一部分。作为另一示例,方法400可以包括:由UE确定不监测SSB的至少一部分;以及生成信号以指示UE将不在测量窗口期间监测SSB的至少一部分。
在404处,方法400包括:由UE在测量窗口之前发送信号,该信号指示UE是否将在测量窗口期间监测SSB的至少一部分。例如,该信号可以包括或对应于信号350。可以从UE向基站发送该信号,该信号可以与上行链路控制信息相关联以及被包括在上行链路控制信号中,或者以上两种情况。在一些实现方式中,其中信号表示单个比特,该单个比特具有指示UE是否将在测量窗口期间监测SSB的至少一部分的值。为了说明,该单个比特的值指示UE是否将在整个测量窗口期间监测SSB。在其它实现方式中,信号表示位图。在一些这样的实现方式中,位图的每个比特对应于测量窗口期间的不同的SSB,并且其中,位图的每个比特的值指示UE是否将在测量窗口期间监测对应的SSB。在其它这样的实现方式中,位图包括多个比特组,每个比特组对应于测量窗口期间的不同的SSB,并且多个比特组中的每个比特组中的每个比特对应于包括在对应的SSB中的不同符号。例如,每个比特的值指示UE是否将在测量窗口期间监测对应的符号。
在一些实现方式中,该信号指示UE在测量窗口期间将监测SSB的一部分并且将不监测另一SSB的另一部分。在其它实现方式中,该信号指示UE在测量窗口期间将监测整个SSB并且将监测整个另一SSB。在又一实现方式中,该信号可以指示UE在测量窗口期间将监测整个SSB并且将不监测整个另一SSB。替代地,该信号可以指示UE在测量窗口期间将监测整个SSB并且将不监测整个另一SSB。
在一些实现方式中,方法400还可以包括:在UE处从基站接收保护时段信号,该保护时段信号指示与测量窗口相关联的最大允许保护时段。另外或替代地,方法400可以包括:在UE处确定与监测SSB的至少一部分相关联的保护时段,其中信号还指示保护时段。例如,可以基于由UE识别的传播延迟、与UE相关联的波束切换延迟、由基站指示的最大允许保护时段、或其组合来确定保护时段。在一些这样的实现方式中,其中信号可以表示具有指示保护时段的值的一个或多个比特。
在一些实现方式中,方法400还可以包括:将UE的接收机配置用于波束成形;以及将被配置用于波束成形的接收机引导在与小区相关联的第一方向上,与小区相关联的第一方向不同于与基站相关联的第二方向。另外或替代地,方法400还可以包括:经由波束成形的配置的接收机在测量窗口的第一部分期间监测SSB的至少一部分;接收SSB的至少一部分;以及处理SSB的至少一部分。
在一些实现方式中,方法400可以包括:将UE的接收机配置为在测量窗口的第二部分期间从基站接收数据或控制信号(例如,基站信号)。在一些这样的实现方式中,方法400还可以包括:在测量窗口的第二部分期间从基站接收数据信号或控制信号(例如,基站信号);以及处理数据信号或控制信号(例如,基站信号)。
参照图5,示出了说明用于传送保护时段的方法的各方面的流程图作为方法500。在502处,方法500包括:由用户设备(UE)确定与在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。例如,可以基于由UE识别的传播延迟、与UE相关联的波束切换延迟、或两者来确定保护时段。在一些实现方式中,可以将保护时段确定为使得保护时段小于或等于与测量窗口相关联的最大允许保护时段(由基站指示)。在504处,方法500包括:由UE在测量窗口之前发送指示保护时段的信号。例如,可以从UE向基站发送信号,该信号可以与上行链路控制信息相关联以及被包括在上行链路控制信号中,或者以上两种情况。该信号可以表示具有指示保护时段的值的一个或多个比特。
参照图6,示出了说明用于由UE在测量窗口期间接收基站信号(例如,数据信号、控制信号、或两者)的方法的各方面的流程图作为方法600。基站信号可以包括或对应于基站信号370。在602处,方法600包括:由用户设备(UE)从基站接收保护时段信号,该保护时段信号指示与UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。在一些实现方式中,保护时段可以包括与UE在测量窗口期间监测SSB的至少一部分相关联的最大允许保护时段。在604处,方法600包括:由UE基于保护时段来确定在测量窗口期间UE可用于从基站接收数据信号或控制信号的时间段。在606处,方法600包括:由UE在该时间段期间从基站接收数据信号或控制信号。
在一些实现方式中,方法600还可以包括:由UE基于保护时段来确定在测量窗口期间UE可用于在测量窗口期间接收SSB的至少一部分的第二时间段。在一些这样的实现方式中,方法600还可以包括:由UE在测量窗口期间在第二时间段期间从另一基站接收SSB的至少一部分。
参照图7-图9,示出了说明无线通信的方法的各方面的流程图。可以由诸如基站105(例如,处理器240)或第一基站305之类的设备来执行图7-图9的方法中的每种方法。设备(例如,服务gNB)可以被配置为与诸如UE 115或UE 115之类的另一设备进行通信。在一些实现方式中,可以将图7-图9的方法中的每种方法作为指令存储在计算机可读介质上。指令在由一个或多个处理器(例如,关于图1和图2描述和示出的基站105的处理器中的一个或多个处理器)执行时,可以使得一个或多个处理器执行用于无线通信的操作,如上文关于图3所描述的并且如在下文更详细地描述的。
参照图7,示出了用于在测量窗口期间向UE传送基站信号(例如,数据信号、控制信号、或两者)的方法的各方面的流程图作为方法700。基站信号可以包括或对应于基站信号370。在702处,方法700包括:由基站从用户设备(UE)接收信号,该信号指示与UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分。在704处,方法700包括:基于该信号来在测量窗口期间从基站向UE发送数据信号或控制信号。
在一些实现方式中,发送数据信号或控制信号包括:在整个测量窗口期间向UE发送数据信号或控制信号。在其它实现方式中,方法700可以包括:由基站基于信号来确定测量窗口中的UE可用于接收数据信号或控制信号的的第一时间段。数据信号或控制信号可以是在第一时间段期间发送的。另外,基站信号(例如,370)还可以指示与UE在测量窗口期间执行监测操作相关联的保护时段,并且第一时间段是进一步基于保护时段来确定的。例如,保护时段可以包括或对应于保护时段信号372。方法700还可以包括:由基站基于信号来确定第二测量窗口中的UE可用于接收第二数据信号或第二控制信号的第二时间段;以及在第二时间段期间从基站向UE发送第二数据信号或第二控制信号。
在一些实现方式中,方法700还包括:由基站从UE接收第二信号,该第二信号指示UE是否将在第二测量窗口期间监测第二SSB的第二部分。例如,第二信号是在测量窗口之后并且在第二测量窗口之前接收的。在这样的实现方式中,方法700还可以包括:由基站基于第二信号来确定第二测量窗口中的UE可用于接收第二数据信号或第二控制信号的第二时间段;以及在第二时间段期间从基站向UE发送第二数据信号或第二控制信号。
参照图8,示出了用于在测量窗口期间向UE传送基站信号(例如,数据信号、控制信号、或两者)的方法的各方面的流程图作为方法800。基站信号可以包括或对应于基站信号370。在802处,方法800包括:由基站从用户设备(UE)接收信号,该信号指示与UE在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。在804处,方法800还包括:基于保护时段来在测量窗口期间从基站向UE发送数据信号或控制信号。保护时段可以包括或对应于保护时段信号372。在其它实现方式中,保护时段(例如,354)可以由UE指示。在一些实现方式中,方法800可以包括:由基站基于保护时段来确定测量窗口中的UE可用于接收数据信号或控制信号的第一时间段。第一时间段可以与保护时段不同(例如,第一时间段不包括保护时段,使得数据信号或控制信号在保护时段以外被调度)。在这样的实现方式中,可以在第一时间段期间发送数据信号或控制信号。另外或替代地,方法800可以包括:在第一时间段期间调度数据信号或控制信号的传输。第一时间段可以与保护时段不同,保护时段可以被包括在与测量窗口相关联的第二时间段中,在第二时间段中,UE不可用于接收数据信号、控制信号、或两者。
参照图9,示出了说明用于传送保护时段的方法的各方面的流程图作为方法900。在902处,方法900包括:由基站确定与用户设备(UE)在测量窗口期间监测同步信号块(SSB)的至少一部分相关联的保护时段。例如,保护时段可以包括与UE在测量窗口期间监测SSB的至少一部分相关联的最大允许保护时段。可以基于在基站与另一基站之间的距离、在基站与另一基站之间的同步水平、或两者来确定保护时段。在904处,方法900还包括:在测量窗口之前从基站向UE发送指示保护时段的保护时段信号。例如,保护时段信号可以与下行链路控制信息相关联并且可以被包括在下行链路控制信号中。保护时段信号可以包括或对应于保护时段信号372。
另外或替代地,方法900还可以包括:从UE接收第二保护时段(例如354)。在这样的实现方式中,方法900可以包括:选择保护时段(例如,372)或第二保护时段(例如,354)中的一项进行使用。
本领域技术人员将理解的是,信息和信号可以使用多种不同的技术和方法中的任何一种来表示。例如,可能贯穿以上描述所提及的数据、指令、命令、信息、信号、比特、符号和码片可以由电压、电流、电磁波、磁场或粒子、光场或粒子或者其任意组合来表示。
本文描述的功能框和模块(例如,图2中的功能框和模块)可以包括:处理器、电子设备、硬件设备、电子组件、逻辑电路、存储器、软件代码、固件代码等、或其任何组合。例如,图1和图2中示出的UE 115的一个或多个处理器可以可以用于执行关于图3的系统300、关于图4-图6的方法、或两者描述的操作。作为另一示例,图2中示出的gNB 105的一个或多个处理器可以用于执行关于图3的系统300、关于图7-图9的方法、或两者描述的操作。
技术人员还将明白的是,结合本文公开内容描述的各种说明性的逻辑框、模块、电路和算法步骤可以实现为电子硬件、计算机软件或二者的组合。为了清楚地说明硬件和软件的这种可互换性,上文已经对各种说明性的组件、框、模块、电路和步骤围绕其功能进行了总体描述。至于这样的功能是实现为硬件还是软件,取决于特定的应用以及施加在整个系统上的设计约束。技术人员可以针对每个特定的应用,以变通的方式来实现所描述的功能,但是这样的实现决策不应当被解释为造成脱离本公开内容的范围。技术人员还将容易认识到的是,本文描述的组件、方法或交互的次序或组合仅是示例,并且本公开内容的各个方面的组件、方法或交互可以以与本文示出和描述的那些方式不同的方式来组合或执行。
结合本文公开内容描述的各种说明性的逻辑框、模块和电路可以利用被设计为执行本文描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者其任意组合来实现或执行。通用处理器可以是微处理器,但是在替代的方式中,处理器可以是任何常规的处理器、控制器、微控制器或者状态机。处理器也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP内核的结合、或者任何其它这样的配置。
结合本文公开内容描述的方法或者算法的步骤可以直接地体现在硬件中、由处理器执行的软件模块中、或者二者的组合中。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM或者本领域中已知的任何其它形式的存储介质中。示例性的存储介质耦合到处理器,以使得处理器可以从该存储介质读取信息,以及向该存储介质写入信息。在替代的方式中,存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。ASIC可以位于用户终端中。在替代的方式中,处理器和存储介质可以作为分立组件存在于用户终端中。另外,图4-9的方法中的一种方法的第一部分可以与图4-9的方法中的另一方法的至少第二部分组合。例如,图4的方法400的第一部分可以与图6的方法600的第二部分组合。作为另一示例,图7的方法700的第一部分可以与图9的方法900的第二部分组合。作为另外的示例,图4的方法400的第一部分可以与图9的方法900的第二部分组合。
在一个或多个示例性设计中,所描述的功能可以用硬件、软件、固件或其任意组合来实现。如果用软件来实现,则所述功能可以作为一个或多个指令或代码存储在计算机可读介质上或者通过其进行传输。计算机可读介质包括计算机存储介质和通信介质二者,所述通信介质包括促进计算机程序从一个地方传送到另一个地方的任何介质。计算机可读存储介质可以是能够由通用或专用计算机访问的任何可用的介质。通过举例而非限制性的方式,这样的计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码单元以及能够由通用或专用计算机或通用或专用处理器来访问的任何其它的介质。此外,连接可以适当地称为计算机可读介质。例如,如果使用同轴电缆、光纤光缆、双绞线或数字用户线(DSL)从网站、服务器或其它远程源发送软件,则同轴电缆、光纤光缆、双绞线或DSL被包括在介质的定义中。如本文所使用的,磁盘和光盘包括压缩光盘(CD)、激光光盘、光盘、数字多功能光盘(DVD)、硬盘、固态盘和蓝光光盘,其中,磁盘通常磁性地复制数据,而光盘则通常利用激光来光学地复制数据。上文的组合也应当被包括在计算机可读介质的范围内。
如本文所使用的(包括在权利要求中),术语“和/或”在具有两个或更多个项目的列表中使用时,意指所列出的项目中的任何一个项目可以被单独地采用,或者所列出的项目中的两个或更多个项目的任意组合可以被采用。例如,如果将组成描述为包含组成部分A、B和/或C,则该组成可以包含:仅A;仅B;仅C;A和B的组合;A和C的组合;B和C的组合;或者A、B和C的组合。此外,如本文使用的(包括在权利要求中),如在以“中的至少一个”结束的项目列表中使用的“或”指示分离性的列表,以使得例如,“A、B或C中的至少一个”的列表意指A或B或C或AB或AC或BC或ABC(即,A和B和C)或者这些项目中的任何项目的任何组合。
提供本公开内容的前述描述,以使本领域的任何技术人员能够实现或使用本公开内容。对本公开内容的各种修改对于本领域技术人员而言将是显而易见的,以及在不脱离本公开内容的精神或范围的情况下,本文所定义的总体原理可以应用到其它变型中。因此,本公开内容并不旨在限于本文描述的示例和设计,而是被赋予与本文所公开的原理和新颖特征相一致的最宽的范围。

Claims (30)

1.一种无线通信的方法,所述方法包括:
由用户设备(UE)确定是否在测量窗口期间监测同步信号块(SSB)的至少一部分;以及
由所述UE在所述测量窗口之前发送信号,所述信号指示所述UE是否将在所述测量窗口期间监测所述SSB的所述至少一部分。
2.根据权利要求1所述的方法,还包括:
由所述UE确定监测所述SSB的所述至少一部分;以及
生成所述信号以指示所述UE将在所述测量窗口期间监测所述SSB的所述至少一部分。
3.根据权利要求1所述的方法,其中,所述信号表示单个比特,所述单个比特具有指示所述UE是否将在所述测量窗口期间监测所述SSB的所述至少一部分的值。
4.根据权利要求3所述的方法,其中,所述单个比特的所述值指示所述UE是否将在整个所述测量窗口期间监测SSB。
5.根据权利要求1所述的方法,其中:
所述信号表示位图;
所述位图的每个比特对应于所述测量窗口期间的不同的SSB;以及
所述位图的每个比特的值指示所述UE是否将在所述测量窗口期间监测对应的SSB。
6.根据权利要求1所述的方法,其中:
所述信号表示位图;
所述位图包括多个比特组,每个比特组对应于所述测量窗口期间的不同的SSB,并且所述多个比特组中的比特组中的每个比特对应于对应的SSB中包括的不同的符号;以及
每个比特的值指示所述UE是否将在所述测量窗口期间监测对应的符号。
7.根据权利要求1所述的方法,还包括:
在所述UE处从基站接收保护时段信号,所述保护时段信号指示与所述测量窗口相关联的最大允许保护时段。
8.根据权利要求1所述的方法,其中,所述信号是从所述UE发送到基站的,并且其中,所述信号与上行链路控制信息相关联并且被包括在上行链路控制信号中,并且所述方法还包括:在所述UE处在整个所述测量窗口期间从所述基站接收基站信号,所述基站信号包括数据信号、控制信号、或两者。
9.根据权利要求1所述的方法,还包括:
由所述UE确定不监测所述SSB的所述至少一部分;以及
生成所述信号以指示所述UE将不在所述测量窗口期间监测所述SSB的所述至少一部分。
10.根据权利要求1所述的方法,还包括:
在所述UE处确定与监测所述SSB的所述至少一部分相关联的保护时段,其中,所述信号还指示所述保护时段;
其中,所述保护时段是基于由所述UE识别的传播时延、与所述UE相关联的波束切换时延、或两者来确定的;并且
其中,所述信号表示具有指示所述保护时段的值的一个或多个比特。
11.根据权利要求1所述的方法,还包括:
将所述UE的接收机配置用于波束成形;
将被配置用于波束成形的所述接收机引导在与小区相关联的第一方向上,与所述小区相关联的所述第一方向不同于与基站相关联的第二方向;
经由经波束成形的配置的接收机在所述测量窗口的第一部分期间监测所述SSB的所述至少一部分;
处理由所述UE经由所述接收机接收的所述SSB的所述至少一部分;
将所述UE的所述接收机配置为在所述测量窗口的第二部分期间从所述基站接收基站信号,所述基站信号包括数据信号、控制信号、或两者;以及
处理在所述测量窗口的所述第二部分期间从所述基站接收的所述基站信号。
12.一种用于无线通信的装置,所述装置包括:
一个或多个处理器,其被配置为:确定是否在用户设备(UE)处在测量窗口期间监测同步信号块(SSB)的至少一部分;以及
耦合到所述一个或多个处理器的发射机,所述发射机被配置为:在所述测量窗口之前发送信号,所述信号指示所述UE是否将在所述测量窗口期间监测所述SSB的所述至少一部分。
13.根据权利要求12所述的装置,还包括:
接收机,其耦合到所述一个或多个处理器并且被配置为:接收无线信号,其中,所述一个或多个处理器还被配置为:选择性地将所述接收机配置用于波束成形;以及
存储器,其耦合到一个或多个处理器并且存储可由所述一个或多个处理器执行的一个或多个指令。
14.根据权利要求12所述的装置,其中,所述信号指示所述UE在所述测量窗口期间将监测或者将不监测所述SSB的所述至少一部分。
15.根据权利要求12所述的装置,其中,所述信号指示所述UE在所述测量窗口的整个所述SSB期间将进行监测或将不进行监测。
16.根据权利要求12所述的装置,其中,所述信号指示所述UE在所述测量窗口的整个SSB集合期间将进行监测或将不进行监测。
17.根据权利要求12所述的装置,其中,所述信号指示所述UE将监测所述SSB的所述一部分并且将不监测所述SSB的另一部分。
18.根据权利要求12所述的装置,其中,所述信号指示所述UE在所述测量窗口期间将监测所述SSB的所述一部分并且将监测或将不监测另一SSB的另一部分。
19.根据权利要求12所述的装置,其中,所述信号指示所述UE在所述测量窗口期间将监测整个所述SSB并且将监测或将不监测整个另一SSB。
20.一种用于无线通信的方法,所述方法包括:
由基站从用户设备(UE)接收信号,所述信号指示所述UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分;以及
基于所述信号来在所述测量窗口期间从所述基站向所述UE发送数据信号或控制信号。
21.根据权利要求20所述的方法,还包括:
由所述基站基于所述信号来确定所述测量窗口中的所述UE可用于接收所述数据信号或所述控制信号的第一时间段,其中,所述数据信号或所述控制信号是在所述第一时间段期间发送的。
22.根据权利要求21所述的方法,其中,所述信号还指示与所述UE在所述测量窗口期间执行监测操作相关联的保护时段,并且其中,所述第一时间段是进一步基于所述保护时段来确定的。
23.根据权利要求21所述的方法,还包括:
由所述基站基于所述信号来确定第二测量窗口中的所述UE可用于接收第二数据信号或第二控制信号的第二时间段;以及
在所述第二时间段期间从所述基站向所述UE发送所述第二数据信号或所述第二控制信号。
24.根据权利要求20所述的方法,其中,发送所述数据信号或所述控制信号包括:在整个所述测量窗口期间向所述UE发送所述数据信号或所述控制信号。
25.根据权利要求20所述的方法,还包括:
由所述基站从所述UE接收第二信号,所述第二信号指示所述UE是否将在第二测量窗口期间监测第二SSB的第二部分;
由所述基站基于所述第二信号来确定所述第二测量窗口中的所述UE可用于接收第二数据信号或第二控制信号的第二时间段;以及
在所述第二时间段期间从所述基站向所述UE发送所述第二数据或所述第二控制信号。
26.根据权利要求25所述的方法,其中,所述第二信号是在所述测量窗口之后并且在所述第二测量窗口之前接收的。
27.根据权利要求20所述的方法,还包括:
从所述UE接收对与所述UE在所述测量窗口期间监测所述SSB的至少所述一部分相关联的保护时段的指示;
由所述基站基于所述保护时段来确定所述测量窗口中的所述UE可用于接收所述数据信号或所述控制信号的第一时间段,其中,所述数据信号或所述控制信号是在所述第一时间段期间发送的;以及
在所述第一时间段期间调度所述数据信号或所述控制信号的传输,所述第一时间段与所述保护时段不同。
28.一种用于无线通信的装置,所述装置包括:
接收机,其被配置为:通过基站从用户设备(UE)接收信号,所述信号指示所述UE是否将在测量窗口期间监测同步信号块(SSB)的至少一部分;以及
耦合到所述接收机的一个或多个处理器,所述一个或多个处理器被配置为:基于所述信号来在所述测量窗口期间发起数据信号或控制信号从所述基站到所述UE的传输。
29.根据权利要求28所述的装置,还包括:
耦合到所述一个或多个处理器的发射机,所述发射机被配置为:发送所述数据信号或所述控制信号;以及
存储器,其耦合到所述一个或多个处理器并且存储可由所述一个或多个处理器执行的一个或多个指令。
30.根据权利要求28所述的装置,其中:
所述接收机还被配置为:从所述UE接收对与所述UE在所述测量窗口期间监测所述SSB的所述至少一部分相关联的保护时段的指示;以及
所述一个或多个处理器还被配置为:基于所述保护时段来发起所述传输。
CN201980013797.XA 2018-02-19 2019-02-13 用信号通知在测量窗口期间的可用性 Active CN111819890B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862632358P 2018-02-19 2018-02-19
US62/632,358 2018-02-19
US16/273,790 US10805821B2 (en) 2018-02-19 2019-02-12 Signaling availability during a measurement window
US16/273,790 2019-02-12
PCT/US2019/017845 WO2019160952A1 (en) 2018-02-19 2019-02-13 Signaling availability during a measurement window

Publications (2)

Publication Number Publication Date
CN111819890A true CN111819890A (zh) 2020-10-23
CN111819890B CN111819890B (zh) 2023-05-26

Family

ID=67617138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980013797.XA Active CN111819890B (zh) 2018-02-19 2019-02-13 用信号通知在测量窗口期间的可用性

Country Status (4)

Country Link
US (1) US10805821B2 (zh)
EP (1) EP3756386A1 (zh)
CN (1) CN111819890B (zh)
WO (1) WO2019160952A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587598A (zh) * 2018-01-11 2020-08-25 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111972010B (zh) * 2018-02-26 2023-10-03 上海诺基亚贝尔股份有限公司 用于用户设备测量性能需求确定的方法和装置
US11212806B2 (en) * 2018-12-14 2021-12-28 Apple Inc. NAN fine-grained availability schedule indications
CN112888066B (zh) * 2019-11-29 2023-07-25 中国移动通信有限公司研究院 Pdcch的发送方法、接收方法、装置及节点设备
EP4104304A1 (en) * 2020-02-11 2022-12-21 Telefonaktiebolaget LM Ericsson (PUBL) Reference signaling for beamforming
KR20220006928A (ko) * 2020-07-09 2022-01-18 삼성전자주식회사 핸드오버 안정성을 개선하기 위한 장치 및 방법
US11924663B2 (en) * 2021-02-18 2024-03-05 Qualcomm Incorporated Dynamic measurement window determination for 5G new radio user equipment
US20230140287A1 (en) * 2021-10-28 2023-05-04 Qualcomm Incorporated Guard interval communications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401318A (zh) * 2006-04-14 2009-04-01 中兴通讯股份有限公司 插入测量控制信息的插入方法、装置和测量方法、装置
US20130343217A1 (en) * 2010-12-02 2013-12-26 Xueming Pan Method, system, and device for confirming uplink-downlink configuration
CN106465173A (zh) * 2014-05-27 2017-02-22 Lg电子株式会社 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备
WO2017040930A2 (en) * 2015-09-03 2017-03-09 The Trustees Of The University Of Pennsylvania Biomarkers predictive of cytokine release syndrome
CN106664539A (zh) * 2014-08-08 2017-05-10 诺基亚通信公司 确定测量间隙模式
CN106716887A (zh) * 2014-08-08 2017-05-24 Lg 电子株式会社 无线通信系统中执行测量的方法及其装置
CN107005981A (zh) * 2014-11-24 2017-08-01 瑞典爱立信有限公司 在所确定的第三时频资源集合中的传输和接收

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813098B2 (en) * 2016-07-15 2020-10-20 Lg Electronics Inc. Method for transmission and reception in wireless communication system, and apparatus therefor
EP4160968A1 (en) * 2017-01-06 2023-04-05 InterDigital Patent Holdings, Inc. Mechanisms for efficient access and transmission in nr
SG11201910084QA (en) * 2017-05-04 2019-11-28 Sharp Kk Synchronization signal transmission and reception for radio system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401318A (zh) * 2006-04-14 2009-04-01 中兴通讯股份有限公司 插入测量控制信息的插入方法、装置和测量方法、装置
US20130343217A1 (en) * 2010-12-02 2013-12-26 Xueming Pan Method, system, and device for confirming uplink-downlink configuration
CN106465173A (zh) * 2014-05-27 2017-02-22 Lg电子株式会社 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备
CN106664539A (zh) * 2014-08-08 2017-05-10 诺基亚通信公司 确定测量间隙模式
CN106716887A (zh) * 2014-08-08 2017-05-24 Lg 电子株式会社 无线通信系统中执行测量的方法及其装置
CN107005981A (zh) * 2014-11-24 2017-08-01 瑞典爱立信有限公司 在所确定的第三时频资源集合中的传输和接收
WO2017040930A2 (en) * 2015-09-03 2017-03-09 The Trustees Of The University Of Pennsylvania Biomarkers predictive of cytokine release syndrome

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "" Intrafrequency measurements with mixed numerology or RX beamforming"", 《3GPP TSG-RAN WG4 MEETING #AH 1801 R4-1800186》 *
ERICSSON: ""RSSI Estimation in SS based RSRQ Measurement in NR"", 《3GPP TSG RAN WG4 MEETING NR AD HOC #3 R4-1709601》 *
NOKIA等: ""Discussion on measurement gap for multiple frequency layers"", 《3GPP TSG-RAN WG4#84BIS R4-1710649》 *
SAMSUNG: ""Summary of remaining Issues on NR RRM"", 《3GPP TSG RAN WG1#91 R1-1721724》 *
董文龙等: "信道编码在基于OFDM的高速无人机数据链系统中的性能仿真", 《电子测试》 *

Also Published As

Publication number Publication date
US10805821B2 (en) 2020-10-13
WO2019160952A1 (en) 2019-08-22
CN111819890B (zh) 2023-05-26
EP3756386A1 (en) 2020-12-30
US20190261206A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US11032048B2 (en) Use-cases and constraints on multiple SRS resource sets for antenna switching in NR REL-15
CN109937560B (zh) 在rach规程和自主ul传输期间的ul波形
CN111819890B (zh) 用信号通知在测量窗口期间的可用性
CN111183596B (zh) 上行链路波束训练
US11088791B2 (en) Choosing an SRS resource set when multiple sets are configured
CN111344986B (zh) 新无线电剩余最小系统信息(rmsi)中复用和周期的方法及设备
US11558756B2 (en) Null-forming based on a self-interference measurement configuration
US11943020B2 (en) Selective null-forming on one or more beams based on null-forming procedure information
CN116438872B (zh) Nr侧链路传输间隙的设计
US20240146383A1 (en) Enhanced group-based beam report for stxmp
US20220322431A1 (en) Network configured sensing bandwidth and channel occupancy time (cot) sharing
WO2023206240A1 (en) Sidelink resource selection for a user equipment (ue)
JP2024528387A (ja) ターゲットユーザ機器(ue)またはアンカー(pos)-ピアueにおけるサイドリンク測位参照信号(prs)受信を整合させるためのタイミングアドバンス割当て手順
CN112913181A (zh) 在长期演进(lte)中支持宽带物理资源组(prg)
WO2022213121A1 (en) Network configured sensing bandwidth and channel occupancy time (cot) sharing
EP4147373A1 (en) Compensating for transmit-receive spatial filter asymmetries in upper millimeter wave bands

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant