CN111819812B - 一种用于使用空间复用的同时上行链路传输的方法和装置 - Google Patents

一种用于使用空间复用的同时上行链路传输的方法和装置 Download PDF

Info

Publication number
CN111819812B
CN111819812B CN201980017179.2A CN201980017179A CN111819812B CN 111819812 B CN111819812 B CN 111819812B CN 201980017179 A CN201980017179 A CN 201980017179A CN 111819812 B CN111819812 B CN 111819812B
Authority
CN
China
Prior art keywords
uplink channel
uplink
channel
spatial
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980017179.2A
Other languages
English (en)
Other versions
CN111819812A (zh
Inventor
杨桅
黄轶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN111819812A publication Critical patent/CN111819812A/zh
Application granted granted Critical
Publication of CN111819812B publication Critical patent/CN111819812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

空间复用配置可以使用户设备(UE)能够对用于同时传输的不同类型的两个或更多个上行链路信道进行空间复用。例如,UE可以从基站接收对空间复用配置的指示。UE可以识别用于相同分量载波上的同时传输的两个或更多个上行链路信道,其中每个上行链路信道可以是不同的类型。在这样的情况下,UE可以根据空间复用配置来在分量载波上的相同的时间/频率资源集合上对两个或更多个上行链路信道进行空间复用。然后,UE可以在资源集合上同时地发送经空间复用的上行链路信道,其中可以同时地向相同的基站或不同的基站发送经空间复用的上行链路信道。另外,不同的空间参数可以被应用于每个上行链路信道。

Description

一种用于使用空间复用的同时上行链路传输的方法和装置
交叉引用
本专利申请要求由Yang等人于2019年3月6日递交的、名称为“SIMULTANEOUSUPLINK TRANSMISSIONS USING SPATIAL MULTIPLEXING”的美国专利申请No.16/293,986,以及由Yang等人于2018年3月8日递交的、名称为“SIMULTANEOUS UPLINK TRANSMISSIONSUSING SPATIAL MULTIPLEXING”的美国临时专利申请No.62/640,566,以及由Yang等人于2018年7月18日递交的、名称为“SIMULTANEOUS UPLINK TRANSMISSIONS USING SPATIALMULTIPLEXING”的美国临时专利申请No.62/700,172的权益,上述全部申请被转让给本申请的受让人。
技术领域
概括而言,下文涉及无线通信,以及更具体地,下文涉及使用空间复用的同时上行链路传输。
背景技术
无线通信系统被广泛地部署以提供诸如语音、视频、分组数据、消息传送、广播等各种类型的通信内容。这些系统可能能够通过共享可用的系统资源(例如,时间、频率和功率)来支持与多个用户的通信。这样的多址系统的示例包括第四代(4G)系统(诸如长期演进(LTE)系统、改进的LTE(LTE-A)系统或LTE-A Pro系统)和第五代(5G)系统(其可以被称为新无线电(NR)系统)。这些系统可以采用诸如以下各项的技术:码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)或者离散傅里叶变换扩频OFDM(DFT-S-OFDM)。无线多址通信系统可以包括多个基站或网络接入节点,每个基站或网络接入节点同时地支持针对多个通信设备(其可以另外被称为用户设备(UE))的通信。
在一些无线通信系统中,无线设备可能能够使用不同的时间或频率资源同时地发送消息。然而,在一些无线通信系统中,由UE使用相同的时间和频率资源进行同时传输可能是期望的。
发明内容
所描述的技术涉及支持使用空间复用的同时上行链路传输的改进的方法、系统、设备或装置。概括而言,所描述的技术提供了空间复用配置,其使用户设备(UE)能够对用于同时传输的两个或更多个上行链路信道进行空间复用,以便避免上行链路信道之间的冲突。例如,UE可以从基站接收对空间复用配置的指示。UE还可以识别用于相同分量载波上的同时传输的两个或更多个上行链路信道,其中每个上行链路信道可以是不同类型的上行链路信道。例如,上行链路信道可以包括物理上行链路控制信道(PUCCH)、物理上行链路共享信道(PUSCH)、物理随机接入信道(PRACH)、探测参考信号(SRS)等。在任何情况下,UE可以根据空间复用配置来在分量载波上的相同的时间/频率资源集合上对两个或更多个上行链路信道进行空间复用。UE可以在资源集合上同时地发送经空间复用的上行链路信道,其中可以向相同的发送/接收点(TRP)(例如,基站、基站的远程无线头端(RRH)、基站的小区,基站的扇区等)或不同的TRP发送上行链路信道。在一些示例中,多个空间参数集合可以用于多个上行链路信道的同时传输。例如,相应的空间参数集合(例如,对天线端口集合、层数量、空间域预编码器等的指示)可以被应用于由UE同时地发送的每个经空间复用的上行链路信道。基站可以例如经由无线资源控制(RRC)信令或经由下行链路控制信息(DCI)来向UE指示空间参数。
描述了一种无线通信的方法。所述方法可以包括:接收对用于发送两个或更多个上行链路信道的空间复用配置的指示;从所述两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道;根据所述空间复用配置来在所述分量载波的资源集合上对所述第一上行链路信道和所述第二上行链路信道进行空间复用;以及在所述资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。
描述了一种用于无线通信的装置。所述装置可以包括:用于接收对用于发送两个或更多个上行链路信道的空间复用配置的指示的单元;用于从所述两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道的单元;用于根据所述空间复用配置来在所述分量载波的资源集合上对所述第一上行链路信道和所述第二上行链路信道进行空间复用的单元;以及用于在所述资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道的单元。
描述了另一用于无线通信的装置。所述装置可以包括处理器、与所述处理器耦合的存储器、以及被存储在所述存储器中的指令。所述指令可以可操作为使得所述处理器进行以下操作:接收对用于发送两个或更多个上行链路信道的空间复用配置的指示;从所述两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道;根据所述空间复用配置来在所述分量载波的资源集合上对所述第一上行链路信道和所述第二上行链路信道进行空间复用;以及在所述资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。
描述了一种用于无线通信的非暂时性计算机可读介质。所述非暂时性计算机可读介质可以包括可操作为使得处理器进行以下操作的指令:接收对用于发送两个或更多个上行链路信道的空间复用配置的指示;从所述两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道;根据所述空间复用配置来在所述分量载波的资源集合上对所述第一上行链路信道和所述第二上行链路信道进行空间复用;以及在所述资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,同时地发送经空间复用的第一上行链路信道和第二上行链路信道包括:使用不同的发射天线或不同的天线端口来同时地发送经空间复用的第一上行链路信道和第二上行链路信道。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述两个或更多个上行链路信道包括来自由PUCCH、PUSCH、PRACH和SRS组成的组的至少两个信道。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道包括PUCCH,以及所述第二上行链路信道包括PUSCH。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:从所述空间复用配置中识别用于所述第一上行链路信道和所述第二上行链路信道的所述同时传输的多个空间参数集合,其中,来自所述多个空间参数集合的每个空间参数集合可以被应用于相应的上行链路信道。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,每个空间参数集合包括对天线端口集合、层数量、空间域预编码器、或其组合的指示。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:经由RRC信令、或DCI、或其组合来接收对所述空间参数集合的指示。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:基于所述空间复用配置来识别用于所述第一上行链路信道和所述第二上行链路信道的相应的解调参考信号(DMRS)的对齐,其中,所述第一上行链路信道和所述第二上行链路信道可以具有不同的长度和不同的起始位置。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:与所述资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送用于所述第一上行链路信道的第一DMRS和用于所述第二上行链路信道的第二DMRS,其中,所述第一DMRS和所述第二DMRS可以是根据所识别的对齐在相同的正交频分复用(OFDM)符号周期内发送的。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:基于所述空间复用配置来识别多个DMRS端口集合,其中,第一DMRS端口集合可以是与第一天线端口集合相关联的第一DMRS组的一部分,以及第二DMRS端口集合可以是与第二天线端口集合相关联的第二DMRS组的一部分。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一DMRS可以与所述第一上行链路信道中的数据进行时分复用,以及所述第二DMRS可以与所述第二上行链路信道中的数据进行时分复用。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道包括SRS,以及所述第二上行链路信道包括PUCCH、或PUSCH、或其组合。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道包括SRS,以及所述第二上行链路信道包括PUCCH、PUSCH、或其组合。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道和所述第二上行链路信道是不同类型的信道。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:与所述资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送所述第一上行链路信道上的相同的OFDM符号周期内的所述SRS和数据。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:与所述资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送所述第一上行链路信道上的相同的OFDM符号周期内的所述SRS和DMRS,所述DMRS与所述PUCCH、或所述PUSCH、或其组合相关联,其中,所述SRS和所述DMRS可以被频分复用。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,同时地发送经空间复用的第一上行链路信道和第二上行链路信道包括:向所述基站发送所述第一上行链路信道。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:向不同的基站发送所述第二上行链路信道。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,同时地发送经空间复用的第一上行链路信道和第二上行链路信道包括:向第一TRP发送所述第一上行链路信道。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:向不同的TRP发送所述第二上行链路信道。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道包括第一PUCCH,以及所述第二上行链路信道包括与所述第一PUCCH不同的第二PUCCH。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一PUCCH包括被发送给所述第一TRP的第一混合自动重传请求(HARQ)反馈,以及所述第二PUCCH包括被发送给所述第二TRP的第二HARQ反馈。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一TRP、或所述不同的TRP、或两者包括基站、RRH、所述基站的小区、所述基站的扇区、或其组合。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第二上行链路信道包括PRACH,以及所述第一上行链路信道包括PUCCH、或PUSCH、或SRS、或其组合。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道是与第一下行链路参考信号集合准共置的,以及所述第二上行链路信道是与不同于所述第一下行链路参考信号集合的第二下行链路参考信号集合准共置的。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,经空间复用的第一上行链路信道和第二上行链路信道是与相同的下行链路参考信号集合准共置的。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道是根据第一服务来发送的,以及所述第二上行链路信道是根据与所述第一服务不同的第二服务来发送的。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道是动态地调度的上行链路传输,以及所述第二上行链路信道是经由RRC消息传送配置的上行链路传输。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:基于所述空间复用配置来确定用于同时地发送经空间复用的第一上行链路信道和第二上行链路信道的功率控制配置,其中,所述功率控制配置包括用于所述第一上行链路信道的第一发射功率和用于所述第二上行链路信道的第二发射功率。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:确定所述第一上行链路信道包括SRS以及所述第二上行链路信道包括PUCCH、或PUSCH、或其组合。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:基于所述确定来减低所述第一发射功率。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,对所述空间复用配置的所述指示是从基站接收的。
描述了一种无线通信的方法。所述方法可以包括:确定用于UE经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置;基于所述空间复用配置来识别用于所述两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自所述多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;向所述UE发送对所述空间复用配置和所述多个空间参数集合的指示;以及根据每个空间参数集合来在所述载波的资源集合上从所述UE接收所述第一上行链路信道、或所述第二上行链路信道、或其组合。
描述了一种用于无线通信的装置。所述装置可以包括:用于确定用于UE经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置的单元;用于基于所述空间复用配置来识别用于所述两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合的单元,其中,来自所述多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;用于向所述UE发送对所述空间复用配置和所述多个空间参数集合的指示的单元;以及用于根据每个空间参数集合来在所述载波的资源集合上从所述UE接收所述第一上行链路信道、或所述第二上行链路信道、或其组合的单元。
描述了另一用于无线通信的装置。所述装置可以包括处理器、与所述处理器耦合的存储器、以及被存储在所述存储器中的指令。所述指令可以可操作为使得所述处理器进行以下操作:确定用于UE经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置;基于所述空间复用配置来识别用于所述两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自所述多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;向所述UE发送对所述空间复用配置和所述多个空间参数集合的指示;以及根据每个空间参数集合来在所述载波的资源集合上从所述UE接收所述第一上行链路信道、或所述第二上行链路信道、或其组合。
描述了一种用于无线通信的非暂时性计算机可读介质。所述非暂时性计算机可读介质可以包括可操作为使得处理器进行以下操作的指令:确定用于UE经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置;基于所述空间复用配置来识别用于所述两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自所述多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;向所述UE发送对所述空间复用配置和所述多个空间参数集合的指示;以及根据每个空间参数集合来在所述载波的资源集合上从所述UE接收所述第一上行链路信道、或所述第二上行链路信道、或其组合。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述两个或更多个上行链路信道包括来自由PUCCH、PUSCH、PRACH和SRS组成的组的至少两个信道。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:基于所述空间复用配置来确定用于所述第一上行链路信道和所述第二上行链路信道的相应的DMRS的对齐,其中,所述第一上行链路信道和所述第二上行链路信道可以具有不同的长度和不同的起始位置。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:向所述UE发送对所述对齐的指示。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:基于所述空间复用配置来确定多个DMRS端口集合,其中,用于所述第一上行链路信道的第一DMRS端口集合可以是与第一天线端口集合相关联的第一DMRS组的一部分,以及用于所述第二上行链路信道的第二DMRS端口集合可以是与第二天线端口集合相关联的第二DMRS组的一部分。本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:向所述UE发送对所确定的多个DMRS端口集合的指示。
本文描述的方法、装置和非暂时性计算机可读介质的一些示例还可以包括用于进行以下操作的过程、特征、单元或指令:在回程链路上向不同的基站发送对所述空间参数集合的指示,其中,所述第一上行链路信道可以是从所述UE接收的以及包括PUCCH、或PUSCH、或其组合。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述第一上行链路信道可以是从所述UE接收的以及包括PUCCH、或PUSCH、或其组合,并且其中,所述第二上行链路信道的同时传输可以被视为干扰。
在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,发送对所述空间参数集合的所述指示包括:经由RRC信令、或DCI、或其组合来发送对所述空间参数集合的所述指示。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,接收所述第一上行链路信道、或所述第二上行链路信道、或其组合包括:在TRP处接收所述第一上行链路信道、或所述第二上行链路信道、或其组合,所述TRP包括基站、RRH、所述基站的小区、所述基站的扇区、或其组合。在本文描述的方法、装置和非暂时性计算机可读介质的一些示例中,所述空间参数集合包括对天线端口集合、层数量、空间域预编码器、或其组合的指示。
附图说明
图1根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线通信的系统的示例。
图2和3根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线通信系统的示例。
图4A和4B根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的参考信号对齐的示例。
图5根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的系统中的过程流的示例。
图6至8根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的设备的框图。
图9根据本公开内容的各方面示出了包括支持使用空间复用的同时上行链路传输的用户设备(UE)的系统的图。
图10至12根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的设备的框图。
图13根据本公开内容的各方面示出了包括支持使用空间复用的同时上行链路传输的基站的系统的图。
图14至18根据本公开内容的各方面示出了用于使用空间复用的同时上行链路传输的方法。
具体实施方式
一些无线通信系统可以支持在单个设备处使用来自多个天线的同时传输。例如,用户设备(UE)可以被配备有多个天线和/或发射链。因此,这样的设备可能能够向另一设备(例如,基站)同时地发送多个数据流。作为示例,UE可以使用多个天线/发射链来发送(例如,物理上行链路共享信道(PUSCH)的)同时传输。
然而,一些系统可能仅支持在单个分量载波(CC)内使用时分复用(TDM)进行复用的多个上行链路传输。例如,CC内的多个上行链路信道的频分复用(FDM)可能导致所发送的信号的互调(intermodulation)失真。另外,同时上行链路传输可能导致在相同CC中发送的不同信道之间的冲突。这些冲突可能导致系统中引入额外的复杂性,特别是在同时到期多个上行链路传输时。例如,用于解决冲突的各个规则(例如,要发送哪个信道,要丢弃哪个信道,可以延迟哪个信道,等等)可能由于与这样的规则相关联的复杂性而难以实现。
为了避免前述冲突(以及用于解决这样的冲突的复杂规则),本文描述的技术可以使UE能够使用多个发射链在空间域中对各个上行链路传输进行复用。例如,可以在相同CC中经由多个发射链/天线来发送在资源集合上空间复用的同时上行链路信道。就是说,空分复用(SDM)可以用于至少两个上行链路信道的传输。这些上行链路信道可以包括PUSCH、物理上行链路控制信道(PUCCH)、探测参考信号(SRS)、物理随机接入信道(PRACH)等。在一些示例中,经空间复用的上行链路信道可以同时地以相同的小区或不同的小区为目标。例如,可以向第一小区(例如,小区A)发送PUCCH/PUSCH,而可以向第二小区(例如,小区B)发送PRACH。在这样的情况下,针对于不同小区的传输可以例如以最小延迟或没有延迟地实现去往不同小区的切换过程。在一些示例中,UE可以在资源集合上同时地发送经空间复用的上行链路信道,以及可以向相同的发送/接收点(TRP)(例如,基站、基站的远程无线头端(RRH)、基站的小区、基站的扇区等)或不同的TRP发送上行链路信道。
为了将SDM利用于同时上行链路传输,可以针对相应的上行链路传输配置/分配空间域资源。例如,被配置用于PUCCH和PUSCH的传输的资源可以包括一个或多个空间参数,其中不同的空间参数集合可以被应用于其它上行链路信道。空间参数可以包括天线端口数量、空间层数量、空间域预编码器等。在一些情况下,可以经由来自基站的信令来向UE传送空间参数。例如,无线资源控制(RRC)信令或下行链路控制信息(DCI)可以提供对要用于同时上行链路传输的空间参数集合的指示。另外,可以配置用于不同信道的功率控制,这可以实现串行消除。
首先在无线通信系统的背景下描述了本公开内容的各方面。提供了示出多个上行链路信道的符号周期中的解调参考信号(DMRS)的对齐的另外的示例。进一步通过涉及使用空间复用的同时上行链路传输的装置图、系统图和流程图来示出以及参考这些图来描述本公开内容的各方面。
图1根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线通信系统100的示例。无线通信系统100包括基站105、UE 115以及核心网130。在一些示例中,无线通信系统100可以是长期演进(LTE)网络、改进的LTE(LTE-A)网络、LTE-A Pro网络、或新无线电(NR)网络。在一些情况下,无线通信系统100可以支持增强型宽带通信、超可靠(例如,任务关键)通信、低延时通信或者与低成本和低复杂度设备的通信。无线通信系统100可以支持用于来自UE 115的多个上行链路信道的传输的SDM技术。
基站105可以经由一个或多个基站天线与UE 115无线地进行通信。本文描述的基站105可以包括或可以被本领域技术人员称为基站收发机站、无线基站、接入点、无线收发机、节点B、演进型节点B(eNB)、下一代节点B或千兆节点B(其中的任一项可以被称为gNB)、家庭节点B、家庭演进型节点B、或某种其它合适的术语。无线通信系统100可以包括不同类型的基站105(例如,宏小区基站或小型小区基站)。本文描述的UE 115可能能够与各种类型的基站105和网络设备(包括宏eNB、小型小区eNB、gNB、中继基站等)进行通信。
每个基站105可以与在其中支持与各个UE 115的通信的特定地理覆盖区域110相关联。每个基站105可以经由通信链路125针对相应的地理覆盖区域110提供通信覆盖,以及在基站105与UE 115之间的通信链路125可以利用一个或多个载波。在无线通信系统100中示出的通信链路125可以包括:从UE 115到基站105的上行链路传输、或者从基站105到UE115的下行链路传输。下行链路传输还可以被称为前向链路传输,而上行链路传输还可以被称为反向链路传输。
可以将针对基站105的地理覆盖区域110划分为扇区,所述扇区仅组成地理覆盖区域110的一部分,以及每个扇区可以与小区相关联。例如,每个基站105可以提供针对宏小区、小型小区、热点、或其它类型的小区、或其各种组合的通信覆盖。在一些示例中,基站105可以是可移动的,以及因此,提供针对移动的地理覆盖区域110的通信覆盖。在一些示例中,与不同的技术相关联的不同的地理覆盖区域110可以重叠,以及与不同的技术相关联的重叠的地理覆盖区域110可以由相同的基站105或不同的基站105来支持。无线通信系统100可以包括例如异构LTE/LTE-A/LTE-A Pro或NR网络,其中不同类型的基站105提供针对各个地理覆盖区域110的覆盖。
术语“小区”指代用于与基站105的通信(例如,在载波上)的逻辑通信实体,以及可以与用于对经由相同或不同载波来操作的相邻小区进行区分的标识符(例如,物理小区标识符(PCID)、虚拟小区标识符(VCID))相关联。在一些示例中,载波可以支持多个小区,以及不同的小区可以是根据不同的协议类型(例如,机器类型通信(MTC)、窄带物联网(NB-IoT)、增强型移动宽带(eMBB)或其它协议类型)来配置的,所述不同的协议类型可以针对不同类型的设备提供接入。在一些情况下,术语“小区”可以指代逻辑实体在其上进行操作的地理覆盖区域110的一部分(例如,扇区)。
UE 115可以是遍及整个无线通信系统100来散布的,以及每个UE 115可以是静止的或移动的。UE 115还可以被称为移动设备、无线设备、远程设备、手持设备、或用户设备、或某种其它合适的术语,其中,“设备”还可以被称为单元、站、终端或客户端。UE 115还可以是个人电子设备,诸如蜂窝电话、个人数字助理(PDA)、平板计算机、膝上型计算机或个人计算机。在一些示例中,UE 115还可以指代无线本地环路(WLL)站、物联网(IoT)设备、万物联网(IoE)设备或MTC设备等,其可以是在诸如电器、运载工具、仪表等的各种制品中实现的。
一些UE 115(诸如MTC或IoT设备)可以是低成本或低复杂度设备,以及可以提供机器之间的自动化通信(例如,经由机器到机器(M2M)通信)。M2M通信或MTC可以指代允许设备在没有人工干预的情况下相互进行通信或与基站105进行通信的数据通信技术。在一些示例中,M2M通信或MTC可以包括来自集成传感器或计量仪以测量或捕获信息并且将该信息中继给中央服务器或应用程序的设备的通信,所述中央服务器或应用程序可以利用该信息或者将该信息呈现给与该程序或应用进行交互的人员。一些UE 115可以被设计为收集信息或者实现机器的自动化行为。针对MTC设备的应用的示例包括智能计量、库存监测、水位监测、设备监测、医疗保健监测、野生生物监测、气候和地质事件监测、车队管理和跟踪、远程安全感测、物理接入控制、以及基于交易的商业计费。
一些UE 115可以被配置为采用降低功耗的操作模式,诸如半双工通信(例如,支持经由发送或接收的单向通信而不是同时地进行发送和接收的模式)。在一些示例中,半双工通信可以是以降低的峰值速率来执行的。针对UE 115的其它功率节省技术包括:当不参与活动的通信或者在有限的带宽上操作(例如,根据窄带通信)时,进入功率节省的“深度睡眠”模式。在一些情况下,UE 115可以被设计为支持关键功能(例如,任务关键功能),以及无线通信系统100可以被配置为提供用于这些功能的超可靠通信。
在一些情况下,UE 115还可能能够与其它UE 115直接进行通信(例如,使用对等(P2P)或设备到设备(D2D)协议)。利用D2D通信的一组UE 115中的一个或多个UE 115可以在基站105的地理覆盖区域110内。这样的组中的其它UE 115可以在基站105的地理覆盖区域110之外,或者以其它方式不能从基站105接收传输。在一些情况下,经由D2D通信来进行通信的多组UE 115可以利用一到多(1:M)系统,其中,每个UE 115向组中的每个其它UE 115进行发送。在一些情况下,基站105促进对用于D2D通信的资源的调度。在其它情况下,D2D通信是在UE 115之间执行的,而不涉及基站105。
基站105可以与核心网130进行通信以及相互进行通信。例如,基站105可以通过回程链路132(例如,经由S1或其它接口)与核心网130对接。基站105可以在回程链路134上(例如,经由X2或其它接口)上直接地(例如,直接在基站105之间)或间接地(例如,经由核心网130)相互进行通信。
核心网130可以提供用户认证、接入授权、跟踪、互联网协议(IP)连接、以及其它接入、路由或移动性功能。核心网130可以是演进分组核心(EPC),其可以包括至少一个移动性管理实体(MME)、至少一个服务网关(S-GW)和至少一个分组数据网络(PDN)网关(P-GW)。MME可以管理非接入层(例如,控制平面)功能,诸如针对由与EPC相关联的基站105服务的UE115的移动性、认证和承载管理。用户IP分组可以通过S-GW来传输,所述S-GW本身可以连接到P-GW。P-GW可以提供IP地址分配以及其它功能。P-GW可以连接到网络运营商IP服务。运营商IP服务可以包括对互联网、内联网、IP多媒体子系统(IMS)或分组交换(PS)流服务的接入。
网络设备中的至少一些网络设备(诸如基站105)可以包括诸如接入网络实体的子组件,其可以是接入节点控制器(ANC)的示例。每个接入网络实体可以通过多个其它接入网络传输实体(其可以被称为无线头端、智能无线头端、远程无线头端(RRH)、远程无线单元(RRU)或发送/接收点(TRP))来与UE 115进行通信。在一些配置中,每个接入网络实体或基站105的各种功能可以是跨越各个网络设备(例如,无线头端和接入网络控制器)分布的或者合并到单个网络设备(例如,基站105)中。在一些情况下,每个接入网传输实体可以经由有线链路(例如,光纤线)或无线链路相互通信。
尝试接入无线网络的UE 115可以通过检测来自基站105的主同步信号(PSS)来执行初始小区搜索。PSS可以启用对时隙时序的同步以及可以指示物理层身份值。UE 115然后可以接收辅同步信号(SSS)。SSS可以启用无线帧同步,以及可以提供小区身份值,该小区身份值可以与物理层身份值组合以标识小区。SSS还可以使得能够检测双工模式和循环前缀长度。诸如时分双工(TDD)系统的一些系统可以发送SSS,但是不发送PSS。PSS和SSS两者可以分别位于载波的中央62和72子载波中。在一些情况下,PSS、SSS和/或广播信息(例如,物理广播信道(PBCH))可以在相应的定向波束上在不同的同步信号块内被发送,其中一个或多个同步信号块可以被包括在同步信号突发(SSB)中。在接收到PSS和SSS之后,UE115可以接收主信息块(MIB),其可以在PBCH中被发送。MIB可以包含系统带宽信息、SFN和物理混合自动重传请求(HARQ)指示信道(PHICH)配置。在解码MIB之后,UE 115可以接收一个或多个系统信息块(SIB)。例如,第一SIB(即SIB1)可以包含用于其它SIB的小区接入参数和调度信息。解码SIB1可以使UE 115能够接收第二SIB(SIB2)。SIB2可以包含与随机接入信道(RACH)过程、寻呼、PUCCH、PUSCH、功率控制、SRS和小区禁止相关的RRC配置信息。
在UE 115解码SIB2之后,其可以向基站105发送RACH前导码。例如,可以从64个预确定的序列的集合中随机地选择RACH前导码。这可以使基站105能够区分尝试同时地接入系统的多个UE 115。基站105可以利用随机接入响应(其提供上行链路资源准许、时序提前和临时小区随机接入网络临时标识符(C-RNTI))来进行响应。然后,UE 115可以发送RRC连接请求连同临时移动用户身份(TMSI)(如果UE 115先前已经被连接到相同的无线网络)或随机标识符。RRC连接请求还可以指示UE 115正在连接到网络的原因(例如,紧急情况、信令、数据交换等)。基站105可以利用寻址到UE 115的竞争解决消息(其可以提供新的C-RNTI)来对连接请求进行响应。如果UE 115接收到具有正确标识的竞争解决消息,则其可以继续进行RRC建立。如果UE 115没有接收到竞争解决消息(例如,如果存在与另一UE 115的冲突的话),则UE 115可以通过发送新的RACH前导码来重复RACH过程。
数据可以被划分为逻辑信道、传输信道和物理层信道。信道还可以被分类为控制信道和业务信道。逻辑控制信道可以包括用于寻呼信息的寻呼控制信道(PCCH)、用于广播系统控制信息的广播控制信道(BCCH)、用于发送多媒体广播/多播(MBMS)调度和控制信息的多播控制信道(MCCH)、用于发送专用控制信息的专用控制信道(DCCH)、用于随机接入信息的公共控制信道(CCCH)、用于专用UE数据的专用业务控制信道(DTCH)和用于多播数据的多播业务信道(MTCH)。下行链路传输信道可以包括用于广播信息的广播信道(BCH)、用于数据传输的下行链路共享信道(DL-SCH)、用于寻呼信息的寻呼信道(PCH)和用于多播传输的多播信道(MCH)。上行链路传输信道可以包括用于接入的RACH和用于数据的上行链路共享信道(UL-SCH)。下行链路物理信道可以包括用于广播信息的PBCH、用于控制格式信息的物理控制格式指示信道(PCFICH)、用于控制和调度信息的物理下行链路控制信道(PDCCH)、用于HARQ状态消息的PHICH、用于用户数据的物理下行链路共享信道(PDSCH)和用于多播数据的物理多播信道(PMCH)。上行链路物理信道可以包括用于接入消息的物理随机接入信道(PRACH)、用于控制数据的PUCCH和用于用户数据的PUSCH。
PDCCH在控制信道元素(CCE)中携带DCI,CCE可以由九个在逻辑上连续的资源元素组(REG)组成,其中每个REG包含4个资源元素。DCI包括关于下行链路调度指派、上行链路资源准许、传输方案、上行链路功率控制、HARQ信息、调制和编码方案(MCS)以及其它信息的信息。DCI消息的大小和格式可以根据通过DCI携带的信息的类型和数量而不同。例如,如果支持空间复用,则与连续的频率分配相比,DCI消息的大小是较大的。类似地,对于采用多输入多输出(MIMO)通信的系统,DCI必须包括额外的信令信息。DCI大小和格式取决于信息的数量以及诸如带宽、天线端口数和双工模式的因素。
PUCCH可以被映射到通过码和两个连续资源块(RB)定义的控制信道。上行链路控制信令可以取决于针对小区的时序同步的存在。可以通过RRC信令来指派(和撤销)用于SR和信道质量指示符(CQI)报告的PUCCH资源。在一些情况下,可以在通过RACH过程获取同步之后指派用于SR的资源。在其它情况下,可以不通过RACH向UE 115指派SR(即,同步的UE115可以具有或可以不具有专用SR信道)。当UE 115不再同步时,用于SR和CQI的PUCCH资源可能丢失。
UE 115可以使用预确定的序列(例如,Zadoff-Chu序列)来发送SRS,使得基站105可以估计上行链路信道质量。SRS传输可以与另一信道上的数据传输不相关联,以及可以是在宽带宽(例如,包括比针对上行链路数据传输分配的子载波更多的子载波的带宽)上周期性地发送的。在一些示例中,可以在多个天线端口上调度SRS,以及仍然可以将其视为单个SRS传输。SRS传输可以被分类为类型0(以同等间隔周期性地发送)SRS或类型1(非周期性)SRS。在任一情况下,基站105可以通过向UE 115通知哪些传输时间间隔(TTI)(例如,子帧)可以支持SRS的传输来控制SRS传输的时序。另外,可以针对UE 115配置探测周期(例如,2至230个子帧)和探测周期内的偏移。因此,当支持SRS传输的子帧与所配置的探测周期一致时,UE 115可以发送SRS。在一些情况下,可以在子帧的暂时最后的正交频分复用(OFDM)符号期间发送SRS,或者在一些情况下,可以在特殊子帧的上行链路部分期间发送SRS。基站105从SRS收集的数据可以用以通知UE 115进行的对上行链路传输的调度,诸如取决于频率的传输。基站105还可以利用SRS来检查时序对齐状态以及向UE 115发送时间对齐命令。
在一些情况下,UE 115可以从服务基站105(被称为源基站105)转移到另一基站105(被称为目标基站105)。例如,UE 115可能正在移动进入目标基站105的覆盖区域中,或者目标基站105可能能够针对UE 115提供更好的服务或减轻源基站105的过多负载。该转变可以被称为“切换”。在切换之前,源基站105可以将UE 115配置有用于测量相邻基站105的信号质量的过程。然后,UE 115可以利用测量报告来进行响应。源基站105可以使用测量报告来做出切换决定。该决定还可以是基于无线资源管理(RRM)因素的,诸如网络负载和干扰减轻。当做出切换决定时,源基站105可以向目标基站105发送切换请求消息,其可以包括上下文信息以准备目标基站105服务于UE 115。目标基站105可以做出准入控制决定,例如,以确保其可以满足UE 115的服务质量(QoS)标准。然后,目标基站105可以配置用于输入UE115的资源,以及向源基站105发送切换请求确认消息,其可以包括要传递给UE 115的RRC信息。然后,源基站105可以指导UE115执行切换,以及将状态转移消息与分组数据汇聚协议(PDCP)承载状态信息一起传递给目标基站。UE 115可以经由RACH过程附着到目标基站105。通过多个上行链路信道的同时传输,UE 115可能能够以最小延迟或没有延迟地进行从源基站105到目标基站105的切换过程。例如,以及如本文中进一步详细描述的,UE 115可以与源基站105进行通信,同时与目标基站105同时地执行RACH过程。
无线通信系统100可以使用一个或多个频带(通常在300兆赫(MHz)到300千兆赫(GHz)的范围中)来操作。通常,从300MHz到3GHz的区域被称为特高频(UHF)区域或分米频带,因为波长范围在长度上从近似一分米到一米。UHF波可以被建筑物和环境特征阻挡或重定向。然而,波可以足以穿透结构,以用于宏小区向位于室内的UE 115提供服务。与使用频谱的低于300MHz的高频(HF)或甚高频(VHF)部分的较小频率和较长的波的传输相比,UHF波的传输可以与较小的天线和较短的距离(例如,小于100km)相关联。
无线通信系统100还可以在使用从3GHz到30GHz的频带(还被称为厘米频带)的超高频(SHF)区域中操作。SHF区域包括诸如5GHz工业、科学和医疗(ISM)频带的频带,其可以由能够容忍来自其它用户的干扰的设备机会性地使用。
无线通信系统100还可以在频谱的极高频(EHF)区域(例如,从30GHz到300GHz)(还被称为毫米频带)中操作。在一些示例中,无线通信系统100可以支持UE 115与基站105之间的毫米波(mmW)通信,以及与UHF天线相比,相应设备的EHF天线可以甚至更小以及间隔得更紧密。在一些情况下,这可以促进在UE 115内使用天线阵列。然而,与SHF或UHF传输相比,EHF传输的传播可能受制于甚至更大的大气衰减和更短的距离。可以跨越使用一个或多个不同的频率区域的传输来采用本文公开的技术,以及对跨越这些频率区域的频带的指定使用可以根据国家或管理主体而不同。
在一些情况下,无线通信系统100可以利用经许可和免许可射频频谱频带两者。例如,无线通信系统100可以采用免许可频带(诸如5GHz ISM频带)中的许可辅助接入(LAA)、LTE免许可(LTE-U)无线接入技术或NR技术。当在免许可射频频谱频带中操作时,无线设备(诸如基站105和UE 115)可以在发送数据之前采用先听后说(LBT)过程来确保频率信道是空闲的。在一些情况下,免许可频带中的操作可以是基于结合在经许可频带(例如,LAA)中操作的CC的载波聚合(CA)配置的。免许可频谱中的操作可以包括下行链路传输、上行链路传输、对等传输或这些项目的组合。免许可频谱中的双工可以基于频分双工(FDD)、TDD或这两者的组合。
在一些示例中,基站105或UE 115可以被配备有多个天线,其可以用以采用诸如发射分集、接收分集、MIMO通信或波束成形的技术。例如,无线通信系统100可以在发送设备(例如,基站105)与接收设备(例如,UE 115)之间使用传输方案,其中,发送设备被配备有多个天线,以及接收设备被配备有一个或多个天线。MIMO通信可以采用多径信号传播,以通过经由不同的空间层发送或接收多个信号(这可以被称为空间复用)来提高频谱效率。例如,发送设备可以经由不同的天线或者天线的不同组合来发送多个信号。同样,接收设备可以经由不同的天线或者天线的不同组合来接收多个信号。多个信号中的每个信号可以被称为分离的空间流,以及可以携带与相同的数据流(例如,相同的码字)或不同的数据流相关联的比特。不同的空间层可以与用于信道测量和报告的不同的天线端口相关联。MIMO技术包括单用户MIMO(SU-MIMO)(其中,多个空间层被发送给相同的接收设备)和多用户MIMO(MU-MIMO)(其中,多个空间层被发送给多个设备)。
波束成形(其还可以被称为空间滤波、定向发送或定向接收)是一种如下的信号处理技术:可以在发送设备或接收设备(例如,基站105或UE 115)处使用该技术,以沿着在发送设备与接收设备之间的空间路径来形成或引导天线波束(例如,发送波束或接收波束)。可以通过以下操作来实现波束成形:对经由天线阵列的天线元件传送的信号进行组合,使得在相对于天线阵列的特定位向上传播的信号经历相长干涉,而其它信号经历相消干涉。对经由天线元件传送的信号的调整可以包括:发送设备或接收设备向经由与该设备相关联的天线元件中的每个天线元件携带的信号应用某些幅度和相位偏移。可以通过与特定位向(例如,相对于发送设备或接收设备的天线阵列,或者相对于某个其它位向)相关联的波束成形权重集合来定义与天线元件中的每个天线元件相关联的调整。
在一个示例中,基站105可以使用多个天线或天线阵列,来进行用于与UE 115的定向通信的波束成形操作。例如,基站105可以在不同的方向上多次发送一些信号(例如,同步信号、参考信号、波束选择信号或其它控制信号),所述一些信号可以包括根据与不同的传输方向相关联的不同的波束成形权重集合发送的信号。不同的波束方向上的传输可以用以(例如,由基站105或接收设备(例如,UE 115))识别用于基站105进行的后续发送和/或接收的波束方向。基站105可以在单个波束方向(例如,与接收设备(诸如UE 115)相关联的方向)上发送一些信号(诸如与特定的接收设备相关联的数据信号)。在一些示例中,与沿着单个波束方向的传输相关联的波束方向可以是基于在不同的波束方向上发送的信号来确定的。例如,UE 115可以接收由基站105在不同方向上发送的信号中的一个或多个信号,以及UE115可以向基站105报告对其接收到的具有最高信号质量或者以其它方式可接受的信号质量的信号的指示。虽然这些技术是参考由基站105在一个或多个方向上发送的信号来描述的,但是UE 115可以采用类似的技术来在不同方向上多次发送信号(例如,用于识别用于由UE 115进行的后续发送或接收的波束方向)或者在单个方向上发送信号(例如,用于向接收设备发送数据)。
当从基站105接收各种信号(诸如同步信号、参考信号、波束选择信号或其它控制信号)时,接收设备(例如,UE 115,其可以是mmW接收设备的示例)可以尝试多个接收波束。例如,接收设备可以通过经由不同的天线子阵列来进行接收,通过根据不同的天线子阵列来处理接收到的信号,通过根据向在天线阵列的天线元件集合处接收的信号应用的不同的接收波束成形权重集合来进行接收,或者通过根据向在天线阵列的天线元件集合处接收的信号应用的不同的接收波束成形权重集合来处理接收到的信号(其中的任何操作可以被称为根据不同的接收波束或接收方向的“监听”),来尝试多个接收方向。在一些示例中,接收设备可以使用单个接收波束来沿着单个波束方向进行接收(例如,当接收数据信号时)。单个接收波束可以在基于根据不同的接收波束方向进行监听来确定的波束方向(例如,基于根据多个波束方向进行监听来确定为具有最高信号强度、最高信噪比、或者以其它方式可接受的信号质量的波束方向)上对齐。
在一些情况下,基站105或UE 115的天线可以位于一个或多个天线阵列内,所述一个或多个天线阵列可以支持MIMO操作或者发送或接收波束成形。例如,一个或多个基站天线或天线阵列可以共置于天线组件处,例如天线塔。在一些情况下,与基站105相关联的天线或天线阵列可以位于不同的地理位置上。基站105可以具有天线阵列,所述天线阵列具有基站105可以用以支持对与UE 115的通信的波束成形的多行和多列的天线端口。同样,UE115可以具有可以支持各种MIMO和波束成形操作的一个或多个天线阵列。
在一些情况下,无线通信系统100可以是根据分层的协议栈来操作的基于分组的网络。在用户平面中,在承载或PDCP层处的通信可以是基于IP的。在一些情况下,无线链路控制(RLC)层可以执行分组分段和重组以在逻辑信道上进行通信。介质访问控制(MAC)层可以执行优先级处理和逻辑信道到传输信道的复用。MAC层还可以使用HARQ来提供在MAC层处的重传,以改进链路效率。在控制平面中,RRC协议层可以提供在UE 115与基站105或核心网130之间的RRC连接(其支持针对用户平面数据的无线承载)的建立、配置和维护。在物理(PHY)层处,传输信道可以被映射到物理信道。
在一些情况下,UE 115和基站105可以支持对数据的重传,以增加数据被成功地接收的可能性。HARQ反馈是一种增加数据在通信链路125上被正确地接收的可能性的技术。HARQ可以包括错误检测(例如,使用循环冗余校验(CRC))、前向纠错(FEC)和重传(例如,自动重传请求(ARQ))的组合。HARQ可以在较差的无线状况(例如,信号与噪声状况)下改进MAC层处的吞吐量。在一些情况下,无线设备可以支持相同时隙HARQ反馈,其中,该设备可以在特定时隙中提供针对在该时隙中的先前符号中接收的数据的HARQ反馈。在其它情况下,该设备可以在后续时隙中或者根据某个其它时间间隔来提供HARQ反馈。
可以以基本时间单位(其可以例如指代Ts=1/30,720,000秒的采样周期)的倍数来表示LTE或NR中的时间间隔。可以根据均具有10毫秒(ms)的持续时间的无线帧来对通信资源的时间间隔进行组织,其中,帧周期可以表示为Tf=307,200Ts。无线帧可以通过范围从0到1023的系统帧号(SFN)来标识。每个帧可以包括编号从0到9的10个子帧,以及每个子帧可以具有1ms的持续时间。可以进一步将子帧划分成2个时隙,每个时隙具有0.5ms的持续时间,以及每个时隙可以包含6或7个调制符号周期(例如,这取决于在每个符号周期前面添加的循环前缀的长度)。排除循环前缀,每个符号周期可以包含2048个采样周期。在一些情况下,子帧可以是无线通信系统100的最小调度单元,以及可以被称为TTI。在其它情况下,无线通信系统100的最小调度单元可以比子帧短或者可以是动态选择的(例如,在缩短的TTI(sTTI)的突发中或者在选择的使用sTTI的分量载波中)。
在一些无线通信系统中,可以将时隙进一步划分成包含一个或多个符号的多个微时隙。在一些实例中,微时隙的符号或者微时隙可以是最小调度单元。每个符号在持续时间上可以根据例如子载波间隔或操作的频带来改变。此外,一些无线通信系统可以实现时隙聚合,其中,多个时隙或微时隙被聚合在一起以及用于在UE 115与基站105之间的通信。
术语“载波”指代具有用于支持在通信链路125上的通信的定义的物理层结构的射频频谱资源集合。例如,通信链路125的载波可以包括射频频谱频带中的根据用于给定的无线接入技术的物理层信道来操作的部分。每个物理层信道可以携带用户数据、控制信息或其它信令。载波可以与预定义的频率信道(例如,演进的通用陆地无线接入(E-UTRA)绝对射频信道号(EARFCN))相关联,以及可以根据信道栅格来放置以便被UE 115发现。载波可以是下行链路或上行链路(例如,在FDD模式中),或者可以被配置为携带下行链路和上行链路通信(例如,在TDD模式中)。在一些示例中,在载波上发送的信号波形可以由多个子载波组成(例如,使用诸如OFDM或离散傅里叶变换扩频OFDM(DFT-s-OFDM)的多载波调制(MCM)技术)。
针对不同的无线接入技术(例如,LTE、LTE-A、LTE-A Pro、NR等),载波的组织结构可以是不同的。例如,可以根据TTI或时隙来组织载波上的通信,所述TTI或时隙中的每一者可以包括用户数据以及用于支持对用户数据进行解码的控制信息或信令。载波还可以包括专用捕获信令(例如,同步信号或系统信息等)和协调针对载波的操作的控制信令。在一些示例中(例如,在CA配置中),载波还可以具有捕获信令或协调针对其它载波的操作的控制信令。
可以根据各种技术在载波上对物理信道进行复用。例如,可以使用TDM技术、FDM技术或混合TDM-FDM技术来在下行链路载波上对物理控制信道和物理数据信道进行复用。在一些示例中,在物理控制信道中发送的控制信息可以以级联的方式分布在不同的控制区域之间(例如,在公共控制区域或公共搜索空间与一个或多个特定于UE的控制区域或特定于UE的搜索空间之间)。
载波可以与射频频谱的特定带宽相关联,以及在一些示例中,载波带宽可以被称为载波或无线通信系统100的“系统带宽”。例如,载波带宽可以是针对特定无线接入技术的载波的多个预确定的带宽中的一个带宽(例如,1.4、3、5、10、15、20、40或80MHz)。在一些示例中,每个被服务的UE 115可以被配置用于在载波带宽的部分或全部带宽上进行操作。在其它示例中,一些UE 115可以被配置用于使用与载波内的预定义的部分或范围(例如,子载波或RB的集合)相关联的窄带协议类型进行的操作(例如,窄带协议类型的“带内”部署)。
在采用MCM技术的系统中,资源元素可以由一个符号周期(例如,一个调制符号的持续时间)和一个子载波组成,其中,符号周期和子载波间隔是成反比的。通过每个资源元素携带的比特的数量可以取决于调制方案(例如,调制方案的阶数)。因此,UE 115接收的资源元素越多以及调制方案的阶数越高,针对UE 115的数据速率就可以越高。在MIMO系统中,无线通信资源可以指代射频频谱资源、时间资源和空间资源(例如,空间层)的组合,以及对多个空间层的使用可以进一步增加用于与UE 115的通信的数据速率。
无线通信系统100的设备(例如,基站105或UE 115)可以具有支持特定载波带宽上的通信的硬件配置,或者可以可配置为支持载波带宽集合中的一个载波带宽上的通信。在一些示例中,无线通信系统100可以包括基站105和/或UE 115,其可以支持经由与多于一个的不同载波带宽相关联的载波进行的同时通信。
无线通信系统100可以支持在多个小区或载波上与UE 115的通信(可以被称为CA或多载波操作的特征)。根据CA配置,UE 115可以被配置有多个下行链路CC和一个或多个上行链路CC。可以将CA与FDD分量载波和TDD分量载波两者一起使用。
在一些情况下,无线通信系统100可以利用增强型分量载波(eCC)。eCC可以通过包括以下各项的一个或多个特征来表征:较宽的载波或频率信道带宽、较短的符号持续时间、较短的TTI持续时间或经修改的控制信道配置。在一些情况下,eCC可以与载波聚合配置或双连接配置相关联(例如,当多个服务小区具有次优的或非理想的回程链路时)。eCC还可以被配置用于在免许可频谱或共享频谱中使用(例如,其中允许多于一个的运营商使用频谱)。通过较宽的载波带宽表征的eCC可以包括可能无法监测整个载波带宽或以其它方式被配置为使用有限载波带宽(例如,以节省功率)的UE 115利用的一个或多个片段。
在一些情况下,eCC可以利用与其它CC不同的符号持续时间,这可以包括使用与其它CC的符号持续时间相比降低的符号持续时间。较短的符号持续时间可以与在相邻子载波之间的增加的间隔相关联。利用eCC的设备(诸如UE 115或基站105)可以以降低的符号持续时间(例如,16.67微秒)来发送宽带信号(例如,根据20、40、60、80MHz等的频率信道或载波带宽)。eCC中的TTI可以由一个或多个符号周期组成。在一些情况下,TTI持续时间(即,TTI中的符号周期的数量)可以是可变的。
无线通信系统(诸如NR系统)可以利用经许可、共享和免许可频谱频带等的任何组合。eCC符号持续时间和子载波间隔的灵活性可以允许跨越多个频谱来使用eCC。在一些示例中,NR共享频谱可以增加频谱利用率和频谱效率,尤其是通过对资源的动态垂直(例如,跨越频率)和水平(例如,跨越时间)共享。
无线通信系统100可以支持空间复用配置,其使UE 115能够对用于同时传输的两个或更多个上行链路信道进行空间复用,以便避免上行链路信道之间的冲突。例如,UE 115可以从基站105接收对空间复用配置的指示。UE 115还可以识别用于相同分量载波上的同时传输的两个或更多个上行链路信道,其中每个上行链路信道可以是不同类型的上行链路信道。例如,上行链路信道可以包括PUCCH、PUSCH、PRACH、SRS等。在任何情况下,UE 115可以根据空间复用配置来在分量载波上的相同的时间/频率资源集合上对两个或更多个上行链路信道进行空间复用。相应地,UE 115可以在时间/频率资源集合上同时地发送经空间复用的上行链路信道,其中可以将上行链路信道发送给相同的基站105或不同的基站105。在一些示例中,多个空间参数集合可以被利用于多个上行链路信道的同时传输。例如,相应的空间参数集合(例如,对天线端口数量、层数量、空间域预编码器等的指示)可以被应用于由UE115同时地发送的每个经空间复用的上行链路信道。基站105可以例如经由RRC信令或经由DCI向UE 115指示空间参数。
图2根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线通信系统200的示例。在一些示例中,无线通信系统200可以实现无线通信系统100的各方面。例如,无线通信系统200可以包括基站105-a和UE 115-a,它们可以是参考图1描述的对应设备的示例。无线通信系统可以示出支持资源集合上的多个上行链路信道的同时传输的系统的示例。
在一些情况下,UE 115-a可能能够使用多个天线和/或发射链进行同时上行链路传输。例如,UE 115-a可以被配备有天线203和/或无线电链的各种集合,其可以同时地处理用于去往基站105-a的传输的多个数据流。因此,UE 115-a可能能够使用相应的天线/发射链来发送不同的上行链路信道205的同时传输(例如,包括PUSCH、PUCCH、SRS等的上行链路传输)。作为示例,可以使用(例如,与第一波束相关联的)第一天线集合203-a来发送第一上行链路信道205-a,以及可以使用(例如,与第二波束相关联的)第二天线集合203-b来发送第二上行链路信道205-b。可以在一个CC内的相同的时间和频率资源集合上对这些上行链路信道进行复用。此外,尽管在图2中示出了两个天线集合203,但是UE 115-a可以包括不同数量的天线203或相应的天线集合203,它们可以各自用以发送不同的上行链路信道205。
UE 115-a还可以支持在空间域中对各个上行链路传输的复用。例如,可以在相同CC中经由多个发射链/天线来发送在资源集合上空间复用的同时上行链路信道。就是说,SDM可以用于两个或更多个上行链路信道205的传输。UE 115-a可以相应地与第二上行链路信道205-b同时发送第一上行链路信道205-a。这些上行链路信道205可以包括PUCCH、PUSCH、SRS、PRACH、或其任何组合。在一些情况下,第一上行链路信道205-a可以是PUCCH,以及第二上行链路信道205-b可以是PUSCH。在这种情况下,PUCCH可以包括服务请求(SR),以及PUSCH可以包括免准许上行链路传输。在其它情况下,第一上行链路信道205-a和第二上行链路信道205-b两者可以包括PUCCH。在这些情况下,可以在PUCCH的多个传输中包括不同类型的上行链路控制信息。例如,(例如,使用第一上行链路信道205-a发送的)第一PUCCH可以包括HARQ-ACK,以及(例如,使用第二上行链路信道205-b发送的)第二PUCCH可以包括信道状态信息(CSI)反馈。
在一些示例中,经空间复用的上行链路信道可以同时地以相同的小区或不同的小区为目标。例如,UE 115-a可以向基站105-a发送第一上行链路信道205-a和第二上行链路信道205-b两者。另外或替代地,第一上行链路信道205-a和第二上行链路信道205-b可以用于由UE 115-a支持的不同服务。例如,UE 115-a可能能够使用诸如eMBB、超可靠低延时通信(URLLC)等的不同服务进行通信。因此,UE 115a可以根据第一服务(例如,eMBB)使用第一上行链路信道205-a进行通信,同时根据第二服务(例如,URLLC)使用第二上行链路信道205-b进行通信。在一些情况下,UE 115-a可以使用第一上行链路信道205-a来发送基于准许的传输,同时在第二上行链路信道205-b上发送免准许传输。在其它示例中,以及如本文中进一步详细描述的,可以向第一小区(例如,小区A)发送PUCCH/PUSCH,而可以同时向第二小区(例如,小区B)发送RACH(例如,作为随机接入过程的一部分)。在这样的情况下,针对于不同小区的传输可以例如以最小延迟或没有延迟地实现去往不同小区的切换过程。
为了将SDM用于同时上行链路传输,可以针对相应的空间传输配置/分配时间/频率资源。例如,被配置用于PUCCH和PUSCH的传输的资源可以包括一个或多个空间参数,其中不同的空间参数集合可以被应用于不同的上行链路信道。空间参数可以包括天线端口数量、空间层数量、空间域预编码器等。在一些方面中,相应的空间参数可以被应用于每个上行链路信道205。例如,可以配置多个空间参数集合,以及一个空间参数集合(例如,天线端口0、1个层)可以被应用于第一上行链路信道205-a(例如,PUCCH),以及不同的空间参数集合(例如,天线端口1和2、2个层、预编码器1)可以被应用于第二上行链路信道205-b(例如,PUSCH)。相应地,当在空间域中被复用时,可以使用不同的空间参数来发送PUCCH和PUSCH。接收设备(例如,基站105-a)可以根据多个空间参数集合来对PUCCH和PUSCH进行解码。当调度同时上行链路信道传输时,基站105可以确保空间参数满足门限。例如,基站105可以确保空间层的总数不超过UE 115可用于上行链路传输的和支持的发射天线和/或天线端口的数量。
在一些情况下,可以经由来自基站105-a的信令向UE 115-a传送空间参数。例如,RRC信令或DCI可以提供对要用于同时上行链路传输的空间参数集合的指示。在这样的情况下,空间复用配置的信令可以是半静态的或动态的,以及还可以是特定于用户的(例如,基于相应的UE 115的能力)。在一个示例中,空间参数集合可以通过RRC信令来指示,而另一空间参数集合(例如,用于另一上行链路信道205)可以经由DCI来指示。用于发信号通知用于不同的上行链路信道205的空间参数的其它方案可以是可能的。
还可以配置用于不同的上行链路信道205的功率控制,这可以实现在接收机处的串行干扰消除。例如,当第一上行链路信道205-a包括PUCCH/PUSCH以及第二上行链路信道205-b包括SRS时,可以减低用于第二上行链路信道205-b的发射功率,以便保护在PUCCH/PUSCH内发送的数据。就是说,可能需要联合考虑用于SRS和数据传输的功率控制。在一些示例中,接收设备(例如,基站105-a)可以首先对PUCCH/PUSCH进行解码,以及从接收到的信号中去除经解码的PUCCH/PUSCH信号。然后,在从PUCCH/PUSCH去除干扰之后,基站105-a可以基于SRS来执行信道估计。
图3根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线通信系统300的示例。在一些示例中,无线通信系统300可以实现无线通信系统100的各方面。例如,无线通信系统300可以包括UE115-b和多个基站105(例如,第一基站105-b和第二基站105-c),它们可以是参考图1和2描述的对应设备的示例。无线通信系统300可以示出支持多个上行链路信道到多个基站105的同时传输以用于高效切换过程的系统的示例。
如本文描述的,UE 115-b可能能够使用多个天线/天线链进行同时传输,以及可以相应地实现用于本文描述的多个上行链路信道305的传输的技术。例如,可以使用(例如,与第一波束相关联的)第一天线集合303-a来发送第一上行链路信道305-a,以及可以使用(例如,与第二波束相关联的)第二天线集合303-b来发送第二上行链路信道305-b。UE 115-b可以与第二上行链路信道305-b同时发送第一上行链路信道305-a。这些上行链路信道305可以包括PUCCH、PUSCH、SRS、PRACH、或其任何组合。在一些示例中,经空间复用的上行链路信道305可以同时地以不同的小区为目标。例如,可以向由第一基站105-b提供的第一小区(例如,小区A)发送PUCCH/PUSCH,而可以向由第二基站105-c提供的第二小区(例如,小区B)发送RACH。在这样的情况下,UE 115-b可以以最小延迟或零延迟来执行从第一基站105-b到第二基站105-b的切换。
例如,UE 115-b可以与第一基站105-b进行通信,以及可以例如从第一基站105-b接收PDCCH 310的传输。在一些示例中,PDCCH 310可以包括提供对空间复用配置的指示的DCI。在接收到指示之后,UE 115-b可以继续使用多个天线303/天线链来发送不同的上行链路信道305的同时传输。在一些方面中,UE 115-b可以是移动的以及可以从第一基站105-b切换到第二基站105-c。在这样的情况下,当UE 115-b与第一基站105-b进行通信时,UE115-b可以同时地开始与第二基站105-c的接入过程(例如,RACH过程)。更具体地,通过对上行链路信道305-a和305-b进行空间复用,UE115-b可以同时向第一基站105-b发送第一上行链路信道305-a的经空间复用的传输(例如,包括PUCCH/PUSCH/SRS),同时还向第二基站105-c发送第二上行链路信道305-b(例如,PRACH)。因此,由UE 115-b进行的通信在从第一基站105-b到第二基站105-c的切换期间可以是无缝的,因为在切换小区时可以不存在中断。
在一些示例中,UE 115-b可以向不同的TRP发送第一上行链路信道305-a和第二上行链路信道305-b(例如,使用UE 115-b处的多个发送链)。在一些情况下,TRP可以是共置的(例如,在相同的地理位置)或非共置的(例如,在不同的地理位置)。TRP可以包括基站105(诸如第一基站105-b和第二基站105-c)、基站105的RRH、基站105的小区、基站105的扇区、或其任何组合。作为示例,UE 115-b可以使用第一上行链路信道305-a向基站105(诸如第一基站105-b)的第一RRH发送传输,同时使用第二上行链路信道305-b向基站105或另一基站105的第二RRH发送传输。在一些示例中,基站105的RRH可以包括一个或多个低功率RRH(例如,其中低功率RRH的传输功率相对低于基站105的传输功率以及可以与小型小区相关联,如本文参考图1描述的)、一个或多个高功率RRH(例如,其中高功率RRH的传输功率可以类似于基站105的传输功率以及可以与其自身的宏小区相关联,如本文参考图1描述的)、或其任何组合。在其它示例中,用于每个基站105的地理覆盖区域110可以包括多个扇区。例如,用于第一基站105-b的第一地理覆盖区域110-b可以包括多个扇区。在这样的情况下,UE 115-b可以向第一地理覆盖区域110-b的不同扇区发送第一上行链路信道305-a和第二上行链路信道。另外或替代地,UE 115-b可以向第一地理覆盖区域110-b的扇区发送第一上行链路信道305-a,同时向用于第二基站105-c的第二地理覆盖区域110-c的扇区发送第二上行链路信道305-b。
在一些情况下,第一上行链路信道305-a和第二上行链路信道305-b可以包括来自UE 115-b的PUCCH的传输,以及每个PUCCH传输可以以不同的TRP为目标。在这样的情况下,每个PUCCH可以包括HARQ反馈(例如,提供针对被发送给UE 115-b的下行链路传输的确认(ACK)/否定确认(NACK)信息)。例如,当UE 115-b与多个TRP(诸如第一基站105-b和/或第二基站105-c、基站105的RRH、扇区或小区等)进行通信时,多个TRP可以各自向UE 115-b发送相应的PDSCH。照此,UE 115-b可以使用第一上行链路信道305-a和第二上行链路信道305-b同时地反馈针对每个TRP的ACK/NACK信息。在一些示例中,在通过非理想回程连接多个TRP(例如,在回程链路315中具有较大延时)的情况下,可以使用这样的HARQ反馈技术。照此,TRP可能不能动态地交换ACK/NACK信息,以及UE 115-b可以向每个TRP发送具有对应的ACK/NACK信息的单独的PUCCH。所描述的技术可以使UE 115-b能够经由不同的天线303同时地向多个TRP反馈ACK/NACK信息。在一些情况下,UE 115-b可以在第一上行链路信道305-a中发送ACK/NACK反馈。例如,UE 115-b可以在第一上行链路信道305-a(例如,PUCCH)到第一TRP的传输中包括ACK/NACK反馈,而第二上行链路信道305-b的传输可以包括例如PUSCH。在这样的情况下,每个上行链路信道305可以包括旨在针对期望所发送的信号的相应TRP的信令。这样的技术可以避免TRP在由UE 115-b发送的上行链路信道305上接收到额外的、不期望的信息的情况(例如,诸如在多个TRP与特定信道之间的非理想回程链路可以包括额外的“附带的”信令的情况下)。在一些情况下,可以经由不同的频域/码域资源来发送ACK/NACK信息。此外,还考虑了本文中未明确地描述的使用第一上行链路信道305-a和第二上行链路信道305-b的去往不同TRP的其它类型的同时传输。
经空间复用的第一上行链路信道305-a和第二上行链路信道305-b可以与相同的下行链路信号(例如,参考信号)准共置(QCL),或者与不同的下行链路信号QCL。一个或多个传输或信号之间的准共置(QCL)关系可以指代相应传输的天线端口(以及对应的信令波束)之间的空间关系。例如,基站105-b可以实现一个或多个天线端口来向UE 115-b发送至少一个或多个参考信号和命令信息传输。然而,经由不同天线端口发送的信号的信道属性可以被解释为(例如,被接收设备解释)是相同的(例如,尽管信号是从不同天线端口发送的),以及天线端口(和相应波束)可以被确定为QCL。在这样的情况下,UE 115-b可以具有用于接收QCL传输(例如,参考信号)的接收波束的相应的天线端口。在一些情况下,QCL信号可以使UE115-b能够根据对在第二天线端口上发送的第二信道进行的测量来推导在第一天线端口上发送的第一信道的属性(例如,延迟扩展、多普勒扩展、频移、平均功率等)。
第一上行链路信道305-a和第二上行链路信道305-b可以用于由UE 115-b支持的不同服务。例如,UE 115-b可能能够使用不同的服务(诸如eMBB、URLLC等)来向相同或不同的TRP进行传送。照此,UE 115-b可以根据第一服务(例如,eMBB)来使用第一上行链路信道305-a进行通信,同时根据第二服务(例如,URLLC)来使用第二上行链路信道305-b进行通信。此外,可以使用相应的上行链路信道305来发送不同类型的信息。例如,第一上行链路信道305-a可以用以发送用于URLLC服务的PUCCH,而第二上行链路信道305-b可以用以发送用于eMBB服务的PUSCH。在其它示例中,可以使用对上行链路信道305的空间复用来同时地发送免准许和基于准许的传输。在这样的情况下,可以使用第一上行链路信道305-a来发送(例如,根据自主上行链路技术或根据半静态配置发送的)免准许的PUSCH,以及可以使用第二上行链路信道305-b来发送基于准许的PUSCH。就是说,可以使用对不同的上行链路信道305的独立调度。在这样的情况下,第一上行链路信道305-a是动态地调度的上行链路传输,而第二上行链路信道305-b可以是经RRC配置的上行链路传输,反之亦然。要注意的是,可以使用上行链路信道305-a和305-b来同时地发送本文未明确地描述的其它信道、服务、信号或其组合,以及为了说明清楚起见,提供了本文描述的示例。此外,其中上行链路信道305-a和305-b用于不同服务的传输方案可以应用于不同的部署场景,诸如当UE 115-b与单个TRP进行通信时(诸如上文参考图2描述的)。
在一些情况下,第一基站105-b和第二基站105-c可以协调对来自UE 115-b的经空间复用的传输的接收。例如,第一基站105-b和第二基站105-c可以在回程链路315上协同,该回程链路315可以提供例如PRACH检测和数据解码。基站105可以交换与空间复用配置相关的信息,包括空间参数,诸如对天线端口集合、层数量、空间域预编码器等的指示。
另外或替代地,第一基站105-b和第二基站105-c可以避免协调。在这样的情况下,多个上行链路传输对于第一基站105-b和第二基站105-c可以是透明的。因此,第一基站105-b可以将用于第二基站105-c的第二上行链路信道305-b(例如,PRACH)视为未知干扰。同样,第二基站105-c可以将用于第一基站105-b的第一上行链路信道305-a(例如,PUSCH/PUCCH/SRS)视为干扰。
图4A和4B根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的参考信号对齐401和402的示例。在一些示例中,参考信号对齐401和402可以实现无线通信系统100的各方面。例如,UE 115可以将包括参考信号对齐401和402的各方面的技术用于上行链路信道的同时传输。在一些情况下,参考信号对齐401和402可以示出跨越同时地发送的多个信道的参考信号(诸如DMRS)的对齐。
由于不同的上行链路信道可以具有不同的起始位置和不同的长度,所以某些复用方案(例如,在DMRS未对齐的情况下对多个上行链路信道进行复用)可能导致在不同的OFDM符号中包括DMRS的相应的上行链路信道。在DMRS未对齐的情况下,可以在任何位置发送DMRS,这继而可能与另一同时地发送的上行链路信道中的数据冲突,从而影响接收设备处的信道估计。因此,为了实现在接收设备处的准确的信道估计,可以在同时地发送上行链路信道时执行参考信号的对齐。
参考信号对齐401可以包括第一上行链路信道410-a和不同的第二上行链路信道410-b,它们可以在相同的资源集合上被发送。作为示例,第一上行链路信道410-a可以包括PUCCH,以及第二上行链路信道410-b可以包括PUSCH。可以在CC内在相同的时间/频率资源集合上对上行链路信道410进行空间复用,该CC可以在多个的符号周期420(例如,OFDM符号周期)上包括多个频率音调415。
如图4A所示,第一上行链路信道410-a可以具有与第二上行链路信道410-b不同的长度(例如,占用不同数量的符号周期420)。另外或替代地,第一上行链路信道410-a可以具有与第二上行链路信道410-b不同的起始点(例如,在时间上)。为了确保高效的信道估计,可以在相同的符号周期420中与正交DMRS 425同时地发送第一上行链路信道410-a和第二上行链路信道410-b(例如,分别包括PUCCH和PUSCH)(即,以对齐DMRS 425),这可以在针对同时地发送的信号的接收设备处提供准确的信道估计。如图所示,可以在相同的符号周期中发送用于第一上行链路信道410-a和第二上行链路信道410-b的DMRS 425。虽然在第一上行链路信道410a的暂时的第三符号周期420中示出了DMRS 425,但是当同时地发送第一上行链路信道410-a和第二上行链路信道410-b时,DMRS 425的对齐可以在任何符号周期420处。
在另一示例中,参考信号对齐402可以包括在相同的资源集合上发送的第一数据流435-a和第二数据流435-b。参考信号对齐402还可以包括第一上行链路信道410-c和不同的第二上行链路信道410-d。作为示例,第一上行链路信道410-c可以包括PUCCH,以及第二上行链路信道410-d可以包括PUSCH,其中可以在CC内的相同的时间/频率资源集合上对上行链路信道410进行空间复用。CC可以在多个符号周期420(例如,OFDM符号周期)上包括多个频率音调415。
如图4B所示,在一些情况下,用于第一上行链路信道410-c的DMRS 425可以占用与用于第二上行链路信道410-d的DMRS 425不同的频率音调415。相应地,第一上行链路信道410-a和第二上行链路信道410-d可以使用不同的DMRS组430。作为示例,在DMRS 425与用于发送DMRS 425的天线端口之间可以存在一对一的对应关系。由于可以在相同的符号周期420期间发送用于第一上行链路信道410-c和第二上行链路信道410-d两者的DMRS 425,因此可以使用不同的天线端口(例如,端口0至3)来发送DMRS 425,以及第一上行链路信道410-c和第二上行链路信道410-d均可以被分配各两个端口。在这样的情况下,使用不同的DMRS组430可以确保针对PUCCH和PUSCH中的每一者存在用于多个DMRS 425的传输的天线端口的特定组合。在本示例中,四个天线端口可以用于DMRS,其中两个端口可以被配置到第一DMRS组430-a(例如,包括端口0和端口1)中,以及两个端口可以被配置到第二DMRS组430-b(例如,包括端口2和端口3)中。作为用于发送DMRS 425的不同DMRS组430的结果,用于不同上行链路信道410的DMRS 425可以占用不同的频率音调415。
在一些示例中,可以针对PUSCH和PUCCH两者(例如,格式3和格式4)对DMRS和数据进行TDM,使得数据和DMRS 425可以不在相同的符号周期420上被复用。在一些示例中,作为空间复用配置的一部分,可以例如通过RRC信令和/或DCI来配置第一DMRS组430-a和第二DMRS组430-b。就是说,基站105可以针对不同的天线端口配置DMRS 425,以及指示哪些端口可以用于与第一上行链路信道410-a和410-c以及第二上行链路信道410-b和410-d相关联的DMRS 425。
在其它示例中,诸如PUSCH/PUCCH和SRS的同时传输中,SRS可以占用与数据相同的符号周期420(即,可以与数据一起发送SRS)。另外或替代地,可以在与DMRS 425相同的符号周期420中发送SRS(即,可以与DMRS 425一起发送SRS)。在这样的情况下,可以对SRS和DMRS425进行FDM(即,SRS和DMRS 425可以在相同的OFDM符号周期420中占用不同的频率音调)以确保正确的信道估计。
图5根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的系统中的过程流500的示例。在一些示例中,过程流500可以实现无线通信系统100的各方面。例如,过程流500可以包括UE 115-c和一个或多个基站105(例如,第一基站105-d和第二基站105-e),它们可以是参考图1-3描述的对应设备的示例。过程流500可以示出将SDM用于同时上行链路传输以实现无冲突的上行链路通信。
在505处,第一基站105-d可以确定用于UE 115c的空间复用配置,以用于经由空间复用在CC上进行的两个或更多个上行链路信道的同时传输。在一些情况下,两个或更多个上行链路信道可以包括PUCCH、PUSCH、PRACH、SRS等。
在510处,第一基站105-d可以基于空间复用配置来识别用于两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合。在一些情况下,来自多个空间参数集合的每个空间参数集合可以被应用于由UE 115-c空间复用的相应的上行链路信道。
在515处,第一基站105d可以发送(以及UE 115-c可以接收)对空间复用配置和多个空间参数集合的指示。在一些情况下,可以经由RRC信令、或DCI、或其组合来发送对空间参数集合的指示。在一些方面中,可以经由RRC信令来接收用于某个上行链路信道的空间参数,而可以经由DCI来接收用于另一上行链路信道的空间参数。
在520处,UE 115-c可以从两个或更多个上行链路信道中识别用于CC上的传输的第一上行链路信道和第二上行链路信道。在一些情况下,第一上行链路信道和第二上行链路信道可以具有不同的类型。例如,第一上行链路信道或第二上行链路信道可以分别包括PUCCH/PUSCH、PRACH或SRS。另外或替代地,第一上行链路信道和第二上行链路信道可以是相同类型的信道。例如,第一上行链路信道可以是被发送给第一TRP的PUCCH通信,以及第二上行链路信道可以是被发送给不同的第二TRP的另一PUCCH通信。
在525处,UE 115-c可以识别用于第一上行链路信道和第二上行链路信道的同时传输的多个空间参数集合。例如,空间复用配置可以包括对用于相应的上行链路信道的多个空间参数集合的指示。在一些示例中,在发送相应的上行链路信道时,来自多个空间参数集合的每个空间参数集合可以被应用于相应的上行链路信道。在一些情况下,每个空间参数集合包括对天线端口集合、层数量、空间域预编码器、或其组合的指示。
在一些示例中,UE 115-c可以基于空间复用配置来识别用于第一上行链路信道和第二上行链路信道的相应DMRS的对齐,例如,如本文参考图4A描述的。在这样的情况下,第一上行链路信道和第二上行链路信道可以具有不同的长度。例如,第一上行链路信道可以包括PUCCH,以及第二上行链路信道可以包括PUSCH。然而,其它类型的信道是可能的,其可以具有不同的长度,或者可以利用DMRS的对齐。可以将对齐指示给UE 115-c,作为空间复用配置的一部分。在530处,UE 115-c可以根据空间复用配置来在CC的资源集合上对第一上行链路信道和第二上行链路信道进行空间复用。
在一些情况下,第一基站105-d和第二基站105-e可以在共享关于经空间复用的上行链路信道的信息时协同。例如,在535处,第一基站105-d可以可选地(例如,在回程链路上)向第二基站105-e发送对多个空间参数集合的指示。另外或替代地,在540处,第二基站105-e可以可选地向第一基站105-d提供对多个空间参数集合的指示(例如,用于可能正在向第一基站105-d发送PRACH的另一UE 115)。
然而,用于协调用于PRACH检测和数据解码的空间参数的交换信息可以是可选的,以及在一些示例中,第一基站105-d和第二基站105-e可以避免交换这样的信息。在这样的情况下,如果UE 115-c将经空间复用的上行链路信道指导去往第一基站105-d和第二基站105-e两者,则每个基站105可以将旨在针对另一基站105的信号视为干扰。更具体地,第一基站105-d可以从UE 115-c接收PUCCH/PUSCH,以及将被指导去往第二基站105-e的PRACH的同时传输视为干扰。同样,当第二基站同时从UE 115-c接收PRACH时,其可以将PUCCH/PUSCH传输视为干扰。在一些方面中,UE115-c可以将不同的波束成形方案或空间预编码器用于不同的上行链路信道,以保证在每个基站105处接收的信号中,预期信号(即,旨在针对特定基站105的信号)具有比非预期信号(即,旨在针对另一基站105的信号)更强的功率。
在545和/或550处,UE 115-a可以在资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。在一些示例中,可以向相同的基站105或不同的基站105发送经空间复用的第一上行链路信道和第二上行链路信道。在第一说明性示例中,在545处,UE 115-c可以向第一基站105-d发送包括PUCCH、PUSCH或SRS的多个上行链路信道。在该示例中,第一上行链路信道可以包括PUCCH和/或PUSCH,而可以同时地向基站105-d发送包括与第一上行链路信道进行空间复用的SRS的第二上行链路信道。在第二说明性示例中,在545处,UE 115c可以向第一基站105-d发送包括PUCCH和/或PUSCH的第一上行链路信道,以及在550处,UE115-c还可以同时地向第二基站105-e发送(例如,在相同的资源集合上使用SDM)包括PRACH的第二上行链路信道。在一些示例中,本文描述的对第一基站105-d与第二基站105-e之间的空间参数集合的交换(例如,在535/540处)可以辅助第二基站105-e在550处接收PRACH传输。例如,因为来自多个空间参数集合的每个空间参数集合可以被应用于相应的上行链路信道,所以第二基站105-e可以知道正用于PRACH传输的空间参数(例如,即使空间参数是由第一基站105-d生成的)。
在一些情况下,诸如当第一上行链路信道包括PUCCH以及第二上行链路信道包括PUSCH时,当发送经空间复用的第一和第二上行链路信道的同时传输时,可以在第一上行链路信道中发送第一DMRS,以及可以在第二上行链路信道中发送第二DMRS。在一些示例中,根据所识别的对齐,在相同的OFDM符号周期内发送第一DMRS和第二DMRS。在一些情况下,第一DMRS可以与第一上行链路信道中的数据进行TDM,以及第二DMRS可以与第二上行链路信道中的数据进行TDM。
在另一示例中,第一上行链路信道可以包括SRS,以及第二上行链路信道可以包括PUCCH/PUSCH。在这样的情况下,UE 115-c可以与资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送第一上行链路信道上的相同的OFDM符号周期内的SRS和数据。另外或替代地,UE 115-c可以与资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送在第一上行链路信道上的OFDM符号周期内的SRS和DMRS。在一些示例中,DMRS可以与PUCCH、或PUSCH、或其组合相关联,以及SRS和DMRS还可以被FDM(即,SRS和DMRS可以占用不同的频率音调)。
UE 115-c还可以将不同的功率控制应用于经空间复用的信道的同时传输。例如,UE 115-c可以结合空间复用配置来识别功率控制配置。在这样的情况下,UE 115-c可以确定第一上行链路信道包括SRS以及第二上行链路信道包括PUCCH和/或PUSCH,以及确定可以减低用于SRS的发射功率。尽管本文作为示例描述了两个上行链路信道的空间复用和传输,但是可以使用SDM发送任何数量的上行链路信道,以及为了简洁起见,描述了两个上行链路信道。相应地,用于对两个上行链路信道进行空间复用的技术可以扩展到多余两个的上行链路信道。
图6根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线设备605的框图600。无线设备605可以是如本文描述的UE115的各方面的示例。无线设备605可以包括接收机610、UE通信管理器615和发射机620。无线设备605还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机610可以接收诸如与各种信息信道(例如,与使用空间复用的同时上行链路传输相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息的信息。可以将信息传递给该设备的其它组件。接收机610可以是参考图9描述的收发机935的各方面的示例。接收机610可以利用单个天线或一组天线。
UE通信管理器615可以是参考图9描述的UE通信管理器915的各方面的示例。UE通信管理器615和/或其各个子组件中的至少一些子组件可以在硬件、由处理器执行的软件、固件或其任何组合中实现。如果在由处理器执行的软件中实现,则UE通信管理器615和/或其各个子组件中的至少一些子组件的功能可以由被设计为执行本公开内容中描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件(PLD)、分立门或者晶体管逻辑、分立硬件组件或者其任何组合来执行。
UE通信管理器615和/或其各个子组件中的至少一些子组件可以在物理上位于各个位置处,包括被分布以使得由一个或多个物理设备在不同的物理位置处实现功能中的部分功能。在一些示例中,根据本公开内容的各个方面,UE通信管理器615和/或其各个子组件中的至少一些子组件可以是分离和不同的组件。在其它示例中,根据本公开内容的各个方面,UE通信管理器615和/或其各个子组件中的至少一些子组件可以与一个或多个其它硬件组件(包括但不限于输入/输出(I/O)组件、收发机、网络服务器、另一计算设备、本公开内容中描述的一个或多个其它组件、或其组合)组合。
UE通信管理器615可以进行以下操作:从基站105接收对用于发送两个或更多个上行链路信道的空间复用配置的指示;从两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道,第一上行链路信道和第二上行链路信道具有不同类型;根据空间复用配置来在分量载波的资源集合上对第一上行链路信道和第二上行链路信道进行空间复用;以及在资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。
发射机620可以发送由该设备的其它组件生成的信号。在一些示例中,发射机620可以与接收机610共置于收发机模块中。例如,发射机620可以是参考图9描述的收发机935的各方面的示例。发射机620可以利用单个天线或一组天线。
图7根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线设备705的框图700。无线设备705可以是如参考图6描述的无线设备605或UE 115的各方面的示例。无线设备705可以包括接收机710、UE通信管理器715和发射机720。无线设备705还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机710可以接收诸如与各种信息信道(例如,与使用空间复用的同时上行链路传输相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息的信息。可以将信息传递给该设备的其它组件。接收机710可以是参考图9描述的收发机935的各方面的示例。接收机710可以利用单个天线或一组天线。
UE通信管理器715可以是参考图9描述的UE通信管理器915的各方面的示例。UE通信管理器715还可以包括UE空间复用管理器725、上行链路信道组件730和上行链路信道传输管理器735。
UE空间复用管理器725可以从基站接收对用于发送两个或更多个上行链路信道的空间复用配置的指示。在一些示例中,UE空间复用管理器725可以根据空间复用配置来在分量载波的资源集合上对第一上行链路信道和第二上行链路信道进行空间复用。在一些情况下,两个或更多个上行链路信道至少包括PUCCH、PUSCH、PRACH和SRS。
上行链路信道组件730可以从两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道,第一上行链路信道和第二上行链路信道具有不同类型。在一些情况下,第一上行链路信道包括SRS,以及第二上行链路信道包括PUCCH、或PUSCH、或其组合。
上行链路信道传输管理器735可以在资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。在一些示例中,上行链路信道传输管理器735可以与资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送第一上行链路信道上的相同的OFDM符号周期内的SRS和数据。在一些示例中,上行链路信道传输管理器735可以与资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送第一上行链路信道上的相同的OFDM符号周期内的SRS和DMRS,DMRS与PUCCH、或PUSCH、或其组合相关联,其中SRS和DMRS被频分复用。另外或替代地,上行链路信道传输管理器735可以向不同的基站105发送第二上行链路信道。在一些情况下,同时地发送经空间复用的第一上行链路信道和第二上行链路信道包括:向基站105发送第一上行链路信道。
发射机720可以发送由该设备的其它组件生成的信号。在一些示例中,发射机720可以与接收机710共置于收发机模块中。例如,发射机720可以是参考图9描述的收发机935的各方面的示例。发射机720可以利用单个天线或一组天线。
图8根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的UE通信管理器815的框图800。UE通信管理器815可以是参考图6、7和9所描述的UE通信管理器615、UE通信管理器715或UE通信管理器915的各方面的示例。UE通信管理器815可以包括UE空间复用管理器820、上行链路信道组件825、上行链路信道传输管理器830、空间参数管理器835、参考信号对齐组件840、UE DMRS组管理器845和功率控制管理器850。这些模块中的每个模块可以直接地或者间接地相互通信(例如,经由一个或多个总线)。
UE空间复用管理器820可以(例如,从基站105)接收对用于发送两个或更多个上行链路信道的空间复用配置的指示,以及根据空间复用配置来在分量载波的资源集合上对第一上行链路信道和第二上行链路信道进行空间复用。在一些情况下,两个或更多个上行链路信道至少包括PUCCH、PUSCH、PRACH和SRS。
上行链路信道组件825可以从两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道,第一上行链路信道和第二上行链路信道具有不同类型。在一些情况下,第一上行链路信道包括SRS,以及第二上行链路信道包括PUCCH、或PUSCH、或其组合。
上行链路信道传输管理器830可以在资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。在一些示例中,上行链路信道传输管理器830可以与资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送第一上行链路信道上的相同的OFDM符号周期内的SRS和数据。另外或替代地,上行链路信道传输管理器830可以与资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送第一上行链路信道上的相同的OFDM符号周期内的SRS和DMRS,DMRS与PUCCH、或PUSCH、或其组合相关联,其中SRS和DMRS被频分复用。在一些示例中,上行链路信道传输管理器830可以向不同的基站105发送第二上行链路信道。在一些示例中,第一上行链路信道是动态地调度的上行链路传输,以及第二上行链路信道是经由RRC消息传送配置的上行链路传输。
在一些情况下,同时地发送经空间复用的第一上行链路信道和第二上行链路信道包括:向基站发送第一上行链路信道。在一些情况下,同时地发送经空间复用的第一上行链路信道和第二上行链路信道包括:向第一TRP发送第一上行链路信道,以及向不同的TRP发送第二上行链路信道。在一些示例中,第一TRP、或不同的TRP、或两者包括基站105、RRH、基站105的小区、基站105的扇区、或其组合。在一些示例中,第一上行链路信道包括第一PUCCH,以及第二上行链路信道包括与第一PUCCH不同的第二PUCCH。在一些情况下,第一PUCCH包括被发送给第一TRP的第一HARQ反馈,以及第二PUCCH包括被发送给第二TRP的第二HARQ反馈。
在一些情况下,第一上行链路信道是与第一下行链路参考信号集合QCL的,以及第二上行链路信道是与不同于第一下行链路参考信号集合的第二下行链路参考信号集合QCL的。另外或替代地,经空间复用的第一上行链路信道和第二上行链路信道是与相同的下行链路参考信号集合QCL的。在一些示例中,第一上行链路信道是根据第一服务(例如,eMBB)来发送的,以及第二上行链路信道是根据第二服务(例如,URLLC)来发送的。
空间参数管理器835可以从空间复用配置中识别用于第一上行链路信道和第二上行链路信道的同时传输的多个空间参数集合,其中,来自多个空间参数集合的每个空间参数集合被应用于相应的上行链路信道。在一些示例中,空间参数管理器835可以经由RRC信令、或DCI、或其组合来从基站105接收对空间参数集合的指示。在一些情况下,每个空间参数集合包括对天线端口集合、层数量、空间域预编码器、或其组合的指示。在一些情况下,第一上行链路信道包括PUCCH,以及第二上行链路信道包括PUSCH。
参考信号对齐组件840可以基于空间复用配置来识别用于第一上行链路信道和第二上行链路信道的相应DMRS的对齐,其中,第一上行链路信道和第二上行链路信道具有不同的长度和不同的起始位置。参考信号对齐组件840可以与资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送用于第一上行链路信道的第一DMRS和用于第二上行链路信道的第二DMRS,其中,第一DMRS和第二DMRS是根据所识别的对齐来在相同的OFDM符号周期内发送的。
UE DMRS组管理器845可以基于空间复用配置来识别多个DMRS端口集合,其中,第一DMRS端口集合是与第一天线端口集合相关联的第一DMRS组的一部分,以及第二DMRS端口集合是与第二天线端口集合相关联的第二DMRS组的一部分。在一些情况下,第一DMRS与第一上行链路信道中的数据进行时分复用,以及第二DMRS与第二上行链路信道中的数据进行时分复用。
功率控制管理器850可以基于空间复用配置来确定用于同时地发送经空间复用的第一上行链路信道和第二上行链路信道的功率控制配置,其中,功率控制配置包括用于第一上行链路信道的第一发射功率和用于第二上行链路信道的第二发射功率。功率控制管理器850可以确定第一上行链路信道包括SRS以及第二上行链路信道包括PUCCH、或PUSCH、或其组合,以及功率控制管理器850可以基于该确定来减低第一发射功率。
图9根据本公开内容的各方面示出了包括支持使用空间复用的同时上行链路传输的设备905的系统900的图。设备905可以是以下各项的示例或者包括以下各项的组件:如本文(例如,参考图6和7)描述的无线设备605、无线设备705或者UE 115。设备905可以包括用于双向语音和数据通信的组件,其包括用于发送和接收通信的组件,包括:UE通信管理器915、处理器920、存储器925、软件930、收发机935、天线940以及I/O控制器945。这些组件可以经由一个或多个总线(例如,总线910)进行电子通信。设备905可以与一个或多个基站105无线地通信。
处理器920可以包括智能硬件设备(例如,通用处理器、DSP、中央处理单元(CPU)、微控制器、ASIC、FPGA、PLD、分立门或者晶体管逻辑组件、分立硬件组件或者其任何组合)。在一些情况下,处理器920可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以集成到处理器920中。处理器920可以被配置为执行存储在存储器中的计算机可读指令,以执行各种功能(例如,支持使用空间复用的同时上行链路传输的功能或者任务)。
存储器925可以包括随机存取存储器(RAM)和只读存储器(ROM)。存储器925可以存储包括指令的计算机可读、计算机可执行软件930,所述指令在被执行时使得处理器执行本文描述的各种功能。在一些情况下,存储器925可以包含基本I/O系统(BIOS)等,所述BIOS可以控制基本硬件或软件操作(诸如与外围组件或者设备的交互)。
软件930可以包括用于实现本公开内容的各方面的代码,其包括用于支持使用空间复用的同时上行链路传输的代码。软件930可以被存储在非暂时性计算机可读介质(诸如系统存储器或者其它存储器)中。在一些情况下,软件930可以不是可由处理器直接地执行的,而是可以使得计算机(例如,当被编译和被执行时)执行本文所描述的功能。
收发机935可以经由如本文描述的一个或多个天线、有线或者无线链路双向地通信。例如,收发机935可以表示无线收发机,以及可以与另一无线收发机双向地通信。收发机935还可以包括调制解调器,所述调制解调器用于对分组进行调制并且将经调制的分组提供给天线以用于传输,以及对从天线接收到的分组进行解调。在一些情况下,无线设备可以包括单个天线940。然而,在一些情况下,设备可以具有多于一个的天线940,其可能能够并发地发送或者接收多个无线传输。
I/O控制器945可以管理针对设备905的输入和输出信号。I/O控制器945还可以管理未集成到设备905中的外围设备。在一些情况下,I/O控制器945可以表示去往外部外围设备的物理连接或者端口。在一些情况下,I/O控制器945可以利用诸如
Figure GDA0003934736890000431
Figure GDA0003934736890000432
的操作系统或者另一已知的操作系统。在其它情况下,I/O控制器945可以表示调制解调器、键盘、鼠标、触摸屏或类似设备或者与上述设备进行交互。在一些情况下,I/O控制器945可以被实现成处理器的一部分。在一些情况下,用户可以经由I/O控制器945或者经由I/O控制器945所控制的硬件组件来与设备905进行交互。
图10根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线设备1005的框图1000。无线设备1005可以是如本文描述的TRP(诸如基站105)的各方面的示例。无线设备1005可以包括接收机1010、基站通信管理器1015和发射机1020。无线设备1005还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机1010可以接收诸如与各种信息信道(例如,与使用空间复用的同时上行链路传输相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息的信息。可以将信息传递给该设备的其它组件。接收机1010可以是参考图13描述的收发机1335的各方面的示例。接收机1010可以利用单个天线或一组天线。
基站通信管理器1015可以是参考图13描述的基站通信管理器1315的各方面的示例。基站通信管理器1015和/或其各个子组件中的至少一些子组件可以在硬件、由处理器执行的软件、固件或其任何组合中实现。如果在由处理器执行的软件中实现,则基站通信管理器1015和/或其各个子组件中的至少一些子组件的功能可以由被设计为执行本公开内容中描述的功能的通用处理器、DSP、ASIC、FPGA或其它PLD、分立门或者晶体管逻辑、分立硬件组件或者其任何组合来执行。
基站通信管理器1015和/或其各个子组件中的至少一些子组件可以在物理上位于各个位置处,包括被分布以使得由一个或多个物理设备在不同的物理位置处实现功能中的部分功能。在一些示例中,根据本公开内容的各个方面,基站通信管理器1015和/或其各个子组件中的至少一些子组件可以是分离和不同的组件。在其它示例中,根据本公开内容的各个方面,基站通信管理器1015和/或其各个子组件中的至少一些子组件可以与一个或多个其它硬件组件(包括但不限于I/O组件、收发机、网络服务器、另一计算设备、本公开内容中描述的一个或多个其它组件、或其组合)组合。
基站通信管理器1015可以进行以下操作:确定用于UE 115经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置;基于空间复用配置来识别用于两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;向UE115发送对空间复用配置和多个空间参数集合的指示;以及根据每个空间参数集合来在分量载波的资源集合上从UE 115接收第一上行链路信道、或第二上行链路信道、或其组合。
发射机1020可以发送由该设备的其它组件生成的信号。在一些示例中,发射机1020可以与接收机1010共置于收发机模块中。例如,发射机1020可以是参考图13描述的收发机1335的各方面的示例。发射机1020可以利用单个天线或一组天线。
图11根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的无线设备1105的框图1100。无线设备1105可以是如参考图10描述的无线设备1005或TRP(诸如基站105)的各方面的示例。无线设备1105可以包括接收机1110、基站通信管理器1115和发射机1120。无线设备1105还可以包括处理器。这些组件中的每个组件可以相互通信(例如,经由一个或多个总线)。
接收机1110可以接收诸如与各种信息信道(例如,与使用空间复用的同时上行链路传输相关的控制信道、数据信道以及信息等)相关联的分组、用户数据或者控制信息的信息。可以将信息传递给该设备的其它组件。接收机1110可以是参考图13描述的收发机1335的各方面的示例。接收机1110可以利用单个天线或一组天线。
基站通信管理器1115可以是参考图13描述的基站通信管理器1315的各方面的示例。基站通信管理器1115还可以包括空间复用配置组件1125、空间参数组件1130和上行链路信道管理器1135。
空间复用配置组件1125可以确定用于UE 115经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置。在一些情况下,两个或更多个上行链路信道至少包括PUCCH、PUSCH、PRACH、和SRS。
空间参数组件1130可以进行以下操作:基于空间复用配置来识别用于两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;以及向UE 115发送对空间复用配置和多个空间参数集合的指示。在一些情况下,发送对空间参数集合的指示包括:经由RRC信令、或DCI、或其组合来发送对空间参数集合的指示。在一些情况下,空间参数集合包括对天线端口集合、层数量、空间域预编码器、或其组合的指示。
上行链路信道管理器1135可以根据每个空间参数集合来在分量载波的资源集合上从UE 115接收第一上行链路信道、或第二上行链路信道、或其组合。在一些情况下,第一上行链路信道是从UE 115接收的,以及包括PUCCH、或PUSCH、或其组合,并且其中,第二上行链路信道的同时传输被视为干扰。在一些情况下,接收第一上行链路信道、或第二上行链路信道、或其组合包括:在TRP处接收第一上行链路信道、或第二上行链路信道、或其组合,该TRP包括基站105、RRH、基站105的小区、基站105的扇区、或其组合。
发射机1120可以发送由该设备的其它组件生成的信号。在一些示例中,发射机1120可以与接收机1110共置于收发机模块中。例如,发射机1120可以是参考图13描述的收发机1335的各方面的示例。发射机1120可以利用单个天线或一组天线。
图12根据本公开内容的各方面示出了支持使用空间复用的同时上行链路传输的基站通信管理器1215的框图1200。基站通信管理器1215可以是参考图10、11和13所描述的基站通信管理器1315的各方面的示例。基站通信管理器1215可以包括空间复用配置组件1220、空间参数组件1225、上行链路信道管理器1230、参考信号对齐管理器1235、基站DMRS组管理器1240和回程传输组件1245。这些模块中的每个模块可以直接地或者间接地相互通信(例如,经由一个或多个总线)。
空间复用配置组件1220可以确定用于UE 115经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置。在一些情况下,两个或更多个上行链路信道至少包括PUCCH、PUSCH、物理随机接入信道(PRACH)、和SRS。
空间参数组件1225可以进行以下操作:基于空间复用配置来识别用于两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;以及向UE 115发送对空间复用配置和多个空间参数集合的指示。在一些情况下,发送对空间参数集合的指示包括:经由RRC信令、或DCI、或其组合来发送对空间参数集合的指示。在一些情况下,空间参数集合包括对天线端口集合、层数量、空间域预编码器、或其组合的指示。
上行链路信道管理器1230可以根据每个空间参数集合来在分量载波的资源集合上从UE 115接收第一上行链路信道、或第二上行链路信道、或其组合。在一些情况下,第一上行链路信道是从UE 115接收的,以及包括PUCCH、或PUSCH、或其组合,并且其中,第二上行链路信道的同时传输被视为干扰。在一些情况下,接收第一上行链路信道、或第二上行链路信道、或其组合包括:在TRP处接收第一上行链路信道、或第二上行链路信道、或其组合,该TRP包括基站105、RRH、基站105的小区、基站105的扇区、或其组合。
参考信号对齐管理器1235可以基于空间复用配置来确定用于第一上行链路信道和第二上行链路信道的相应的DMRS的对齐,其中,第一上行链路信道和第二上行链路信道具有不同的长度和不同的起始位置。在一些情况下,参考信号对齐管理器1235可以向UE115发送对对齐的指示。
基站DMRS组管理器1240可以基于空间复用配置来确定多个DMRS端口集合,其中,用于第一上行链路信道的第一DMRS端口集合是与第一天线端口集合相关联的第一DMRS组的一部分,以及用于第二上行链路信道的第二DMRS端口集合是与第二天线端口集合相关联的第二DMRS组的一部分。基站DMRS组管理器1240可以向UE 115发送对多个确定的DMRS端口集合的指示。回程传输组件1245可以在回程链路上向不同的基站发送对空间参数集合的指示,其中,第一上行链路信道是从UE 115接收的以及包括PUCCH、或PUSCH、或其组合。
图13根据本公开内容的各方面示出了包括支持使用空间复用的同时上行链路传输的设备1305的系统1300的图。设备1305可以是如本文(例如,参考图1)描述的基站105的示例或者包括基站105的组件。设备1305可以包括用于双向语音和数据通信的组件,其包括用于发送和接收通信的组件,包括:基站通信管理器1315、处理器1320、存储器1325、软件1330、收发机1335、天线1340、网络通信管理器1345和站间通信管理器1350。这些组件可以经由一个或多个总线(例如,总线1310)来进行电子通信。设备1305可以与一个或多个UE115无线地通信。
处理器1320可以包括智能硬件设备(例如,通用处理器、DSP、CPU、微控制器、ASIC、FPGA、PLD、分立门或者晶体管逻辑组件、分立硬件组件或者其任何组合)。在一些情况下,处理器1320可以被配置为使用存储器控制器来操作存储器阵列。在其它情况下,存储器控制器可以集成到处理器1320中。处理器1320可以被配置为执行存储在存储器中的计算机可读指令,以执行各种功能(例如,支持使用空间复用的同时上行链路传输的功能或者任务)。
存储器1325可以包括RAM和ROM。存储器1325可以存储包括指令的计算机可读、计算机可执行软件1330,所述指令在被执行时使得处理器执行本文描述的各种功能。在一些情况下,存储器1325可以包含BIOS等,所述BIOS可以控制基本硬件或软件操作(诸如与外围组件或者设备的交互)。
软件1330可以包括用于实现本公开内容的各方面的代码,其包括用于支持使用空间复用的同时上行链路传输的代码。软件1330可以被存储在非暂时性计算机可读介质(诸如系统存储器或者其它存储器)中。在一些情况下,软件1330可以不是可由处理器直接地执行的,而是可以使得计算机(例如,当被编译和被执行时)执行本文所描述的功能。
收发机1335可以经由如本文描述的一个或多个天线、有线或者无线链路双向地通信。例如,收发机1335可以表示无线收发机,以及可以与另一无线收发机双向地通信。收发机1335还可以包括调制解调器,所述调制解调器用于对分组进行调制并且将经调制的分组提供给天线以用于传输,以及对从天线接收到的分组进行解调。在一些情况下,无线设备可以包括单个天线1340。然而,在一些情况下,该设备可以具有多于一个的天线1340,其可能能够并发地发送或者接收多个无线传输。
网络通信管理器1345可以管理与核心网的通信(例如,经由一个或多个有线回程链路)。例如,网络通信管理器1345可以管理针对客户端设备(诸如一个或多个UE 115)的数据通信的传输。
站间通信管理器1350可以管理与其它基站105的通信,以及可以包括用于与其它基站105协同地控制与UE 115的通信的控制器或调度器。例如,站间通信管理器1350可以协调针对去往UE 115的传输的调度,以用于诸如波束成形或联合传输的各种干扰减轻技术。在一些示例中,站间通信管理器1350可以提供在LTE/LTE-A无线通信网络技术内的X2接口,以提供在基站105之间的通信。
图14根据本公开内容的各方面示出了说明用于使用空间复用的同时上行链路传输的方法1400的流程图。方法1400的操作可以由如本文描述的UE 115或其组件来实现。例如,方法1400的操作可以由如参考图6至9描述的UE通信管理器来执行。在一些示例中,UE115可以执行代码集,以控制该设备的功能元件来执行本文描述的功能。另外或替代地,UE115可以使用专用硬件来执行本文描述的功能的各方面。
在1405处,UE 115可以接收对用于发送两个或更多个上行链路信道的空间复用配置的指示。1405的操作可以根据本文描述的方法来执行。在某些示例中,1405的操作的各方面可以由如参考图6至9描述的UE空间复用管理器来执行。
在1410处,UE 115可以从两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道。1410的操作可以根据本文描述的方法来执行。在某些示例中,1410的操作的各方面可以由如参考图6至9描述的上行链路信道组件来执行。
在1415处,UE 115可以根据空间复用配置来在分量载波的资源集合上对第一上行链路信道和第二上行链路信道进行空间复用。1415的操作可以根据本文描述的方法来执行。在某些示例中,1415的操作的各方面可以由如参考图6至9描述的UE空间复用管理器来执行。
在1420处,UE 115可以在资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。1420的操作可以根据本文描述的方法来执行。在某些示例中,1420的操作的各方面可以由如参考图6至9描述的上行链路信道传输管理器来执行。
图15根据本公开内容的各方面示出了说明用于使用空间复用的同时上行链路传输的方法1500的流程图。方法1500的操作可以由如本文描述的UE 115或其组件来实现。例如,方法1500的操作可以由如参考图6至9描述的UE通信管理器来执行。在一些示例中,UE115可以执行代码集,以控制该设备的功能元件来执行本文描述的功能。另外或替代地,UE115可以使用专用硬件来执行本文描述的功能的各方面。
在1505处,UE 115可以接收对用于发送两个或更多个上行链路信道的空间复用配置的指示。1505的操作可以根据本文描述的方法来执行。在某些示例中,1505的操作的各方面可以由如参考图6至9描述的UE空间复用管理器来执行。
在1510处,UE 115可以从两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道。1510的操作可以根据本文描述的方法来执行。在某些示例中,1510的操作的各方面可以由如参考图6至9描述的上行链路信道组件来执行。
在1515处,UE 115可以从空间复用配置中识别用于第一上行链路信道和第二上行链路信道的同时传输的多个空间参数集合,其中,来自多个空间参数集合的每个空间参数集合被应用于相应的上行链路信道。1515的操作可以根据本文描述的方法来执行。在某些示例中,1515的操作的各方面可以由如参考图6至9描述的空间参数管理器来执行。
在1520处,UE 115可以根据空间复用配置来在分量载波的资源集合上对第一上行链路信道和第二上行链路信道进行空间复用。1520的操作可以根据本文描述的方法来执行。在某些示例中,1520的操作的各方面可以由如参考图6至9描述的UE空间复用管理器来执行。
在1525处,UE 115可以在资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。1525的操作可以根据本文描述的方法来执行。在某些示例中,1525的操作的各方面可以由如参考图6至9描述的上行链路信道传输管理器来执行。
图16根据本公开内容的各方面示出了说明用于使用空间复用的同时上行链路传输的方法1600的流程图。方法1600的操作可以由如本文描述的UE 115或其组件来实现。例如,方法1600的操作可以由如参考图6至9描述的UE通信管理器来执行。在一些示例中,UE115可以执行代码集,以控制该设备的功能元件来执行本文描述的功能。另外或替代地,UE115可以使用专用硬件来执行本文描述的功能的各方面。
在1605处,UE 115可以接收对用于发送两个或更多个上行链路信道的空间复用配置的指示。1605的操作可以根据本文描述的方法来执行。在某些示例中,1605的操作的各方面可以由如参考图6至9描述的UE空间复用管理器来执行。
在1610处,UE 115可以从两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道。在一些示例中,第一上行链路信道和第二上行链路信道可以是不同类型。1610的操作可以根据本文描述的方法来执行。在某些示例中,1610的操作的各方面可以由如参考图6至9描述的上行链路信道组件来执行。
在1615处,UE 115可以基于空间复用配置来识别用于第一上行链路信道和第二上行链路信道的相应DMRS的对齐,其中,第一上行链路信道和第二上行链路信道具有不同的长度和不同的起始位置。1615的操作可以根据本文描述的方法来执行。在某些示例中,1615的操作的各方面可以由如参考图6至9描述的参考信号对齐组件来执行。
在1620处,UE 115可以根据空间复用配置来在分量载波的资源集合上对第一上行链路信道和第二上行链路信道进行空间复用。1620的操作可以根据本文描述的方法来执行。在某些示例中,1620的操作的各方面可以由如参考图6至9描述的UE空间复用管理器来执行。
在1625处,UE 115可以在资源集合上同时地发送经空间复用的第一上行链路信道和第二上行链路信道。1625的操作可以根据本文描述的方法来执行。在某些示例中,1625的操作的各方面可以由如参考图6至9描述的上行链路信道传输管理器来执行。
图17根据本公开内容的各方面示出了说明用于使用空间复用的同时上行链路传输的方法1700的流程图。方法1700的操作可以由如本文描述的TRP(诸如基站105)或其组件来实现。例如,方法1700的操作可以由如参考图10至13描述的基站通信管理器来执行。在一些示例中,基站105可以执行代码集,以控制该设备的功能元件来执行本文描述的功能。另外或替代地,基站105可以使用专用硬件来执行本文描述的功能的各方面。
在1705处,TRP可以确定用于UE 115经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置。1705的操作可以根据本文描述的方法来执行。在某些示例中,1705的操作的各方面可以由如参考图10至13描述的空间复用配置组件来执行。
在1710处,TRP可以基于空间复用配置来识别用于两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道。1710的操作可以根据本文描述的方法来执行。在某些示例中,1710的操作的各方面可以由如参考图10至13描述的空间参数组件来执行。
在1715处,TRP可以向UE 115发送对空间复用配置和多个空间参数集合的指示。1715的操作可以根据本文描述的方法来执行。在某些示例中,1715的操作的各方面可以由如参考图10至13描述的空间参数组件来执行。
在1720处,TRP可以根据每个空间参数集合来在分量载波的资源集合上从UE 115接收第一上行链路信道、或第二上行链路信道、或其组合。1720的操作可以根据本文描述的方法来执行。在某些示例中,1720的操作的各方面可以由如参考图10至13描述的上行链路信道管理器来执行。
图18根据本公开内容的各方面示出了说明用于使用空间复用的同时上行链路传输的方法1800的流程图。方法1800的操作可以由如本文描述的TRP(诸如基站105)或其组件来实现。例如,方法1800的操作可以由如参考图10至13描述的基站通信管理器来执行。在一些示例中,基站105可以执行代码集,以控制该设备的功能元件来执行本文描述的功能。另外或替代地,基站105可以使用专用硬件来执行本文描述的功能的各方面。
在1805处,TRP可以确定用于UE 115经由空间复用在分量载波上同时地发送两个或更多个上行链路信道的空间复用配置。1805的操作可以根据本文描述的方法来执行。在某些示例中,1805的操作的各方面可以由如参考图10至13描述的空间复用配置组件来执行。
在1810处,TRP可以基于空间复用配置来识别用于两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,其中,来自多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道。1810的操作可以根据本文描述的方法来执行。在某些示例中,1810的操作的各方面可以由如参考图10至13描述的空间参数组件来执行。
在1815处,TRP可以向UE 115发送对空间复用配置和多个空间参数集合的指示。1815的操作可以根据本文描述的方法来执行。在某些示例中,1815的操作的各方面可以由如参考图10至13描述的空间参数组件来执行。
在1820处,TRP可以在回程链路上向不同的基站发送对空间参数集合的指示,其中,第一上行链路信道是从UE 115接收的以及包括PUCCH、或PUSCH、或其组合。1820的操作可以根据本文描述的方法来执行。在某些示例中,1820的操作的各方面可以由如参考图10至13描述的回程传输组件来执行。
在1825处,TRP可以根据每个空间参数集合来在分量载波的资源集合上从UE 115接收第一上行链路信道、或第二上行链路信道、或其组合。1825的操作可以根据本文描述的方法来执行。在某些示例中,1825的操作的各方面可以由如参考图10至13描述的上行链路信道管理器来执行。
应当注意,本文描述的方法描述了可能的实现方式,以及操作和步骤可以被重新排列或者以其它方式修改,以及其它实现方式是可能的。此外,来自两个或更多个方法的各方面可以被组合。
本文描述的技术可以用于各种无线通信系统,诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)和其它系统。CDMA系统可以实现诸如CDMA2000、通用陆地无线接入(UTRA)等的无线电技术。CDMA2000涵盖IS-2000、IS-95和IS-856标准。IS-2000版本通常可以被称为CDMA2000 1X、1X等。IS-856(TIA-856)通常被称为CDMA2000 1xEV-DO、高速分组数据(HRPD)等。UTRA包括宽带CDMA(W-CDMA)和CDMA的其它变型。TDMA系统可以实现诸如全球移动通信系统(GSM)的无线电技术。
OFDMA系统可以实现诸如超移动宽带(UMB)、E-UTRA、电气与电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、闪速-OFDM等的无线电技术。UTRA和E-UTRA是UMTS的一部分。LTE、LTE-A和LTE-A Pro是UMTS的使用E-UTRA的版本。在来自名称为“第3代合作伙伴计划”(3GPP)的组织的文档中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A、LTE-A Pro、NR和GSM。在来自名称为“第3代合作伙伴计划2”(3GPP2)的组织的文档中描述了CDMA2000和UMB。本文中描述的技术可以用于上文提及的系统和无线电技术以及其它系统和无线电技术。虽然可能出于举例的目的,描述了LTE、LTE-A、LTE-A Pro或NR系统的各方面,以及可能在大部分的描述中使用了LTE、LTE-A、LTE-APro或NR术语,但是本文中描述的技术适用于LTE、LTE-A、LTE-A Pro或NR应用之外的范围。
宏小区通常覆盖相对大的地理区域(例如,半径为若干千米),以及可以允许由具有与网络提供商的服务订制的UE 115进行的不受限制的接入。与宏小区相比,小型小区可以与较低功率的基站105相关联,以及小型小区可以在与宏小区相同或不同(例如,经许可、免许可等)的频带中操作。根据各个示例,小型小区可以包括微微小区、毫微微小区和微小区。例如,微微小区可以覆盖小的地理区域,以及可以允许由具有与网络提供商的服务订制的UE 115进行的不受限制的接入。毫微微小区还可以覆盖小的地理区域(例如,住宅),以及可以提供由与该毫微微小区具有关联的UE 115(例如,封闭用户组(CSG)中的UE 115、针对住宅中的用户的UE 115等)进行的受限制的接入。用于宏小区的eNB可以被称为宏eNB。用于小型小区的eNB可以被称为小型小区eNB、微微eNB、毫微微eNB或家庭eNB。eNB可以支持一个或多个(例如,两个、三个、四个等)小区,以及还可以支持使用一个或多个分量载波的通信。
本文中描述的无线通信系统100或各系统可以支持同步操作或异步操作。对于同步操作,基站105可以具有类似的帧时序,以及来自不同基站105的传输可以在时间上近似地对齐。对于异步操作,基站105可以具有不同的帧时序,以及来自不同基站105的传输可以不在时间上对齐。本文中描述的技术可以用于同步操作或异步操作。
本文中描述的信息和信号可以使用各种各样的不同的技术和方法中的任何一者来表示。例如,可能贯穿上文描述所提及的数据、指令、命令、信息、信号、比特、符号和码片可以通过电压、电流、电磁波、磁场或粒子、光场或粒子或者其任何组合来表示。
可以利用被设计为执行本文所述功能的通用处理器、DSP、ASIC、FPGA或其它PLD、分立门或者晶体管逻辑、分立硬件组件或者其任何组合来实现或执行结合本文的公开内容描述的各种说明性的框和模块。通用处理器可以是微处理器,但是在替代方式中,处理器可以是任何常规的处理器、控制器、微控制器或者状态机。处理器还可以实现为计算设备的组合(例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器与DSP内核的结合、或者任何其它这样的配置)。
本文中所描述的功能可以在硬件、由处理器执行的软件、固件或其任何组合中实现。如果在由处理器执行的软件中实现,所述功能可以作为一个或多个指令或代码存储在计算机可读介质上或通过其进行发送。其它示例和实现方式在本公开内容和所附权利要求的范围之内。例如,由于软件的性质,本文描述的功能可以使用由处理器执行的软件、硬件、固件、硬接线或这些项中的任何项的组合来实现。实现功能的特征还可以在物理上位于各个位置处,包括被分布为使得功能中的各部分功能在不同的物理位置处实现。
计算机可读介质包括非暂时性计算机存储介质和通信介质两者,通信介质包括促进计算机程序从一个地方传送到另一个地方的任何介质。非暂时性存储介质可以是能够由通用计算机或专用计算机访问的任何可用介质。通过举例而非限制的方式,非暂时性计算机可读介质可以包括RAM、ROM、电可擦除可编程只读存储器(EEPROM)、闪速存储器、压缩光盘(CD)ROM或其它光盘存储、磁盘存储或其它磁存储设备、或能够用于以指令或数据结构的形式携带或存储期望的程序代码单元并且能够由通用或专用计算机、或通用或专用处理器访问的任何其它非暂时性介质。此外,任何连接适当地被称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或诸如红外线、无线电和微波的无线技术来从网站、服务器或其它远程源发送的,则同轴电缆、光纤光缆、双绞线、DSL或诸如红外线、无线电和微波的无线技术被包括在介质的定义内。如本文中所使用的,磁盘和光盘包括CD、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中,磁盘通常磁性地复制数据,而光盘则利用激光来光学地复制数据。上文的组合还被包括在计算机可读介质的范围内。
如本文所使用的(包括在权利要求中),如在项目列表(例如,以诸如“中的至少一个”或“中的一个或多个”的短语结束的项目列表)中使用的“或”指示包含性列表,使得例如A、B或C中的至少一个的列表意指A或B或C或AB或AC或BC或ABC(即,A和B和C)。此外,如本文所使用的,短语“基于”不应当被解释为对封闭的条件集合的参考。例如,在不背离本公开内容的范围的情况下,被描述为“基于条件A”的示例性步骤可以基于条件A和条件B两者。换句话说,如本文所使用的,短语“基于”应当是以与解释短语“至少部分地基于”相同的方式来解释的。
在附图中,类似的组件或特征可以具有相同的附图标记。此外,相同类型的各个组件可以通过在附图标记后跟随有破折号和第二标记进行区分,所述第二标记用于在类似组件之间进行区分。如果在说明书中仅使用了第一附图标记,则描述适用于具有相同的第一附图标记的类似组件中的任何一个组件,而不考虑第二附图标记或其它后续附图标记。
本文结合附图阐述的描述内容对示例配置进行了描述,以及不表示可以实现或在权利要求的范围内的全部示例。本文所使用的术语“示例性”意指“用作示例、实例或说明”,而不是“优选的”或者“比其它示例有优势”。出于提供对所描述的技术的理解的目的,具体实施方式包括特定细节。然而,可以在没有这些特定细节的情况下实践这些技术。在一些实例中,公知的结构和设备以框图的形式示出,以便避免使所描述的示例的概念模糊。
提供本文中的描述内容以使本领域技术人员能够做出或者使用本公开内容。对于本领域技术人员来说,对本公开内容的各种修改将是显而易见的,以及在不背离本公开内容的范围的情况下,本文中定义的通用原理可以应用于其它变型。因此,本公开内容不限于本文中描述的示例和设计,而是要符合与本文中公开的原理和新颖特征相一致的最广范围。

Claims (28)

1.一种用于用户设备(UE)处的无线通信的方法,包括:
接收对用于发送两个或更多个上行链路信道的空间复用配置的指示,所述空间复用配置包括多个空间参数集合,每个空间参数集合与相应的上行链路信道相对应并且包括对天线端口集合、空间层数量、空间域预编码器、或其组合的指示;
从所述两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道;
从所述空间复用配置中识别用于所述第一上行链路信道和所述第二上行链路信道的所述传输的所述多个空间参数集合,其中,来自所述多个空间参数集合的每个空间参数集合被应用于相应的上行链路信道;
根据所述空间复用配置来在所述分量载波的资源集合上对所述第一上行链路信道和所述第二上行链路信道进行空间复用;以及
在所述资源集合上发送经空间复用的第一上行链路信道和第二上行链路信道。
2.根据权利要求1所述的方法,其中,发送经空间复用的第一上行链路信道和第二上行链路信道包括:
使用不同的发射天线或不同的天线端口来同时地发送经空间复用的第一上行链路信道和第二上行链路信道。
3.根据权利要求1所述的方法,其中,所述两个或更多个上行链路信道包括来自由以下各项组成的组中的至少两个信道:物理上行链路控制信道(PUCCH)、物理上行链路共享信道(PUSCH)、物理随机接入信道(PRACH)和探测参考信号(SRS)。
4.根据权利要求3所述的方法,其中,所述第一上行链路信道包括PUCCH,以及所述第二上行链路信道包括PUSCH。
5.根据权利要求1所述的方法,其中,所述第一上行链路信道和所述第二上行链路信道包括不同类型的信道。
6.根据权利要求1所述的方法,还包括:
经由无线资源控制(RRC)信令、或下行链路控制信息(DCI)、或其组合来接收对所述多个空间参数集合的指示。
7.根据权利要求1所述的方法,还包括:
至少部分地基于所述空间复用配置来识别用于所述第一上行链路信道和所述第二上行链路信道的相应的解调参考信号(DMRS)的对齐,其中,所述第一上行链路信道和所述第二上行链路信道具有不同的长度和不同的起始位置;以及
与所述资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送用于所述第一上行链路信道的第一DMRS和用于所述第二上行链路信道的第二DMRS,其中,所述第一DMRS和所述第二DMRS是根据所识别的对齐在相同的正交频分复用(OFDM)符号周期内发送的。
8.根据权利要求7所述的方法,还包括:
至少部分地基于所述空间复用配置来识别多个DMRS端口集合,其中,第一DMRS端口集合是与第一天线端口集合相关联的第一DMRS组的一部分,以及第二DMRS端口集合是与第二天线端口集合相关联的第二DMRS组的一部分。
9.根据权利要求7所述的方法,其中,所述第一DMRS与所述第一上行链路信道中的第一数据集合进行时分复用,以及所述第二DMRS与所述第二上行链路信道中的第二数据集合进行时分复用。
10.根据权利要求1所述的方法,其中,所述第一上行链路信道包括探测参考信号(SRS),以及所述第二上行链路信道包括物理上行链路控制信道(PUCCH)、或物理上行链路共享信道(PUSCH)、或其组合。
11.根据权利要求10所述的方法,还包括:
与所述资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送所述第一上行链路信道上的相同的正交频分复用(OFDM)符号周期内的所述SRS和数据。
12.根据权利要求10所述的方法,还包括:
与所述资源集合上的经空间复用的第一上行链路信道和第二上行链路信道一起发送所述第一上行链路信道上的相同的正交频分复用(OFDM)符号周期内的所述SRS和解调参考信号(DMRS),所述DMRS与所述PUCCH、或所述PUSCH、或其组合相关联,其中,所述SRS和所述DMRS被频分复用。
13.根据权利要求1所述的方法,其中,发送经空间复用的第一上行链路信道和第二上行链路信道包括:
向第一发送/接收点(TRP)发送所述第一上行链路信道;以及
向不同的TRP发送所述第二上行链路信道。
14.根据权利要求13所述的方法,其中,所述第一上行链路信道包括第一物理上行链路控制信道(PUCCH),以及所述第二上行链路信道包括与所述第一PUCCH不同的第二PUCCH。
15.根据权利要求14所述的方法,其中,所述第一PUCCH包括被发送给所述第一TRP的第一混合自动重传请求(HARQ)反馈,以及所述第二PUCCH包括被发送给所述不同的TRP的第二HARQ反馈。
16.根据权利要求13所述的方法,其中,所述第二上行链路信道包括物理随机接入信道(PRACH),以及所述第一上行链路信道包括物理上行链路控制信道(PUCCH)、或物理上行链路共享信道(PUSCH)、或探测参考信号(SRS)、或其组合。
17.根据权利要求1所述的方法,其中,所述第一上行链路信道是与第一下行链路参考信号集合准共置的,以及所述第二上行链路信道是与不同于所述第一下行链路参考信号集合的第二下行链路参考信号集合准共置的。
18.根据权利要求1所述的方法,其中,经空间复用的第一上行链路信道和第二上行链路信道是与相同的下行链路参考信号集合准共置的。
19.根据权利要求1所述的方法,其中,所述第一上行链路信道是根据第一服务来发送的,以及所述第二上行链路信道是根据与所述第一服务不同的第二服务来发送的。
20.根据权利要求1所述的方法,其中,所述第一上行链路信道是动态地调度的上行链路传输,以及所述第二上行链路信道是经由无线资源控制(RRC)消息传送配置的上行链路传输。
21.根据权利要求1所述的方法,还包括:
至少部分地基于所述空间复用配置来确定用于发送经空间复用的第一上行链路信道和第二上行链路信道的功率控制配置,其中,所述功率控制配置包括用于所述第一上行链路信道的第一发射功率和用于所述第二上行链路信道的第二发射功率。
22.根据权利要求21所述的方法,还包括:
确定所述第一上行链路信道包括探测参考信号(SRS),以及所述第二上行链路信道包括物理上行链路控制信道(PUCCH)、或物理上行链路共享信道(PUSCH)、或其组合;以及
至少部分地基于关于所述第一上行链路信道包括所述SRS的确定来减低所述第一发射功率。
23.一种用于无线通信的方法,包括:
确定用于用户设备(UE)经由空间复用在分量载波上发送两个或更多个上行链路信道的空间复用配置;
根据所述空间复用配置来识别用于所述两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,每个空间参数集合与相应的上行链路信道相对应并且包括对天线端口集合、空间层数量、空间域预编码器、或其组合的指示,其中,来自所述多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;
发送对所述空间复用配置和所述多个空间参数集合的指示;以及
根据每个空间参数集合来在所述分量载波的资源集合上接收所述第一上行链路信道、或所述第二上行链路信道、或其组合。
24.根据权利要求23所述的方法,其中,所述两个或更多个上行链路信道包括来自由以下各项组成的组的至少两个信道:物理上行链路控制信道(PUCCH)、物理上行链路共享信道(PUSCH)、物理随机接入信道(PRACH)、以及探测参考信号(SRS)。
25.根据权利要求23所述的方法,还包括:
在回程链路上向第二接入点发送对所述多个空间参数集合的指示,其中,所述第一上行链路信道是从所述UE接收的以及包括物理上行链路控制信道(PUCCH)、或物理上行链路共享信道(PUSCH)、或其组合。
26.根据权利要求23所述的方法,其中,发送对所述多个空间参数集合的所述指示包括:
经由无线资源控制(RRC)信令、或下行链路控制信息(DCI)、或其组合来发送对所述空间参数集合的所述指示。
27.一种用于无线通信的装置,包括:
处理器;
与所述处理器耦合的存储器;以及
指令,其存储在所述存储器中并且可由所述处理器执行以使得所述装置进行以下操作:
接收对用于发送两个或更多个上行链路信道的空间复用配置的指示,所述空间复用配置包括多个空间参数集合,每个空间参数集合与相应的上行链路信道相对应并且包括对天线端口集合、空间层数量、空间域预编码器、或其组合的指示;
从所述两个或更多个上行链路信道中识别用于分量载波上的传输的第一上行链路信道和第二上行链路信道;
从所述空间复用配置中识别用于所述第一上行链路信道和所述第二上行链路信道的所述传输的所述多个空间参数集合,其中,来自所述多个空间参数集合的每个空间参数集合被应用于相应的上行链路信道;
根据所述空间复用配置来在所述分量载波的资源集合上对所述第一上行链路信道和所述第二上行链路信道进行空间复用;以及
在所述资源集合上发送经空间复用的第一上行链路信道和第二上行链路信道。
28.一种用于无线通信的装置,包括:
处理器;
与所述处理器耦合的存储器;以及
指令,其存储在所述存储器中并且可由所述处理器执行以使得所述装置进行以下操作:
确定用于用户设备(UE)经由空间复用在分量载波上发送两个或更多个上行链路信道的空间复用配置;
根据所述空间复用配置来识别用于所述两个或更多个上行链路信道中的至少第一上行链路信道和第二上行链路信道的多个空间参数集合,每个空间参数集合与相应的上行链路信道相对应并且包括对天线端口集合、空间层数量、空间域预编码器、或其组合的指示,其中,来自所述多个空间参数集合的每个空间参数集合要被应用于相应的上行链路信道;
发送对所述空间复用配置和所述多个空间参数集合的指示;以及
根据每个空间参数集合来在所述分量载波的资源集合上接收所述第一上行链路信道、或所述第二上行链路信道、或其组合。
CN201980017179.2A 2018-03-08 2019-03-07 一种用于使用空间复用的同时上行链路传输的方法和装置 Active CN111819812B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862640566P 2018-03-08 2018-03-08
US62/640,566 2018-03-08
US201862700172P 2018-07-18 2018-07-18
US62/700,172 2018-07-18
US16/293,986 2019-03-06
US16/293,986 US11323169B2 (en) 2018-03-08 2019-03-06 Simultaneous uplink transmissions using spatial multiplexing
PCT/US2019/021240 WO2019173650A1 (en) 2018-03-08 2019-03-07 Simultaneous uplink transmissions using spatial multiplexing

Publications (2)

Publication Number Publication Date
CN111819812A CN111819812A (zh) 2020-10-23
CN111819812B true CN111819812B (zh) 2023-03-24

Family

ID=67842753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980017179.2A Active CN111819812B (zh) 2018-03-08 2019-03-07 一种用于使用空间复用的同时上行链路传输的方法和装置

Country Status (4)

Country Link
US (1) US11323169B2 (zh)
EP (1) EP3763073A1 (zh)
CN (1) CN111819812B (zh)
WO (1) WO2019173650A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948293B2 (en) * 2011-04-20 2015-02-03 Texas Instruments Incorporated Downlink multiple input multiple output enhancements for single-cell with remote radio heads
JP2018107482A (ja) * 2015-04-28 2018-07-05 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10743335B2 (en) * 2015-04-28 2020-08-11 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
WO2017044986A1 (en) * 2015-09-11 2017-03-16 Parallel Wireless, Inc. Antenna-integrated radio with wireless fronthaul
CN109392120B (zh) * 2017-08-10 2023-06-09 株式会社电装 信息指示方法及相关设备
KR20190133974A (ko) 2018-05-24 2019-12-04 삼성전자주식회사 상향링크 제어 신호를 송수신하는 방법 및 이를 구현한 장치
US11943774B2 (en) * 2018-07-25 2024-03-26 Sony Corporation System and method for indicating a first set and a second set of uplink channel transmission parameters
CN111182619B (zh) * 2018-11-12 2022-04-15 大唐移动通信设备有限公司 一种上行功率控制的方法和设备
US11490297B2 (en) * 2019-10-03 2022-11-01 Huawei Technologies Co., Ltd. Methods for user equipment capability reporting of simultaneous connectivity handover
EP4094398A4 (en) * 2020-01-25 2024-03-06 Qualcomm Inc SOUNDING REFERENCE SIGNAL CONFIGURATION
CN115136638A (zh) * 2020-02-20 2022-09-30 株式会社Ntt都科摩 终端、无线通信方法以及基站
US20210391953A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Hybrid automatic repeat request feedback with multiple uplink channels
US20240015725A1 (en) * 2020-06-15 2024-01-11 Cohere Technologies, Inc. Spectral sharing wireless systems
US20230353325A1 (en) * 2020-11-06 2023-11-02 Qualcomm Incorporated Control information for sidelink spatial domain multiplexing from multiple transmission reception points (trps)
US20220217713A1 (en) * 2021-01-06 2022-07-07 Qualcomm Incorporated Latency reduction and coverage enhancement for extended reality
US11716124B2 (en) * 2021-06-16 2023-08-01 Qualcomm Incorporated Dynamic spectrum sharing with spatial division multiplexing
WO2023117114A1 (en) * 2021-12-23 2023-06-29 Nokia Technologies Oy Parallel uplink transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050858A1 (en) * 2009-11-02 2011-05-05 Nokia Siemens Networks Oy Uplink channel sounding
CN105493596A (zh) * 2013-09-26 2016-04-13 夏普株式会社 终端、基站以及通信方法
WO2017038533A1 (ja) * 2015-08-31 2017-03-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017218794A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload control signaling for new radio

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610861B2 (ja) * 2010-06-10 2014-10-22 シャープ株式会社 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
US8964679B2 (en) * 2011-12-23 2015-02-24 Blackberry Limited Method implemented in an eNodeB base station
WO2016028103A1 (ko) 2014-08-20 2016-02-25 엘지전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
US10306439B2 (en) * 2015-01-16 2019-05-28 Lg Electronics Inc. Method and device for transmitting and receiving shared control message in wireless access system supporting machine type communication
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
US20170317794A1 (en) * 2016-04-29 2017-11-02 Lg Electronics Inc. Method and user equipment for transmitting uplink signal, and method and base station for receiving uplink signal
JP6876238B2 (ja) * 2016-11-02 2021-05-26 ソニーグループ株式会社 端末装置、基地局装置および通信方法
US11310010B2 (en) * 2017-01-09 2022-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid-SRS combination signaling
US10873415B2 (en) * 2017-08-10 2020-12-22 Ofinno, Llc Uplink control information multiplexing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011050858A1 (en) * 2009-11-02 2011-05-05 Nokia Siemens Networks Oy Uplink channel sounding
CN105493596A (zh) * 2013-09-26 2016-04-13 夏普株式会社 终端、基站以及通信方法
WO2017038533A1 (ja) * 2015-08-31 2017-03-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017218794A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload control signaling for new radio

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"R1-1609536 Intel UCI content NR PUCCH";Intel Corporation;《3GPP tsg_ran\WG1_RL1》;20161001;第3-4节、图4 *
"R1-1721372 Summary of remaining issues on UL power control_revised";ZTE, Sanechips;《3GPP tsg_ran\WG1_RL1》;20171129;第6页 *
增强的小区间干扰协调技术综述;张秀宁,谈振辉,徐少毅,陶成;《铁道学报》;20130215;全文 *

Also Published As

Publication number Publication date
US11323169B2 (en) 2022-05-03
WO2019173650A1 (en) 2019-09-12
US20190280757A1 (en) 2019-09-12
CN111819812A (zh) 2020-10-23
EP3763073A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
CN111819812B (zh) 一种用于使用空间复用的同时上行链路传输的方法和装置
CN111727583B (zh) 用于关于准共址组的传输配置指示状态的方法和装置
CN111279643B (zh) 新无线电中的半持久调度管理
CN111133829B (zh) 毫米波系统的通话前监听和信道保留
CN110999392B (zh) 用于发送随机接入前导码消息的配置
CN111034105B (zh) 用于无线通信的方法、装置及非暂时性计算机可读介质
CN111279781B (zh) 特定于用户设备的调度请求重复
CN111869130A (zh) 波束切换和波束故障恢复
CN112136353A (zh) 共享毫米波射频频谱中的说前先听技术
CN114128388A (zh) 随机接入消息与其他传输之间的冲突避免
CN112970220A (zh) 控制搜索空间重叠指示
CN113228775A (zh) 用于共享数据信道的传输配置指示确定
CN114073151A (zh) 用于使用经预配置的上行链路资源进行无线通信的技术
CN112889339A (zh) 两步随机接入规程的消息2以及与四步随机接入规程的共存
CN111108803A (zh) 用于无线通信中的覆盖增强的公共搜索空间设计
CN113316964B (zh) 用于共享无线通信的控制信道设计
CN114270772B (zh) 无线通信中的全双工技术
CN113924816B (zh) 用于随机接入过程的自适应重传
CN113574924A (zh) 用于上行链路传输的波形配置和指示
CN113711681B (zh) 物理上行链路共享信道时机聚合
CN114258659A (zh) 针对交叉载波参考信号触发的默认准共置假设
CN113615263B (zh) 使用公共标识符来监测唤醒信号
CN112567823A (zh) 关于上行链路传输的临时功率调整指示
CN111344984A (zh) 解调参考信号传输
CN113366796A (zh) 传输参数的信令

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant