CN111817356A - 屋顶光伏并网装置、微网孤岛检测方法 - Google Patents

屋顶光伏并网装置、微网孤岛检测方法 Download PDF

Info

Publication number
CN111817356A
CN111817356A CN202010944248.9A CN202010944248A CN111817356A CN 111817356 A CN111817356 A CN 111817356A CN 202010944248 A CN202010944248 A CN 202010944248A CN 111817356 A CN111817356 A CN 111817356A
Authority
CN
China
Prior art keywords
power
module
photovoltaic
grid
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010944248.9A
Other languages
English (en)
Other versions
CN111817356B (zh
Inventor
叶刚进
王骏海
杨翾
江奕军
李飞
陈琳
陈致远
方响
徐寅飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Zhejiang Electric Power Co Ltd
Hangzhou Power Equipment Manufacturing Co Ltd
Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
State Grid Zhejiang Electric Power Co Ltd
Hangzhou Power Equipment Manufacturing Co Ltd
Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Zhejiang Electric Power Co Ltd, Hangzhou Power Equipment Manufacturing Co Ltd, Hangzhou Power Supply Co of State Grid Zhejiang Electric Power Co Ltd filed Critical State Grid Zhejiang Electric Power Co Ltd
Priority to CN202010944248.9A priority Critical patent/CN111817356B/zh
Publication of CN111817356A publication Critical patent/CN111817356A/zh
Application granted granted Critical
Publication of CN111817356B publication Critical patent/CN111817356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种屋顶光伏并网装置、微网孤岛检测方法,其中,所述屋顶光伏并网装置连接于光伏逆变器与升压配变之间,至少包括接入模块、人机交互模块和中央控制器;所述微网孤岛检测方法包括:S1、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率;S2、根据传输线路的电感和电容参数,计算视在功率参考值;S3、计算得出孤岛检测区域;S4、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时,则检测到孤岛起始。本发明的光伏并网装置对光伏能源利用程度更高;本发明提出的微网孤岛检测方法成本低,不需要通信系统,检测时间快、准确率高、稳定性好,在微网内部发生故障时,该方法都不会发生误动作。

Description

屋顶光伏并网装置、微网孤岛检测方法
技术领域
本发明涉及光伏发电技术领域,具体涉及一种屋顶光伏并网装置、微网孤岛检测方法,尤其适用于0.4kV配电网下的屋顶光伏并网装置、微网孤岛检测方法。
背景技术
光伏能源作为最具潜力的可再生能源,因其储量的无限性、存在的普遍性、利用的清洁性以及实用的经济性,越来越被人们所青睐。大力发展光伏产业、积极开发光伏能源,在全球范围内已经得到了空前重视,已成为各国可持续发展战略的重要组成部分。
随着光伏技术的发展,电力市场改革的加深,大量具有屋顶光伏发电资质的小微企业可以通过光伏发电参与到电力市场中。现有的光伏并网装置针对的是10kV及以上的电压等级,不具备储能扩展接口,由于光伏发电的间歇性和不稳定性,不能对电网起到支撑作用,有时甚至会导致电网负荷及潮流的大幅波动;另外,由于传统的光伏并网装置针对的是10kV及以上的电压等级,当在0.4kV等级下时,传统光伏并网装置保护措施冗余、成本高,并且由于10kV及以上电压等级下,储能设备主要由电网侧提供,传统光伏并网装置不具有储能扩展接口,不能完成光伏发电与储能的联合调配。
小微企业分布式光伏发电是一种小规模发电,其与储能、负荷共同构成一个微网,它们必须服从互联配电网的运行条件。当电网中断配电网与微网的连接时,光伏并网装置必须能准确检测孤岛状况并告知微网内的光伏发电减少出力,保证发电与消耗的平衡,这称为防孤岛保护。因此,孤岛检测对于电网和微网来说都非常重要。现有的孤岛检测方法主要分为远端检测与本地检测两种。远端检测主要依赖于通信系统,其不受电能质量及电力系统暂态响应的影响。本地检测主要分为主动检测与被动检测两种,主动检测通过向PCC(Point of Common Coupling,公共耦合点)注入少量失真电流来观测系统的响应,其可以检测到具有较小非检测区域的微网孤岛现象,被动检测主要基于孤岛成立之前和之后变量的变化,如果监测的变量(例如电压的大小、相角、频率或谐波)满足孤岛检测条件,则可以检测到孤岛。但是,现有的远端检测和本地检测也都存在不足之处。远端检测依赖于通信系统,建设成本较高。本地检测中的主动检测需要较长的检测时间,而且注入失真电流会影响电能质量。本地检测中的被动检测很难使用检测孤岛起始,原因是当发电功率与微网中的本地负载相同时,与电网的断开不会导致监测变量的显著变化,另外,当微网中发生故障时,由于监测变量的显著变化,该方法可能会出现误动作。
发明内容
本发明为了克服以上技术的不足,面向具有屋顶光伏发电资质的小微企业,本发明提供了一种屋顶光伏并网装置、微网孤岛检测方法,为光伏发电系统提供保护控制、通信计量以及储能调配,且提出稳定、可靠的孤岛检测方法,使小微企业通过光伏发电参与电力市场,并能够与配电网可靠互联运行。
术语解释:
微网:是微电网(Micro-Grid)的简称,是指由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等组成的小型发配电系统。
本发明克服其技术问题所采用的技术方案是:
一种屋顶光伏并网装置,其连接于光伏逆变器与升压配变之间,至少包括接入模块、人机交互模块和中央控制器;其中,
所述接入模块至少用于提供光伏接入、安全并网接入和储能接入,包括至少一个光伏接入单元、安全并网接入单元和储能接入单元,所述光伏接入单元、安全并网接入单元和储能接入单元至少各包括一个断路器,通过中央控制器控制各个断路器的通断实现光伏接入单元、安全并网接入单元或储能接入单元的通断;
所述人机交互模块至少包括显示单元和操控单元,所述显示单元至少用于显示总发电量、总用电量、有功功率、无功功率、并网装置运行状态、功率因数、系统频率、三相相电压和三相相电流,所述操控单元至少用于切换界面和按键选择;
所述中央控制器至少包括计量模块、保护模块、通信模块、存储单元和处理器,所述计量模块至少用于计量总发电量、总用电量、有功功率、无功功率、功率因数、系统频率和三相电压电流,所述计量模块至少包括采样回路,所述采样回路用于采集电压和电流信号后并通过处理器计算得到计量总发电量、总用电量、有功无功功率、功率因数、系统频率和三相电压电流;所述保护模块至少用于提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护、合闸控制和防孤岛保护;所述通信模块至少用于实现中央控制器与外部终端之间的信息交互和远程通信,所述信息交互的数据至少包括直流电压、直流电流、交流电压、交流电流、有功功率、无功功率、功率因数和装置工作状态;所述存储单元至少用于存储处理器处理的数据和与外部终端之间的交互信息;所述处理器用于控制接入模块中各个断路器的通断、处理计量模块测量的数据、控制保护模块中的合闸操作、控制通过通信模块与外部终端之间的信息交互和远程通信,以及控制人机交互模块显示数据信息和接收用户通过人机交互模块输入的指令。
进一步地,还包括电源模块,所述电源模块用于为中央控制器供电。
进一步地,所述通信模块至少采用RS-232、RS-485、SPI和CAN中的一种或多种。
本发明还提供了一种应用于上述所述的屋顶光伏并网装置的微网孤岛检测方法,包括:
S1、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率;
S2、根据传输线路的电感和电容参数,计算视在功率参考值;
S3、计算得出孤岛检测区域;
S4、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时,则检测到孤岛起始。
进一步地,步骤S1中,瞬时有功功率和瞬时无功功率分别通过下式计算:
Figure 513638DEST_PATH_IMAGE001
Figure 585106DEST_PATH_IMAGE002
其中,三相电压
Figure 896001DEST_PATH_IMAGE004
和三相电流
Figure 432156DEST_PATH_IMAGE006
由 PCC点采样得到,
Figure 512107DEST_PATH_IMAGE007
Figure 865728DEST_PATH_IMAGE008
Figure 522975DEST_PATH_IMAGE009
为分别滞后
Figure 987454DEST_PATH_IMAGE010
Figure 921912DEST_PATH_IMAGE011
Figure 321800DEST_PATH_IMAGE012
四分之一周期的值。
进一步地,步骤S2中,视在功率参考值的计算如下:
Figure 341709DEST_PATH_IMAGE013
其中,
Figure 344300DEST_PATH_IMAGE014
Figure 133264DEST_PATH_IMAGE015
分别代表PCC点处的额定电压和传输线路阻抗。
进一步地,步骤S3中,孤岛检测区域由下式得到:
Figure 454787DEST_PATH_IMAGE017
Figure 961991DEST_PATH_IMAGE019
其中,
Figure 502694DEST_PATH_IMAGE020
Figure 552690DEST_PATH_IMAGE021
取决于PCC点处电压的变化以及电流互感器和电压互感器的测量误 差。
进一步地,将PCC点处电压的变化设置为±20%,充分考虑孤岛发生后的稳态和瞬 态下的电压偏差以及足够的裕量,将
Figure 153435DEST_PATH_IMAGE020
Figure 147936DEST_PATH_IMAGE021
设置为:
Figure 492330DEST_PATH_IMAGE023
Figure DEST_PATH_IMAGE025
Figure 911679DEST_PATH_IMAGE026
设置为15,这三个系数
Figure 948905DEST_PATH_IMAGE020
Figure 40489DEST_PATH_IMAGE021
Figure 188573DEST_PATH_IMAGE026
仅取决于电压变化的极限以及IEC标准中 定义的电流互感器和电压互感器的测量误差极限。
本发明的有益效果是:
1、目前已有的光伏能源并网装置是针对较高电压等级设计的,一般是10kV以上,在本发明所面临的0.4kV电压等级下,保护设备冗余、成本高;采用本发明的屋顶光伏并网装置,相对于传统光伏能源并网装置成本低,且本发明模块化和集成度高,可扩展性强。
2、10kV及以上电压等级下,储能设备往往由电网侧提供,传统光伏能源并网装置不设置储能接口,而本发明可以通过扩展的储能接口,完成储能与光伏的协调工作,在电网不接收光伏能源的情况下,储存光伏发电的电能,相较于传统光伏能源并网装置,本发明对光伏能源利用程度更高。
3、本发明提出的微网孤岛检测方法成本低,不需要通信系统,检测时间快、准确率高、稳定性好,在微网内部发生故障时,且无论故障出现的位置、类型、初始相角如何,本发明的孤岛检测方法都不会发生误动作。
附图说明
图1为本发明实施例1所述屋顶光伏并网装置的原理框图。
图2为本发明实施例1所述屋顶光伏并网装置的主电路图。
图3为本发明实施例2所述孤岛检测区域的示意图。
图4为本发明实施例2所述微网正常运行时孤岛检测实验结果图。
图5为本发明实施例2所述微网正常运行时孤岛检测断路器动作信号图。
图6为本发明实施例2所述微网发生故障情况下孤岛检测实验结果图。
图7为本发明实施例2所述微网发生故障情况下孤岛检测断路器动作信号图。
具体实施方式
为了便于本领域人员更好的理解本发明,下面结合附图和具体实施例对本发明做进一步详细说明,下述仅是示例性的不限定本发明的保护范围。
实施例1、
本实施例提供了一种屋顶光伏并网装置,应用于光伏发电系统,可以为用户提供光伏发电并网服务、降低企业的用电成本、实现节能增效的标准化、集成化、便携化和智能化,该屋顶光伏并网装置安装于具有屋顶光伏发电资质的小微企业内部,连接于光伏逆变器与升压配变之间,是分布式光伏接入系统的保护控制、通信计量及智能管理的核心。如图1所示,本实施例应用于0.4kV配电网下的屋顶光伏并网装置至少包括接入模块、人机交互模块和中央控制器。
本实施例中,所述接入模块至少用于提供光伏接入、安全并网接入和储能接入,包括至少一个光伏接入单元、安全并网接入单元和储能接入单元,还包括电操机构、母排和互感器,本实施例优选设置两路光伏接入单元、一路并网接入单元,并预留一路储能接入单元,如图2所示。所述光伏接入单元、安全并网接入单元和储能接入单元至少各包括一个断路器,具体地,每个光伏接入单元各至少包括断路器一,安全并网接入单元至少包括断路器二,储能接入单元至少包括断路器三,所述光伏接入口与断路器一之间还连接有AC/DC转换模块,用于将交流电转换为直流电,所述储能接入口与断路器三之间也连接有AC/DC转换模块,用于将交流电转换为直流电。通过中央控制器控制各个断路器的通断可以实现光伏接入单元、安全并网接入单元或储能接入单元的通断,其中,通过控制储能接入单元,使得电网在不接收光伏发电电能时,储能接入单元可以接收光伏发电电能,优化经济效益,该储能接入单元可以根据具体应用场景需求选择性开放。
本实施例中,所述人机交互模块至少包括显示单元和操控单元,所述显示单元通过电阻显示屏实现,在上位软件中完成电阻显示屏UI设计,通过通用异步串口完成显示屏与中央控制器的通信,为用户提供直观的数据,达成用户与装置的良好信息交互。所述显示单元至少用于显示总发电量、总用电量、有功功率、无功功率、并网装置运行状态、功率因数、系统频率、三相相电压和三相相电流,还可以根据用户定制需求,提供电能质量信息监测等;所述操控单元至少用于切换界面和按键选择。
本实施例中,所述中央控制器至少包括计量模块、保护模块、通信模块、存储单元和处理器。
其中,所述计量模块主要采用电子式计量方式,至少用于计量总发电量、总用电量、有功功率、无功功率、功率因数、系统频率和三相电压电流,所述计量模块至少包括采样回路,所述采样回路用于采集电压和电流信号,数模转换后然后通过处理器计算得到计量总发电量、总用电量、有功无功功率、功率因数、系统频率和三相电压电流,一般用户主要是查看月度发电量、月度用电量信息,所述计量模块实现了用户与电力局之间的良好沟通渠道。
所述保护模块至少用于提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护、合闸控制和防孤岛保护。具体是,当检测到过电压、低电压、过电流、逆流、过负荷时断开断路器,提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护;在输入合闸指令时,检测光伏支路与电网电压相对相位差以及电压幅值,达到并网标准后向断路器发送闭合指令,提供合闸控制;当检测到微网处于孤岛运行时,调整光伏出力维持系统平衡。
所述通信模块至少用于实现中央控制器与外部终端之间的信息交互和远程通信,也就是实现光伏发电系统与上级终端之间的信息交互和远程通信,至少包括直流电压、直流电流、交流电压、交流电流、有功功率、无功功率、功率因数和装置工作状态的上送。作为优选的,本实施例所述通信模块至少采用RS-232、RS-485、SPI和CAN中的一种或多种通讯协议,可满足用户对于本装置多种场景应用的不同需求进行改造。
所述存储单元至少用于存储处理器处理的数据和与外部终端之间的交互信息。
所述处理器用于控制接入模块中各个断路器的通断、处理计量模块测量的数据、控制保护模块中的合闸操作、控制通过通信模块与外部终端之间的信息交互和远程通信,以及控制人机交互模块显示数据信息和接收用户通过人机交互模块输入的指令。作为优选的,本实施例所述的处理器采用单片机或ARM。
综上,本实施例所述的屋顶光伏并网装置至少包括五大模块,分别是计量模块、保护模块、通信模块、接入模块和人机交互模块,不仅按照行业标准满足0.4KV光伏并网的基本要求,也可以按照用户特用的需求增加电能质量管理等功能。
作为本实施例优选的方案,所述屋顶光伏并网装置还包括电源模块,所述电源模块用于为中央控制器供电。
此外,本实施例所述的屋顶光伏并网装置除了基本五大模块之外,还包括扩展模块,所述扩展模块可以实现充放电控制、经济优化控制等,可以降低用电成本,优化经济效益。
实施例2、
本实施例提供了一种应用于实施例1所述的屋顶光伏并网装置的微网孤岛检测方法,包括如下步骤:
第一步、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率。
瞬时有功功率
Figure DEST_PATH_IMAGE027
和瞬时无功功率
Figure 960964DEST_PATH_IMAGE028
分别通过下式计算:
Figure 169091DEST_PATH_IMAGE001
Figure 138184DEST_PATH_IMAGE002
其中,三相电压
Figure 699747DEST_PATH_IMAGE003
和三相电流
Figure 437896DEST_PATH_IMAGE005
由PCC点采 样得到,
Figure 816924DEST_PATH_IMAGE007
Figure 7734DEST_PATH_IMAGE008
Figure 622255DEST_PATH_IMAGE009
为分别滞后
Figure 214911DEST_PATH_IMAGE010
Figure 764841DEST_PATH_IMAGE011
Figure 318313DEST_PATH_IMAGE012
四分之一周期的值。
第二步、根据传输线路的电感和电容参数,计算视在功率参考值。
当微网与配电网连接断开时,有功功率
Figure 877470DEST_PATH_IMAGE027
和无功功率
Figure 324632DEST_PATH_IMAGE028
取决于PCC处的电压以及 线路的阻抗。由于传输线路中几乎没有电阻,因此有功功率
Figure 405983DEST_PATH_IMAGE027
几乎变为零,无功功率
Figure 571385DEST_PATH_IMAGE028
与传 输线路的串联电感和并联电容相关,无功功率
Figure 668654DEST_PATH_IMAGE028
不为零。由于传输线路的参数已知,因此可 以计算出这些恒定的有功功率和无功功率。如果计算出的瞬时有功功率和无功功率收敛到 预先计算的常数值,则将检测到孤岛起始。视在功率参考值的计算如下:
Figure 100002_DEST_PATH_IMAGE029
其中,
Figure 376847DEST_PATH_IMAGE014
Figure 268580DEST_PATH_IMAGE015
分别代表PCC点处的额定电压和传输线路阻抗。
第三步、计算得出孤岛检测区域。
所述孤岛检测区域,如图3所示,具体由下式得到:
Figure 45912DEST_PATH_IMAGE016
Figure 681292DEST_PATH_IMAGE030
其中,
Figure 103046DEST_PATH_IMAGE020
Figure 41047DEST_PATH_IMAGE021
取决于PCC点处电压的变化以及电流互感器和电压互感器的测量误 差。将PCC点处电压的变化设置为±20%,充分考虑孤岛发生后的稳态和瞬态下的电压偏差 以及足够的裕量,因此,将
Figure 915462DEST_PATH_IMAGE020
Figure 620112DEST_PATH_IMAGE021
设置为:
Figure DEST_PATH_IMAGE031
Figure 785121DEST_PATH_IMAGE032
Figure 18656DEST_PATH_IMAGE026
设置为15,这三个系数
Figure 521313DEST_PATH_IMAGE020
Figure 498496DEST_PATH_IMAGE021
Figure 629263DEST_PATH_IMAGE026
仅取决于电压变化的极限以及IEC标准中定 义的电流互感器和电压互感器的测量误差极限。因此,当所提出的微网孤岛检测方法应用 于其它微网时,
Figure 33700DEST_PATH_IMAGE020
Figure 7341DEST_PATH_IMAGE021
Figure 522636DEST_PATH_IMAGE026
将不会改变,只需考虑新的传输线路参数来计算
Figure DEST_PATH_IMAGE033
即 可。
第四步、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时, 则检测到孤岛起始。具体是,微网处于孤岛运行模式时,并网点的瞬时有功功率收敛于零, 而由于串联电感和并联电容的影响,瞬时无功功率有一定的微小值,据此可得到瞬时有功 无功功率坐标系下的孤岛检测区间,当功率轨迹
Figure 180013DEST_PATH_IMAGE034
移动到孤岛检测区域中时,检 测到孤岛起始。
微网正常运行时,实验结果如图4和5所示,可知,在33.33ms时发生孤岛,工作状态能够收敛至检测区间,并在55.86ms时能够准确检测到孤岛运行。
当微网中发生故障时,实验结果如图6和7所示,可知,检测区域仍然正确,工作点不会收敛至检测区域,因此不会发生误动作。
经PSCAD/EMTDC仿真以及实验验证,本实施例所述的微网孤岛检测方法都可以快速并准确地检测到微网孤岛运行的开始;并且无论故障出现的位置、类型、初始相角如何,本方法都不会产生误动。
以上仅描述了本发明的基本原理和优选实施方式,本领域人员可以根据上述描述做出许多变化和改进,这些变化和改进应该属于本发明的保护范围。

Claims (8)

1.一种屋顶光伏并网装置,其连接于光伏逆变器与升压配变之间,其特征在于,至少包括接入模块、人机交互模块和中央控制器;其中,
所述接入模块至少用于提供光伏接入、安全并网接入和储能接入,包括至少一个光伏接入单元、安全并网接入单元和储能接入单元,所述光伏接入单元、安全并网接入单元和储能接入单元至少各包括一个断路器,通过中央控制器控制各个断路器的通断实现光伏接入单元、安全并网接入单元或储能接入单元的通断;
所述人机交互模块至少包括显示单元和操控单元,所述显示单元至少用于显示总发电量、总用电量、有功功率、无功功率、并网装置运行状态、功率因数、系统频率、三相相电压和三相相电流,所述操控单元至少用于切换界面和按键选择;
所述中央控制器至少包括计量模块、保护模块、通信模块、存储单元和处理器,所述计量模块至少用于计量总发电量、总用电量、有功功率、无功功率、功率因数、系统频率和三相电压电流,所述计量模块至少包括采样回路,所述采样回路用于采集电压和电流信号后并通过处理器计算得到计量总发电量、总用电量、有功无功功率、功率因数、系统频率和三相电压电流;所述保护模块至少用于提供过电压保护、低电压保护、过电流保护、防逆流保护、过负荷保护、合闸控制和防孤岛保护;所述通信模块至少用于实现中央控制器与外部终端之间的信息交互和远程通信,所述信息交互的数据至少包括直流电压、直流电流、交流电压、交流电流、有功功率、无功功率、功率因数和装置工作状态;所述存储单元至少用于存储处理器处理的数据和与外部终端之间的交互信息;所述处理器用于控制接入模块中各个断路器的通断、处理计量模块测量的数据、控制保护模块中的合闸操作、控制通过通信模块与外部终端之间的信息交互和远程通信,以及控制人机交互模块显示数据信息和接收用户通过人机交互模块输入的指令。
2.根据权利要求1所述的屋顶光伏并网装置,其特征在于,还包括电源模块,所述电源模块用于为中央控制器供电。
3.根据权利要求1所述的屋顶光伏并网装置,其特征在于,所述通信模块至少采用RS-232、RS-485、SPI和CAN中的一种或多种。
4.一种应用于权利要求1-3任一项所述的屋顶光伏并网装置的微网孤岛检测方法,其特征在于,包括:
S1、计算微网与配电网PCC点处的瞬时有功功率和瞬时无功功率;
S2、根据传输线路的电感和电容参数,计算视在功率参考值;
S3、计算得出孤岛检测区域;
S4、当瞬时有功功率和瞬时无功功率收敛到预先计算的视在功率参考值时,则检测到孤岛起始。
5.根据权利求4所述的微网孤岛检测方法,其特征在于,步骤S1中,瞬时有功功率和瞬时无功功率分别通过下式计算:
Figure 176281DEST_PATH_IMAGE002
Figure 827842DEST_PATH_IMAGE004
其中,三相电压
Figure 201055DEST_PATH_IMAGE006
和三相电流
Figure 330685DEST_PATH_IMAGE008
由PCC点采 样得到,
Figure 879478DEST_PATH_IMAGE009
Figure 436361DEST_PATH_IMAGE010
Figure 795405DEST_PATH_IMAGE011
为分别滞后
Figure 728726DEST_PATH_IMAGE012
Figure 132025DEST_PATH_IMAGE013
Figure 984444DEST_PATH_IMAGE014
四分之一周期的值。
6.根据权利求5所述的微网孤岛检测方法,其特征在于,步骤S2中,视在功率参考值的计算如下:
Figure 207615DEST_PATH_IMAGE016
其中,
Figure 679047DEST_PATH_IMAGE017
Figure 61487DEST_PATH_IMAGE018
分别代表PCC点处的额定电压和传输线路阻抗。
7.根据权利求6所述的微网孤岛检测方法,其特征在于,步骤S3中,孤岛检测区域由下式得到:
Figure 225752DEST_PATH_IMAGE020
Figure 936219DEST_PATH_IMAGE022
其中,
Figure DEST_PATH_IMAGE023
Figure 804818DEST_PATH_IMAGE024
取决于PCC点处电压的变化以及电流互感器和电压互感器的测量误 差。
8.根据权利求7所述的微网孤岛检测方法,其特征在于,
将PCC点处电压的变化设置为±20%,充分考虑孤岛发生后的稳态和瞬态下的电压偏 差以及足够的裕量,将
Figure 182710DEST_PATH_IMAGE023
Figure 252297DEST_PATH_IMAGE024
设置为:
Figure 76159DEST_PATH_IMAGE026
Figure 889394DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE029
设置为15,这三个系数
Figure 980847DEST_PATH_IMAGE023
Figure 221335DEST_PATH_IMAGE024
Figure 906395DEST_PATH_IMAGE029
仅取决于电压变化的极限以及IEC标准 中定义的电流互感器和电压互感器的测量误差极限。
CN202010944248.9A 2020-09-10 2020-09-10 屋顶光伏并网装置、微网孤岛检测方法 Active CN111817356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010944248.9A CN111817356B (zh) 2020-09-10 2020-09-10 屋顶光伏并网装置、微网孤岛检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010944248.9A CN111817356B (zh) 2020-09-10 2020-09-10 屋顶光伏并网装置、微网孤岛检测方法

Publications (2)

Publication Number Publication Date
CN111817356A true CN111817356A (zh) 2020-10-23
CN111817356B CN111817356B (zh) 2021-01-01

Family

ID=72860746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010944248.9A Active CN111817356B (zh) 2020-09-10 2020-09-10 屋顶光伏并网装置、微网孤岛检测方法

Country Status (1)

Country Link
CN (1) CN111817356B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081118A (zh) * 2010-12-10 2011-06-01 华北电力大学(保定) 实时计量双向通信智能电表
CN102355057A (zh) * 2011-09-25 2012-02-15 国网电力科学研究院 微电网系统计算机监控方法
CN102412591A (zh) * 2011-08-19 2012-04-11 华北电力大学 基于负序功率正反馈的孤岛检测方法
CN102664429A (zh) * 2012-05-29 2012-09-12 国电联合动力技术有限公司 一种并网不上网微网系统及其控制保护方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081118A (zh) * 2010-12-10 2011-06-01 华北电力大学(保定) 实时计量双向通信智能电表
CN102412591A (zh) * 2011-08-19 2012-04-11 华北电力大学 基于负序功率正反馈的孤岛检测方法
CN102355057A (zh) * 2011-09-25 2012-02-15 国网电力科学研究院 微电网系统计算机监控方法
CN102664429A (zh) * 2012-05-29 2012-09-12 国电联合动力技术有限公司 一种并网不上网微网系统及其控制保护方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林其友等: "一种新型分布式电源并网接口装置设计与应用", 《电气工程学报》 *

Also Published As

Publication number Publication date
CN111817356B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN107196312B (zh) Lc网络开关并联型统一电能质量控制器及其控制方法
Illindala et al. Control of distributed generation systems to mitigate load and line imbalances
Sood et al. Microgrids architectures
Meng et al. A Self-adaptive controller for inverter with seamless transfer and automatic pre-synchronization capability
Xie et al. Adaptive master-slave control strategy for medium voltage DC distribution systems based on a novel nonlinear droop controller
KOM Understanding interphase power controller: a description
Lavanya et al. Control strategies for seamless transfer between the grid-connected and islanded modes of a microgrid system
Chang et al. Voltage quality enhancement with power electronics based devices
An et al. Flexible transfer converters enabling autonomous control and power dispatch of microgrids
Ghiasi et al. A hybrid controller with hierarchical architecture for microgrid to share power in an islanded mode
Guerrero et al. Parallel operation of uninterruptible power supply systems in microgrids
Mogaka et al. Islanded and grid-connected control in a microgrid with wind-PV hybrid
CN112701731A (zh) 一种储能微电网并离网无缝切换装置、方法及系统
CN111817356B (zh) 屋顶光伏并网装置、微网孤岛检测方法
Shahid Power quality control in grid-interactive micro-power systems
Chethan Raj et al. Power sharing control strategy of parallel inverters in AC microgrid using improved reverse droop control
Gonzatti et al. Implementation of a grid-forming converter based on modified synchronous reference frame
Oh et al. Operation method for hybrid UPS with energy storage system function
Chishti et al. FLL unified AVF and NAAP filter for performance investigation of renewable based AC microgrid under grid to standalone transition mode
Wu et al. Power transfer and multi-control mode of a distribution network based on a flexible interconnected device
Xiao et al. A virtual inertia control strategy of interlinking converters in islanded hybrid AC/DC microgrid
Thakur et al. Grid forming energy router: Investigation of load control and stability response
Molla Power Quality Improvement in Distribution System Using Dynamic Voltage Restorer
Mahish et al. Distributed generating system integration: Operation and control
Lavanya et al. Seamless Transition in Grid-connected Microgrid System using Proportional Resonant Controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant