CN111816147A - 一种基于信息提取的音乐节奏定制方法 - Google Patents

一种基于信息提取的音乐节奏定制方法 Download PDF

Info

Publication number
CN111816147A
CN111816147A CN202010046075.9A CN202010046075A CN111816147A CN 111816147 A CN111816147 A CN 111816147A CN 202010046075 A CN202010046075 A CN 202010046075A CN 111816147 A CN111816147 A CN 111816147A
Authority
CN
China
Prior art keywords
rhythm
comb
template
period
music
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010046075.9A
Other languages
English (en)
Inventor
李奕凝
胡威
甘雨
刘天怡
焦强
董勇
陈嘉佑
郑红强
郑憧伟
刘红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202010046075.9A priority Critical patent/CN111816147A/zh
Publication of CN111816147A publication Critical patent/CN111816147A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0033Recording/reproducing or transmission of music for electrophonic musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/36Accompaniment arrangements
    • G10H1/40Rhythm
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/341Rhythm pattern selection, synthesis or composition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/341Rhythm pattern selection, synthesis or composition
    • G10H2210/361Selection among a set of pre-established rhythm patterns
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/375Tempo or beat alterations; Music timing control
    • G10H2210/391Automatic tempo adjustment, correction or control

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Auxiliary Devices For Music (AREA)

Abstract

本发明公开了一种基于信息提取的音乐节奏定制方法,包括如下步骤:步骤一:构建中层输入表示:用于将输入音频信号转换成音频帧数组;步骤二:合并节奏追踪模型;步骤三:结合整体输出具有上下文关联性的音乐节奏;步骤四:进行时间拉伸:调用RubberBand Audio中函数,输入音频节奏数组和相应的倍速,选择相应的转换模式,得到结果节奏数组后将使用快速傅立叶变换转换成频谱图实时显示在界面上。本发明在原有节奏追踪算法的基础上去除了操作的复杂性,可对音乐时间自有拉伸,提高了对通信中零散时间的利用率,提高了音乐节奏的多样性;本发明实现了对原有节奏追踪的优化,提高算法效率的同时也降低了计算过程中的能耗。

Description

一种基于信息提取的音乐节奏定制方法
技术领域
本发明涉及音乐制作技术领域,具体涉及一种基于信息提取的音乐节奏定制方法。
背景技术
在我们的日常生活中存在着各种各样的声音,有校园中的琅琅书声、街道上的轰鸣笛声;也有森林中的空灵鸟鸣声、山谷中的潺潺流水声。在古时人们便通晓了音律的优美,将韵律优美的乐当作是礼的外在化表现。中国有宫商角徵羽五音及编钟、琴瑟筝笛鼓等乐器;西方也在进步的过程中演变出了吉他、钢琴、提琴等乐器。当代,音乐又可根据划分成种类繁多的流派,如蓝调、摇滚以及乡村等。
在当代,形成音乐的方式主要有两种:直接录制算法合成,直接录制就是将需要的乐器全部准备好,再寻找相关人员弹奏/击打即时录制,这种方式费时费力,需要较高的成本投入;反观算法合成,只需要将各种乐器的音调录制成源带入算法中,就能自由的拼接组合,这种方式成本较低,但是对于计算音乐合成的人员要求不仅要懂得相关的算法操作方法,还需要具有一定的乐理审美。
目前,虽然已经有信息提取式节奏定制算法,但其存在节奏区分度不高、节奏范围把控不足的缺陷;且现有的信息提取式算法在对音乐节奏进行提取时容易使得最终得出的音乐节奏定制结构不具有连续性,并难以估算节奏周期的范围。
发明内容
本发明为了克服以上技术的不足,提供了一种基于信息提取的音乐节奏定制方法。
本发明克服其技术问题所采用的技术方案是:
一种基于信息提取的音乐节奏定制方法,包括如下步骤:
步骤一:构建中层输入表示:用于将输入音频信号转换成音频帧数组;
步骤二:合并节奏追踪模型;
步骤三:结合整体输出具有上下文关联性的音乐节奏;
步骤四:进行时间拉伸:调用RubberBand Audio中函数,输入音频节奏数组和相应的倍速,选择相应的转换模式,得到结果节奏数组后将使用快速傅立叶变换转换成频谱图实时显示在界面上。
进一步地,步骤二所述的合并节奏追踪模型具体包括如下步骤:
步骤21、给定一个起始检测模块,在合并到节奏追踪模型中时,推断连续节奏之间的时间、节奏周期、帧开始与节奏位置之间的偏移、节奏对齐;
步骤22、计算一个帧的自适应移动平均范围,得出修改好的节奏检测数组;
步骤23、寻找拍频周期,并导出一个梳状模板λτ(l);
步骤24、使用瑞利分布函数计算出节奏周期模板wG(τ);
步骤25、将步骤23所得的梳状模板λτ(l)和步骤24所得的节奏周期模板wG(τ)加权,得出移位不变梳状滤波器组FG(l,τ),并构造一个校准梳状模板ψα(m);
步骤26、计算结束;
步骤三所述的结合整体输出具有上下文关联性的音乐节奏具体包括如下步骤:
步骤31、把梳状模板λτ(l)中的元素个数设置为T,去除λτ(l)中的标准化,使梳状模板具有测量偏差;
步骤32、用上下文关联的高斯函数代替瑞利分布函数,得到上下文关联的高斯周期范围函数wC(τ);
步骤33、再使用梳状模板λτ(l),设置为矩阵的第τ列并使用高斯周期范围函数wC(τ)加权每个梳状模板,可以形成上下文关联状态的移位不变梳状滤波器组FC(l,τ);
步骤34、通过导入的音乐的节奏周期τG和节奏对齐αG来定义节奏,并将节奏周期τG和节奏对齐αG代入校准梳状模板ψα(m)中计算;
步骤35、计算结束。
进一步地,所述步骤S1中,采用连续监测函数作为节奏追踪器的输入,节奏追踪公式如下:
Figure BDA0002369436590000031
其中,k表示频率个数,Sk(m)表示m处的频谱,
Figure BDA0002369436590000032
表示所有频谱的预测值。
进一步地,所述步骤22中,采用公式(2)计算一个帧的自适应移动平均范围:
Figure BDA0002369436590000033
其中,Q表示16dfsamples,q表示一个帧的偏移距离,i表示每一次计算的次数,i的取值范围1~n;
Figure BDA0002369436590000034
则设Γ(m)=0,修改好的节奏检测数组如公式(3)所示:
Figure BDA0002369436590000035
其中,HWR(x)=(x+|x|)/2。
进一步地,所述步骤23具体包括如下:
采用观察节奏水平的整数倍上的周期性的方法来寻找拍频周期;
梳状模板λτ(l)的计算如下:
Figure BDA0002369436590000041
其中,τ表示周期,Bf表示每个自相关函数的数据帧长度512B,允许在每个梳状模板中使用四个梳状元素p=1、2、3、4,v=1-p,…,p-1,周期τ由v设置,每个梳状元素p的宽度与其此周期τ的关系成正比、高度则由其宽度2p-1归一化。
进一步地,所述步骤24中,节奏周期模板wG(τ)的计算公式如下:
Figure BDA0002369436590000042
其中,参数设置权重的最强点β的可接受范围在40到50个dfsamples之间。
进一步地,所述步骤25中,移位不变梳状滤波器组FG(l,τ)的计算如下:
FG(l,τ)=wG(τ)λτ(l) (6)
算法中通过两个参数定义节奏:节奏周期τG和节奏对齐αG
为了进行节奏对齐,通过公式(7)构造一个校准梳状模板ψα(m):
Figure BDA0002369436590000043
其中,Bq表示512dfsamples,αG表示一个脉冲序列在拍频周期间隔的偏移量,v(m)表示线性递减的权重,用于强调导入音频中最前面的梳状元素,n表示有n个超出每个梳模板的元素个数。
进一步地,所述步骤31中,为了使梳状模板与公式(4)相比具有测量偏差,将公式(4)中的(2p-1)个标准化去除,得:
Figure BDA0002369436590000044
其中,T表示梳状模板λτ(l)中的元素个数。
进一步地,所述步骤32中,高斯周期范围函数wC(τ)的计算如下:
Figure BDA0002369436590000051
其中,σw表示权重的宽度,用于限制周期范围。
进一步地,所述步骤33中,上下文关联状态的移位不变梳状滤波器组FC(l,τ)的计算如下:
FC(l,τ)=wC(τ)λτ(l) (10)。
本发明的有益效果是:
本发明针对信息提取算法的构造中层输入表示的阶段和合并节奏追踪模型阶段分别进行了改进。在构造中层输入表示的阶段,将输入音频信号转换成音频帧数组,使任务执行过程中不漏检相关节奏。在合并节奏追踪模型阶段则将当前节奏和过去节奏(该导入音频的原版节奏)的位置信息合并到节奏追踪模型中,推断连续节奏之间的时间、节奏周期、帧开始与节奏位置之间的偏移、节奏对齐,而不需要事先知道输入。另外,在结合整体输出具有上下文关联性的音乐节奏阶段,引入了上下文关联性状态用来解决且单独解决音频输出的连续性问题,而关于节奏周期的先验性能让我们提前计算好节奏周期的范围,更好的定制音乐节奏。在时间拉伸算法阶段,只需导入想要修改的音乐或者视频,选择相应的风格或者倍速,即可得到相关的音频结果。
(1)操作简便,去除了很多无关操作,无需懂得相关专业知识即可进行处理。
(2)时间拉伸自由,支持导入音频的开始结束时间截取和速度编辑。
本发明在原有节奏追踪算法的基础上去除了操作的复杂性,可对音乐时间自有拉伸,提高了对通信中零散时间的利用率,提高了音乐节奏的多样性;本发明实现了对原有节奏追踪的优化,提高算法效率的同时也降低了计算过程中的能耗。
具体实施方式
为了便于本领域人员更好的理解本发明,下面通过具体实施例对本发明做进一步详细说明,下述仅是示例性的不限定本发明的保护范围。
本实施例所述的一种基于信息提取的音乐节奏定制方法,包括如下步骤:
步骤一:构建中层输入表示:用于将输入音频信号转换成音频帧数组。
与传统的节奏提取算法相比,本实施例改进后的算法将输入音频信号转换成音频帧数组,目的是使任务执行过程中不漏检相关节奏,中层输入表示又叫做节奏检测功能,用于在输入音频节奏与输出音频节奏之间充当中间信号,本实施例采用连续监测函数作为节奏追踪器的输入,节奏追踪公式如下:
Figure BDA0002369436590000061
其中,k表示频率个数,Sk(m)表示m处的频谱,
Figure BDA0002369436590000062
表示所有频谱的预测值。
步骤二:合并节奏追踪模型。
步骤21、给定一个起始检测模块,在合并到节奏追踪模型中时,通过该节奏追踪模型中的节奏追踪公式推断连续节奏之间的时间、节奏周期、帧开始与节奏位置之间的偏移、节奏对齐。
步骤22、为了实现强调显著的节奏,抛弃不显著的节奏的效果,将公式(1)化用,采用公式(2)计算一个帧的自适应移动平均范围:
Figure BDA0002369436590000071
其中,Q表示16dfsamples,q表示一个帧的偏移距离,i表示每一次计算的次数,i的取值范围1~n;
然后,将公式(1)的结果与公式(2)的结果相比较,若
Figure BDA0002369436590000072
则设Γ(m)=0,修改好的节奏检测数组如公式(3)所示:
Figure BDA0002369436590000073
其中,HWR(x)=(x+|x|)/2。
步骤23、算法中,采用观察节奏水平的整数倍上的周期性的方法来寻找拍频周期,使用梳状滤波器的结构,为了在多个度量级别上反应节奏的周期性,算法中导出一个梳状模板λτ(l),梳状模板λτ(l)的计算如下:
Figure BDA0002369436590000074
其中,τ表示周期,Bf表示每个自相关函数的数据帧长度512B,允许在每个梳状模板中使用四个梳状元素p=1、2、3、4,v=1-p,…,p-1,周期τ由v设置,每个梳状元素p的宽度与其此周期τ的关系成正比、高度则由其宽度2p-1归一化。
步骤24、为了反应节奏周期所假设的近似先验分布,算法中使用了瑞利分布函数计算出wG(τ)来表示节奏周期,节奏周期wG(τ)的计算公式如下:
Figure BDA0002369436590000075
其中,参数设置权重的最强点β的可接受范围在40到50个dfsamples之间,本实施例算法中优选β为43个dfsamples。
步骤25、将步骤23中的公式(4)得出的梳状模板λτ(l)和步骤24中的公式(5)得出的节奏周期模板wG(τ)加权,得出如公式(6)所示的移位不变梳状滤波器组FG(l,τ):
FG(l,τ)=wG(τ)λτ(l) (6)
为了进行节奏对齐,通过公式(7)构造一个校准梳模板ψα(m):
Figure BDA0002369436590000081
其中,Bq表示512dfsamples,αG表示一个脉冲序列在拍频周期间隔的偏移量,v(m)表示线性递减的权重,用于强调导入音频中最前面的梳状元素,n表示有n个超出每个梳模板的元素个数。
步骤26、计算结束。
步骤三:结合整体输出具有上下文关联性的音乐节奏。
步骤31、具有上下文关联性的状态下的节奏周期提取与步骤二所述的合并节奏追踪模型状态下的节奏周期提取存在两个区别,这两个区别与上下文关联状态的梳状滤波器组FC(l,τ)的构造相关,在上下文关联性的状态中,算法把梳状模板λτ(l)中的元素个数设置为T,为了使梳状模板与公式(4)相比具有测量偏差,将公式(4)中的(2p-1)个标准化去除,从而强调测量的周期性:
Figure BDA0002369436590000082
步骤32、关于节奏周期的先验性能让我们提前计算好节奏周期的范围,用上下文关联的高斯函数代替瑞利分布函数,得到上下文关联的高斯周期范围函数wC(τ),周期范围函数wC(τ)的计算如下:
Figure BDA0002369436590000083
其中,σw表示权重的宽度,用于限制周期范围。
步骤33、再使用梳状模板λτ(l),设置为矩阵的第τ列并使用高斯周期范围函数wC(τ)加权每个梳状模板,可以形成上下文关联状态的移位不变梳状滤波器组FC(l,τ),所述上下文关联状态的移位不变梳状滤波器组FC(l,τ)的计算如下:
FC(l,τ)=wC(τ)λτ(l) (10)
步骤34、通过导入的音乐的节奏周期τG和节奏对齐αG定义节奏,其中所述节奏周期τG和节奏对齐αG的值都是已知的,由导入的音乐决定;然后将节奏周期τG和节奏对齐αG代入校准梳状模板ψα(m)中计算,从而计算出校准梳状模板ψα(m)的值;
步骤35、计算结束。
步骤四:进行时间拉伸。
调用RubberBand Audio中函数,输入音频节奏数组和相应的倍速,选择相应的转换模式,得到结果节奏数组后将使用快速傅立叶变换转换成频谱图实时显示在界面上。其中,所述RubberBand库是一种高质量的音频时间拉伸和音高转换软件库,基于C++语言。
所述函数RubberBand Audio的功能如下:
RubberBandStretcher:构造器函数,生成一个拉伸器。
setTimeRatio:设置拉伸器的时间比例。
study:为拉伸器提供一个“样本”框架块,用于研究和计算拉伸剖面,仅用于离线模式(本实施例采用的全为RubberBand的离线模式块),在离线模式中只有先使用study函数后才能使用process函数处理音频。
process:处理拉伸器以及音频的函数模块。
available:询问拉伸器有多少输出数据的音频样本帧可供读取,如果没有可用的帧,这个函数返回0:这通常意味着需要提供更多的输入数据;如果所有数据都已完全处理,所有输出都已读取,并且拉伸过程现在已经完成,则此函数返回-1。
retrieve:从拉伸器中获取一些经过处理的输出数据,返回值是检索的样本帧的实际数目。
setDefaultDebugLevel:为随后构造的扩展器设置调试输出的默认级别,在构造之前调用,值为0-3,越大报错越详细。
setExpectedinputDuration:告诉拉伸器它将接收多少输入样本;仅在脱机模式下有用,需要拉伸器确保输出样本的数量完全正确。
以上仅描述了本发明的基本原理和优选实施方式,本领域人员可以根据上述描述做出许多变化和改进,这些变化和改进应该属于本发明的保护范围。

Claims (10)

1.一种基于信息提取的音乐节奏定制方法,其特征在于,包括如下步骤:
步骤一:构建中层输入表示:用于将输入音频信号转换成音频帧数组;
步骤二:合并节奏追踪模型;
步骤三:结合整体输出具有上下文关联性的音乐节奏;
步骤四:进行时间拉伸:调用RubberBand Audio中函数,输入音频节奏数组和相应的倍速,选择相应的转换模式,得到结果节奏数组后将使用快速傅立叶变换转换成频谱图实时显示在界面上。
2.根据权利要求1所述的基于信息提取的音乐节奏定制方法,其特征在于,
步骤二所述的合并节奏追踪模型具体包括如下步骤:
步骤21、给定一个起始检测模块,在合并到节奏追踪模型中时,推断连续节奏之间的时间、节奏周期、帧开始与节奏位置之间的偏移、节奏对齐;
步骤22、计算一个帧的自适应移动平均范围,得出修改好的节奏检测数组;
步骤23、寻找拍频周期,并导出一个梳状模板λτ(l);
步骤24、使用瑞利分布函数计算出节奏周期模板wG(τ);
步骤25、将步骤23所得的梳状模板λτ(l)和步骤24所得的节奏周期模板wG(τ)加权,得出移位不变梳状滤波器组FG(l,τ),并构造一个校准梳状模板ψα(m);
步骤26、计算结束;
步骤三所述的结合整体输出具有上下文关联性的音乐节奏具体包括如下步骤:
步骤31、把梳状模板λτ(l)中的元素个数设置为T,去除λτ(l)中的标准化,使梳状模板具有测量偏差;
步骤32、用上下文关联的高斯函数代替瑞利分布函数,得到上下文关联的高斯周期范围函数wC(τ);
步骤33、再使用梳状模板λτ(l),设置为矩阵的第τ列并使用高斯周期范围函数wC(τ)加权每个梳状模板,可以形成上下文关联状态的移位不变梳状滤波器组FC(l,τ);
步骤34、通过导入的音乐的节奏周期τG和节奏对齐αG来定义节奏,并将节奏周期τG和节奏对齐αG代入校准梳状模板ψα(m)中计算;
步骤35、计算结束。
3.根据权利要求2所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤S1中,采用连续监测函数作为节奏追踪器的输入,节奏追踪公式如下:
Figure FDA0002369436580000021
其中,k表示频率个数,Sk(m)表示m处的频谱,
Figure FDA0002369436580000022
表示所有频谱的预测值。
4.根据权利要求3所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤22中,采用公式(2)计算一个帧的自适应移动平均范围:
Figure FDA0002369436580000023
其中,Q表示16dfsamples,q表示一个帧的偏移距离,i表示每一次计算的次数,i的取值范围1~n;
Figure FDA0002369436580000024
则设Γ(m)=0,修改好的节奏检测数组如公式(3)所示:
Figure FDA0002369436580000025
其中,HWR(x)=(x+|x|)/2。
5.根据权利要求2所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤23具体包括如下:
采用观察节奏水平的整数倍上的周期性的方法来寻找拍频周期;
梳状模板λτ(l)的计算如下:
Figure FDA0002369436580000031
其中,τ表示周期,Bf表示每个自相关函数的数据帧长度512B,允许在每个梳状模板中使用四个梳状元素p=1、2、3、4,v=1-p,…,p-1,周期τ由v设置,每个梳状元素p的宽度与其此周期τ的关系成正比、高度则由其宽度2p-1归一化。
6.根据权利要求5所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤24中,节奏周期模板wG(τ)的计算公式如下:
Figure FDA0002369436580000032
其中,参数设置权重的最强点β的可接受范围在40到50个dfsamples之间。
7.根据权利要求6所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤25中,移位不变梳状滤波器组FG(l,τ)的计算如下:
FG(l,τ)=wG(τ)λτ(l) (6)
为了进行节奏对齐,通过公式(7)构造一个校准梳状模板ψα(m):
Figure FDA0002369436580000033
其中,Bq表示512dfsamples,αG表示一个脉冲序列在拍频周期间隔的偏移量,v(m)表示线性递减的权重,用于强调导入音频中最前面的梳状元素,n表示有n个超出每个梳模板的元素个数。
8.根据权利要求5所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤31中,为了使梳状模板与公式(4)相比具有测量偏差,将公式(4)中的(2p-1)个标准化去除,得:
Figure FDA0002369436580000034
其中,T表示梳状模板λτ(l)中的元素个数。
9.根据权利要求8所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤32中,高斯周期范围函数wC(τ)的计算如下:
Figure FDA0002369436580000041
其中,σw表示权重的宽度,用于限制周期范围。
10.根据权利要求9所述的基于信息提取的音乐节奏定制方法,其特征在于,所述步骤33中,上下文关联状态的移位不变梳状滤波器组FC(l,F)的计算如下:
FC(l,τ)=wC(τ)λτ(l) (10)。
CN202010046075.9A 2020-01-16 2020-01-16 一种基于信息提取的音乐节奏定制方法 Pending CN111816147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010046075.9A CN111816147A (zh) 2020-01-16 2020-01-16 一种基于信息提取的音乐节奏定制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010046075.9A CN111816147A (zh) 2020-01-16 2020-01-16 一种基于信息提取的音乐节奏定制方法

Publications (1)

Publication Number Publication Date
CN111816147A true CN111816147A (zh) 2020-10-23

Family

ID=72847841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010046075.9A Pending CN111816147A (zh) 2020-01-16 2020-01-16 一种基于信息提取的音乐节奏定制方法

Country Status (1)

Country Link
CN (1) CN111816147A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643717A (zh) * 2021-07-07 2021-11-12 深圳市联洲国际技术有限公司 一种音乐节奏检测方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201176B1 (en) * 1998-05-07 2001-03-13 Canon Kabushiki Kaisha System and method for querying a music database
EP1143409A1 (en) * 2000-04-06 2001-10-10 Sony France S.A. Rhythm feature extractor
US20070240558A1 (en) * 2006-04-18 2007-10-18 Nokia Corporation Method, apparatus and computer program product for providing rhythm information from an audio signal
WO2009001202A1 (en) * 2007-06-28 2008-12-31 Universitat Pompeu Fabra Music similarity systems and methods using descriptors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201176B1 (en) * 1998-05-07 2001-03-13 Canon Kabushiki Kaisha System and method for querying a music database
EP1143409A1 (en) * 2000-04-06 2001-10-10 Sony France S.A. Rhythm feature extractor
US20070240558A1 (en) * 2006-04-18 2007-10-18 Nokia Corporation Method, apparatus and computer program product for providing rhythm information from an audio signal
WO2009001202A1 (en) * 2007-06-28 2008-12-31 Universitat Pompeu Fabra Music similarity systems and methods using descriptors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVIES M E: "Towards Automatic Rhythmic Accompaniment", QUEEN MARY.UNIVERSITY OF LONDON, pages 3 - 4 *
王跃;谢磊;杨玉莲;: "基于自适应白化的音乐节拍实时跟踪算法", 计算机应用研究, no. 05 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643717A (zh) * 2021-07-07 2021-11-12 深圳市联洲国际技术有限公司 一种音乐节奏检测方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
Benetos et al. Automatic music transcription: An overview
De Poli et al. Sonological models for timbre characterization
Durrieu et al. Source/filter model for unsupervised main melody extraction from polyphonic audio signals
KR101602194B1 (ko) 음악 음향 신호 생성 시스템
Dua et al. An improved RNN-LSTM based novel approach for sheet music generation
Kim et al. Neural music synthesis for flexible timbre control
CN112382257B (zh) 一种音频处理方法、装置、设备及介质
CN109920449B (zh) 节拍分析方法、音频处理方法及装置、设备、介质
CN113314140A (zh) 一种端到端时域多尺度卷积神经网络的音源分离算法
Oudre et al. Chord recognition by fitting rescaled chroma vectors to chord templates
Vogl et al. Towards multi-instrument drum transcription
Su et al. Sparse modeling of magnitude and phase-derived spectra for playing technique classification
Cosi et al. Timbre characterization with Mel-Cepstrum and neural nets
CN114627892B (zh) 一种基于深度学习的多声部音乐人声主旋律提取方法
CN112633175A (zh) 复杂环境下基于多尺度卷积神经网络单音符实时识别算法
Benetos et al. Automatic transcription of Turkish microtonal music
WO2010043258A1 (en) Method for analyzing a digital music audio signal
CN111816147A (zh) 一种基于信息提取的音乐节奏定制方法
Dittmar et al. Real-time guitar string detection for music education software
Ullrich et al. Music transcription with convolutional sequence-to-sequence models
Dong et al. Vocal Pitch Extraction in Polyphonic Music Using Convolutional Residual Network.
Weil et al. Automatic Generation of Lead Sheets from Polyphonic Music Signals.
Kitahara et al. Musical instrument recognizer" instrogram" and its application to music retrieval based on instrumentation similarity
Sinith et al. Real-time swara recognition system in Indian Music using TMS320C6713
JP6578544B1 (ja) 音声処理装置、および音声処理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination