CN111812830A - A Polarization-Insensitive Reflective Metasurface Concentrator - Google Patents
A Polarization-Insensitive Reflective Metasurface Concentrator Download PDFInfo
- Publication number
- CN111812830A CN111812830A CN202010775235.3A CN202010775235A CN111812830A CN 111812830 A CN111812830 A CN 111812830A CN 202010775235 A CN202010775235 A CN 202010775235A CN 111812830 A CN111812830 A CN 111812830A
- Authority
- CN
- China
- Prior art keywords
- super
- reflective
- concentrator
- phase
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 230000010287 polarization Effects 0.000 claims abstract description 8
- 238000012938 design process Methods 0.000 claims abstract description 4
- 238000013507 mapping Methods 0.000 claims abstract 2
- 239000002061 nanopillar Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 12
- 238000002310 reflectometry Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000008033 biological extinction Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 108091027981 Response element Proteins 0.000 claims 2
- 230000005494 condensation Effects 0.000 abstract 2
- 238000009833 condensation Methods 0.000 abstract 2
- 238000002834 transmittance Methods 0.000 abstract 1
- 238000010248 power generation Methods 0.000 description 11
- 230000035772 mutation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0038—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
- G02B19/0042—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及微纳光学和聚光光热发电技术领域,特别涉及一种偏振不敏感的反射式超表面聚光器。The invention relates to the technical field of micro-nano optics and concentrated photothermal power generation, in particular to a polarization-insensitive reflective metasurface concentrator.
背景技术Background technique
太阳能光热发电是指利用大规模阵列反射镜面对太阳光进行聚光,通过换热装置收集太阳热能,结合传统蒸汽循环,推动汽轮发电的一项可再生能源发电技术。相比于光伏发电系统,反射式的太阳能聚光器具有高效率、造价低等的优点。光热发电技术主要包括碟式光热发电、塔式光热发电、槽式光热发电、太阳能热气流发电、太阳池热发电等形式。传统的反射式聚光器依赖于反射镜面的设计,而高效率聚光要求的抛物面或菲涅尔镜面带来的是加工和维护的困难。光学超表面一种由亚波长结构构成的二维器件,能够实现对入射光振幅、相位和偏振的任意调制。近年来,超表面已经被研究者们应用于全息、超透镜和特殊光束生成器等。超表面调控自由度高、能量利用率高等的特点有望被应用到太阳能聚光器领域中。平面化的超表面器件,无需额外的机械装置跟踪太阳光入射的角度,减小了额外能耗,有利于系统的集成和小型化。Solar thermal power generation refers to a renewable energy power generation technology that uses large-scale array mirrors to concentrate sunlight, collects solar heat energy through heat exchange devices, and combines traditional steam cycles to promote turbine power generation. Compared with photovoltaic power generation systems, reflective solar concentrators have the advantages of high efficiency and low cost. Solar thermal power generation technology mainly includes dish solar thermal power generation, tower solar thermal power generation, trough solar thermal power generation, solar thermal airflow power generation, solar pond thermal power generation and other forms. Traditional reflective concentrators rely on the design of reflective mirrors, while the parabolic or Fresnel mirrors required for high-efficiency concentrating bring difficulties in machining and maintenance. Optical metasurfaces are two-dimensional devices composed of subwavelength structures that enable arbitrary modulation of the amplitude, phase, and polarization of incident light. In recent years, metasurfaces have been used by researchers in holography, metalens, and special beam generators. The characteristics of high degree of freedom in control and high energy utilization rate of metasurfaces are expected to be applied in the field of solar concentrators. The planar metasurface device does not require additional mechanical devices to track the incident angle of sunlight, reduces additional energy consumption, and is beneficial to the integration and miniaturization of the system.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种偏振不敏感的反射式超表面聚光器,有益效果是:提供了一种新型的无需追踪系统、易于组装的平面超表面聚光器。The purpose of the present invention is to provide a polarization-insensitive reflective metasurface concentrator, and the beneficial effects are as follows: a new type of flat metasurface concentrator that does not require a tracking system and is easy to assemble.
为达到上述的目的,本发明采用的技术方案是提供一种偏振不敏感的反射式超表面聚光器。其特征在于包括:超表面聚光器、接收器、液体工质入口和出口。液体工质通过入口进入到接收器,超表面聚光器将入射的太阳管聚焦到线性接收器加热液体,完成光热能量转换。In order to achieve the above object, the technical solution adopted in the present invention is to provide a polarization-insensitive reflective metasurface concentrator. It is characterized by comprising: a metasurface concentrator, a receiver, an inlet and an outlet of a liquid working medium. The liquid working medium enters the receiver through the entrance, and the metasurface concentrator focuses the incident solar tube to the linear receiver to heat the liquid to complete the photothermal energy conversion.
反射式超表面聚光器设计过程包括以下几个步骤:The design process of a reflective metasurface concentrator includes the following steps:
步骤1,选择超表面反射式聚光器的工作波长,根据波长确定相应的响应单元的结构和材料。
步骤2,利用时域有限差分的方法扫描响应单元的参数,实现最高的反射率和2π的相位覆盖。
步骤3,利用超表面反射式聚光器的相位公式计算每个位置上需求的相位,并映射为响应单元的结构参数。Step 3, using the phase formula of the metasurface reflective concentrator to calculate the required phase at each position, and map it to the structural parameters of the response unit.
步骤4,用时域有限差分的方法模拟和计算反射式聚光器的聚光比和焦点位置的能量分布。In step 4, the method of finite difference time domain is used to simulate and calculate the concentration ratio of the reflective concentrator and the energy distribution of the focal position.
步骤1中提到的响应单元的特征包括:响应单元的结构由三个部分组成:衬底材料、介质纳米柱和反射膜。其中介质纳米柱用于相位的调制,材料要求折射率高且消光系数低。反射膜的材料选择应当最大化反射率。The features of the response unit mentioned in
步骤2中提到的参数扫描过程应该在最大化反射率的条件下进行,且参数扫描的范围应满足奈奎斯特采样定理和加工条件。The parameter sweep process mentioned in
介质纳米柱主要通过波导效应完成相位的突变,因此纳米柱应该足够高,其实现的相位突变应满足:The dielectric nanopillar mainly completes the phase mutation through the waveguide effect, so the nanopillar should be high enough, and the phase mutation realized by the nanopillar should satisfy:
其中,λd为工作波长,H(纳米柱的高度)为传播距离,neff为基模的有效折射率。此外纳米柱太高会引入高阶模式,增加设计的复杂性。Among them, λ d is the working wavelength, H (the height of the nanopillar) is the propagation distance, and n eff is the effective refractive index of the fundamental mode. In addition, nanopillars that are too tall can introduce higher-order modes, increasing the complexity of the design.
步骤3中超表面反射式聚光器的相位公式为:The phase formula of the metasurface reflective concentrator in step 3 is:
其中:λ为设计波长,f为超表面反射聚光器的焦距,θ为入射角,x、y为响应单元的位置,x0、y0为焦点在聚光器平面的坐标,d为响应单元和焦点在聚光器平面坐标的距离。Where: λ is the design wavelength, f is the focal length of the metasurface reflective concentrator, θ is the incident angle, x and y are the positions of the response units, x 0 , y 0 are the coordinates of the focal point on the condenser plane, and d is the response The distance between the element and the focal point in the condenser plane coordinates.
附图说明Description of drawings
图1为偏振不敏感的反射式超表面聚光器的工作原理示意图;Figure 1 is a schematic diagram of the working principle of a polarization-insensitive reflective metasurface concentrator;
图2(a)为反射式超表面聚光器采用的响应单元的立体结构示意图;图2(b)为俯视图;Fig. 2 (a) is a three-dimensional schematic diagram of the response unit adopted by the reflective metasurface concentrator; Fig. 2 (b) is a top view;
图3为响应单元相位和反射率曲线图;Fig. 3 is a graph of the phase and reflectivity of the response unit;
图4(a)为超表面的分布示意图;图4(b)为被超表面聚光器反射后的光场强度;图4(c)为焦点处的能量分布示意图。Figure 4(a) is a schematic diagram of the distribution of the metasurface; Figure 4(b) is the light field intensity after being reflected by the metasurface concentrator; Figure 4(c) is a schematic diagram of the energy distribution at the focus.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细阐述。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示一种偏振不敏感的反射式超表面聚光器包括超表面聚光器1、接收器2、液体工质入口3和出口4。液体工质通过入口进入到接收器,超表面聚光器将入射的太阳管聚焦到线性接收器加热液体,完成光热能量转换。其中作为关键器件的超表面聚光器的设计过程包括以下几个步骤:As shown in FIG. 1 , a polarization-insensitive reflective metasurface concentrator includes a
步骤1,选择超表面反射式聚光器的工作波长,根据波长确定相应的响应单元的结构和材料。
步骤2,利用时域有限差分的方法扫描响应单元的参数,实现最高的反射率和2π的相位覆盖。
步骤3,利用超表面反射式聚光器的相位公式计算每个位置上需求的相位,并映射为响应单元的结构参数。Step 3, using the phase formula of the metasurface reflective concentrator to calculate the required phase at each position, and map it to the structural parameters of the response unit.
步骤4,用时域有限差分的方法模拟和计算反射式聚光器的聚光比和焦点的半高全宽。In step 4, the method of finite difference time domain is used to simulate and calculate the concentration ratio of the reflective concentrator and the full width at half maximum of the focal point.
本发明的特点还在于:The characteristic of the present invention also lies in:
步骤1中提到的响应单元的特征包括:响应单元的结构由三个部分组成:衬底材料、介质纳米柱和反射膜。其中介质纳米柱用于相位的调制,材料要求折射率高且消光系数低。反射膜的材料选择应当最大化反射率。The features of the response unit mentioned in
步骤2中提到的参数扫描过程应该在最大化反射率的条件下进行,且扫描的范围应满足奈奎斯特采样定理和加工条件。The parameter scanning process mentioned in
介质纳米柱主要通过波导效应完成相位的突变,因此纳米柱应该足够高,其实现的相位突变应满足:The dielectric nanopillar mainly completes the phase mutation through the waveguide effect, so the nanopillar should be high enough, and the phase mutation realized by the nanopillar should satisfy:
其中,λ为工作波长,H(纳米柱的高度)为传播距离,neff为基模的有效折射率。此外纳米柱太高会引入高阶模式,增加设计的复杂性。Among them, λ is the working wavelength, H (the height of the nanopillar) is the propagation distance, and n eff is the effective refractive index of the fundamental mode. In addition, nanopillars that are too tall can introduce higher-order modes, increasing the complexity of the design.
步骤3中超表面反射式聚光器的相位公式为:The phase formula of the metasurface reflective concentrator in step 3 is:
其中:λ为设计波长,f为超表面反射聚光器的焦距,θ为入射角,x、y为响应单元的位置,x0、y0为焦点在聚光器平面的坐标,d为响应单元和焦点在聚光器平面坐标的距离。Where: λ is the design wavelength, f is the focal length of the metasurface reflective concentrator, θ is the incident angle, x and y are the positions of the response units, x 0 , y 0 are the coordinates of the focal point on the condenser plane, and d is the response The distance between the element and the focal point in the condenser plane coordinates.
实施例1Example 1
选择反射式聚光器的工作波长为可见光谱中λ=532nm,根据设计波长选择的偏振不敏感的响应单元结构如图2所示。响应单元由高折射率的介质纳米柱5(TiO2)、衬底6(SiO2)和反射膜7(银)三部分组成。其中衬底和反射膜的厚度均为h1=h2=200nm,介质纳米柱主要通过波导效应完成相位的突变,因此纳米柱应该足够高,其实现的相位突变应满足:The working wavelength of the selective reflection concentrator is λ=532 nm in the visible spectrum, and the structure of the polarization-insensitive response unit selected according to the design wavelength is shown in Figure 2. The response unit is composed of three parts: dielectric nano-columns 5 (TiO 2 ) with high refractive index, substrate 6 (SiO 2 ) and reflection film 7 (silver). The thicknesses of the substrate and the reflective film are both h 1 =h 2 =200nm, and the dielectric nanocolumns mainly complete the phase mutation through the waveguide effect, so the nanocolumns should be high enough, and the realized phase mutation should satisfy:
此外纳米柱太高会引入高阶模式,增加设计的复杂性。因此纳米柱的高度设置为h3=300nm。响应单元的周期需要满足奈奎斯特采样定律和加工的条件,选择P=250nm。In addition, nanopillars that are too tall can introduce higher-order modes, increasing the complexity of the design. Therefore the height of the nanopillars is set to be h 3 =300 nm. The period of the response unit needs to satisfy the Nyquist sampling law and processing conditions, and select P=250nm.
该响应单元仅存在纳米柱的半径r一个变量影响响应单元的反射率和相位突变。用时域有限差分的方法计算半径r∈(50,110)nm范围内对应的反射率和相位突变量,绘制的曲线如图3所示。There is only one variable in the response unit, the radius r of the nanopillar, which affects the reflectivity and phase mutation of the response unit. The corresponding reflectivity and phase abrupt change in the range of radius r∈(50, 110) nm are calculated by the method of finite difference time domain, and the drawn curve is shown in Figure 3.
利用反射式超表面聚光器的相位公式计算每个位置上需求的相位,并映射为响应单元的结构参数。反射式超表面聚光器的相位公式为:The required phase at each position is calculated using the phase formula of the reflective metasurface concentrator and mapped to the structural parameters of the response unit. The phase formula of the reflective metasurface concentrator is:
其中:f为超表面反射聚光器的焦距,该案例选择为5μm。θ为入射角,该案例选择为30°。x、y为响应单元的位置,x0、y0为焦点在聚光器平面的坐标,该案例选择为(5μm,0)。d为响应单元和焦点在聚光器平面坐标的距离。图4(a)为超表面的分布示意图;入射光被反射式超表面聚光器反射后的光场强度分布图如图4(b)所示,反射光在4.85μm处实现聚焦,与设计焦距高度吻合。焦点处最大场强达到43.2。图4(c)为焦点处光斑归一化后的能量分布,得到焦点处的半高全宽约为456.6nm,接近衍射极限。where: f is the focal length of the metasurface reflective concentrator, which is chosen to be 5 μm in this case. θ is the incident angle, which is chosen to be 30° in this case. x, y are the position of the response unit, x 0 , y 0 are the coordinates of the focal point on the plane of the condenser, which is chosen as (5μm, 0) in this case. d is the distance between the response unit and the focal point in the plane coordinates of the condenser. Figure 4(a) is a schematic diagram of the distribution of the metasurface; the intensity distribution of the light field after the incident light is reflected by the reflective metasurface concentrator is shown in Figure 4(b). The focal lengths are highly matched. The maximum field strength at the focus reaches 43.2. Figure 4(c) shows the normalized energy distribution of the light spot at the focal point, and the full width at half maximum at the focal point is about 456.6 nm, which is close to the diffraction limit.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010775235.3A CN111812830A (en) | 2020-08-05 | 2020-08-05 | A Polarization-Insensitive Reflective Metasurface Concentrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010775235.3A CN111812830A (en) | 2020-08-05 | 2020-08-05 | A Polarization-Insensitive Reflective Metasurface Concentrator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111812830A true CN111812830A (en) | 2020-10-23 |
Family
ID=72864284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010775235.3A Pending CN111812830A (en) | 2020-08-05 | 2020-08-05 | A Polarization-Insensitive Reflective Metasurface Concentrator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111812830A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115183478A (en) * | 2022-06-20 | 2022-10-14 | 中国科学院电工研究所 | Planar super-surface solar spectrum frequency divider and photovoltaic-photothermal frequency division utilization system comprising same |
CN115508993A (en) * | 2022-10-27 | 2022-12-23 | 中国科学院电工研究所 | Broadband wide-angle tracking-free super-surface condenser and design method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106610144A (en) * | 2016-12-07 | 2017-05-03 | 桂林电子科技大学 | Method for preparing photo-thermal steam by absorbing sunlight through localized surface plasmon resonance (LSPR) of nano material |
CN109196387A (en) * | 2016-04-05 | 2019-01-11 | 哈佛学院院长及董事 | Super lens for subwavelength resolution imaging |
CN109884808A (en) * | 2019-04-18 | 2019-06-14 | 中国科学院光电技术研究所 | An Off-axis Incident Multiwavelength Dispersion Controlled Metasurface Based on Dielectric Pillar Structure |
CN111213245A (en) * | 2017-07-19 | 2020-05-29 | 密歇根大学董事会 | Integrated Microlenses for Photovoltaic Cells and Thermal Applications |
CN111290063A (en) * | 2019-12-23 | 2020-06-16 | 南开大学 | A complex-amplitude-modulated dielectric-metal bilayer metasurface |
-
2020
- 2020-08-05 CN CN202010775235.3A patent/CN111812830A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109196387A (en) * | 2016-04-05 | 2019-01-11 | 哈佛学院院长及董事 | Super lens for subwavelength resolution imaging |
CN106610144A (en) * | 2016-12-07 | 2017-05-03 | 桂林电子科技大学 | Method for preparing photo-thermal steam by absorbing sunlight through localized surface plasmon resonance (LSPR) of nano material |
CN111213245A (en) * | 2017-07-19 | 2020-05-29 | 密歇根大学董事会 | Integrated Microlenses for Photovoltaic Cells and Thermal Applications |
CN109884808A (en) * | 2019-04-18 | 2019-06-14 | 中国科学院光电技术研究所 | An Off-axis Incident Multiwavelength Dispersion Controlled Metasurface Based on Dielectric Pillar Structure |
CN111290063A (en) * | 2019-12-23 | 2020-06-16 | 南开大学 | A complex-amplitude-modulated dielectric-metal bilayer metasurface |
Non-Patent Citations (2)
Title |
---|
CHEN YAN等: "Fano-resonance-assisted metasurface for color routing", 《LIGHT:SCIENCE & APPLICATIONS》 * |
LIYI HSU 等: "From parabolic through to metasurface-concentrator : assessing focusing in the wave-optics limit", 《OPTICS LETTERS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115183478A (en) * | 2022-06-20 | 2022-10-14 | 中国科学院电工研究所 | Planar super-surface solar spectrum frequency divider and photovoltaic-photothermal frequency division utilization system comprising same |
CN115508993A (en) * | 2022-10-27 | 2022-12-23 | 中国科学院电工研究所 | Broadband wide-angle tracking-free super-surface condenser and design method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter | |
Narasimhan et al. | Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection | |
Kiyaee et al. | A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells | |
El-Khozondar et al. | Modified solar cells with antireflection coatings | |
Su et al. | A novel lens-walled compound parabolic concentrator for photovoltaic applications | |
WO2005043049A1 (en) | A device for collecting and use solar energy | |
Ding et al. | Spectrally selective absorption coatings and their applications: A review | |
Ghodbane et al. | Thermal numerical investigation of a small parabolic trough collector under desert climatic conditions | |
CN101872063A (en) | Conical concentrating system | |
CN102148589A (en) | High-power solar energy concentrated photovoltaic system based on Cassegrain structure | |
CN107919848A (en) | A kind of annular linear Fresnel high power concentrator device | |
CN111812830A (en) | A Polarization-Insensitive Reflective Metasurface Concentrator | |
Han et al. | Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter | |
CN201576123U (en) | Corrugated tile concentrating device | |
TWI437273B (en) | System for switching light focus position | |
CN104143954A (en) | A Novel Tracking-Free Concentrator for Solar Photovoltaics and Photothermal | |
US20160172521A1 (en) | Solar concentrator with microreflectors | |
KR20120037081A (en) | Planar light concentrator | |
Cheng et al. | Design and machining of Fresnel solar concentrator surfaces | |
Das et al. | Optimization of nano-grating structure to reduce the reflection losses in GaAs solar cells | |
CN102201477B (en) | Solar concentrating method and device based on periodic microstructure | |
CN116040723A (en) | Photovoltaic seawater desalination device based on radiation cooling | |
CN204068849U (en) | A Novel Tracking-Free Concentrator for Solar Photovoltaics and Photothermal | |
CN202470484U (en) | Groove-type solar light-condensing heat collector | |
CN205484883U (en) | Double -deck collector lens based on sectional type isocandela |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201023 |