CN111811553A - 一种基于光子灯笼光纤的传感网络及方法 - Google Patents

一种基于光子灯笼光纤的传感网络及方法 Download PDF

Info

Publication number
CN111811553A
CN111811553A CN202010731658.5A CN202010731658A CN111811553A CN 111811553 A CN111811553 A CN 111811553A CN 202010731658 A CN202010731658 A CN 202010731658A CN 111811553 A CN111811553 A CN 111811553A
Authority
CN
China
Prior art keywords
optical
sensing
mode
fiber
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010731658.5A
Other languages
English (en)
Other versions
CN111811553B (zh
Inventor
梁骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minzu University of China
Original Assignee
Minzu University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minzu University of China filed Critical Minzu University of China
Priority to CN202010731658.5A priority Critical patent/CN111811553B/zh
Publication of CN111811553A publication Critical patent/CN111811553A/zh
Application granted granted Critical
Publication of CN111811553B publication Critical patent/CN111811553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35396Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using other forms of multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35325Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in reflection, e.g. Mickelson interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

本申请公开了一种基于光子灯笼光纤的传感网络及方法,包括:宽带光源、耦合器、多个传感单元、光信号处理单元以及采集单元;宽带光源用于产生第一光信号,并将所述第一光信号发送至耦合器;所述耦合器用于接收所述第一光信号,转化成多个第二光信号,并向多个传感单元分别输入对应的第二光信号;多个传感单元用于根据所处的环境确定出每个第二光信号对应的光传感信号,并将对应的光传感信号合并输入至所述光信号处理单元;所述光信号处理单元用于将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元。

Description

一种基于光子灯笼光纤的传感网络及方法
技术领域
本申请涉及光学领域,尤其涉及一种基于光子灯笼光纤的传感网络及方法。
背景技术
光纤传感技术起源于20世纪70年代,通过测量传输介质中光波的位移、湿度、pH值、压力、应变、温度、浓度等参数的变化来感知外界环境,从而间接测量了引起外界环境变化的相关信息。近年来,在民用领域,光纤传感网络可应用在钢筋混凝土热应力测量、建筑体健康监测、岩土力学工程监测等方面;在军事领域,光纤传感网络可应用于飞行器健康监测、沿海海防水听监测、陆路安全防卫系统等方面。由于技术的发展和应用的要求,光纤传感网络正在向大容量和多参数测量网络方向发展,此容量指网络所能解调的传感器的数量。
现有技术中,光纤传感网络在扩展传感单元的数量时,大都受限于时分复用或波分复用的方式,使得光纤传感网络在扩展传感单元的数量时存在局限性。
发明内容
有鉴于此,本申请实施例提供了一种基于光子灯笼光纤的传感网络及方法,用于解决现有的光纤传感网络在扩展传感单元的数量时,大都受限于时分复用或波分复用的方式,使得光纤传感网络在扩展传感单元的数量时存在局限性的问题。
本申请实施例采用下述技术方案:
本申请实施例提供一种基于光子灯笼光纤的传感网络,包括:宽带光源、耦合器、多个传感单元、光信号处理单元以及采集单元;
宽带光源用于产生第一光信号,并将所述第一光信号发送至耦合器;
所述耦合器用于接收所述第一光信号,转化成多个第二光信号,并向多个传感单元分别输入对应的第二光信号;
多个传感单元用于根据所处的环境确定出每个第二光信号对应的光传感信号,并将对应的光传感信号合并输入至所述光信号处理单元的多个光横模通道中;
所述光信号处理单元用于将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,其中,所述光信号处理单元是基于模式选择光子灯笼光纤的处理单元。
需要说明的是,本申请实施例将光横模通道引入多节点传感网络,开拓了现有光纤传感网络传感节点复用新维度,扩展了光传感网络的传感通道数量,降低系统复杂度与成本。并且,本申请实施例通过将多个传感单元确定出的光传感信号合并输入至基于模式选择光子灯笼光纤的光信号处理单元,可以将传感探测量从波长检测转换为光强度监测,使光纤传感网络在成本及设备复杂度方面均有大幅优化,其中,传感单元用于将第二光信号对应的环境传感量变化转换为光传感信号的波长变化,光信号处理用于光传感信号的光强度监测。
进一步的,所述传感单元包括多个光纤传感器以及与光纤传感器连接的环形器;
所述耦合器用于将多个第二光信号分别输入至不同的光纤传感器;
光纤传感器用于根据所处的环境与第二光信号,输出的对应的光传感信号,并将多个光传感信号通过环形器合并输入至所述光信号处理单元。
需要说明的是,传感单元外界环境变化将对该光纤传感器进行传感调谐。使得每个第二光信号对应的干涉光谱独立形成波长编码的光传感信号。
进一步的,所述光信号处理单元包括模式选择光子灯笼光纤、少模光纤以及少模光纤光栅;
所述多个传感单元用于将对应的光传感信号合并输入所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤用于将多个光传感信号耦合至所述少模光纤内,并将多个光传感信号复用到所述少模光纤中不同横模通道上;
所述少模光纤用于将所述横模通道上的光传感信号传输至所述少模光纤光栅;
所述少模光纤光栅用于将处理后的光传感信号反射回所述少模光纤的不同横模通道中;
所述少模光纤用于将不同横模通道中的光传感信号发送至所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤用于将多个光传感信号分别发送至对应的采集单元。
需要说明的是,本说明书实施例可以利用模式选择光子灯笼光纤的模式复用功能,将输入模式选择光子灯笼光纤锥区的多个光传感信号近似无损耗的耦合进少模光纤内,并可以复用到少模光纤中不同正交横模通道上。复用于不同横模通道上的光传感信号可以独立传输进入少模光纤光栅,并被少模光纤光栅反射回少模光纤中继续传输。反射回的光传感信号再次进入模式选择光子灯笼光纤锥区,可以利用模式选择光子灯笼光纤模式解复用功能,将不同横模通道的光传感信号低损耗的逆耦合回相应的单模端,实现横模通道光谱的空间分离,即可以将处理后的光传感信号发送至对应采集单元。
进一步的,所述采集单元包括光电探测器、控制器(MCU)与环形器;
所述光信号处理单元用于将光传感信号发送至对应的环形器;
所述环形器用于将光传感信号发送至对应的光电探测器;
所述光电探测器用于将光传感信号转化为电信号,并将所述电信号发送至所述控制器。
进一步的,所述光纤传感器为应力传感器、折射率传感器、液位传感器以及振动传感器中的一种或多种。
进一步的,所述光纤传感器的光纤结构类型为干涉型传感器。
进一步的,每个所述传感单元与所述光信号处理单元之间设置有偏振控制器。
需要说明的是,在光纤传感网络中,准确的控制光纤中的偏振量,关系着系统的稳定性与传感光信号消光比,在此处设置偏振控制器,可以很好的保证将第二光信号更好的传送到光信号处理单元。
本申请实施例还提供一种基于光子灯笼光纤的传感方法,所述方法包括:
宽带光源产生第一光信号,并将所述第一光信号发送至耦合器;
所述耦合器接收所述第一光信号,转化成多个第二光信号,并向多个传感单元分别输入对应的第二光信号;
多个传感单元根据所处的环境确定出每个第二光信号对应的光传感信号,并将对应的光传感信号合并输入至所述光信号处理单元的多个光横模通道中;
所述光信号处理单元将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,其中,所述光信号处理单元是基于模式选择光子灯笼光纤的处理单元。
进一步的,所述传感单元包括多个光纤传感器以及与光纤传感器连接的环形器;
所述多个传感单元根据所处的环境确定出每个第二光信号对应的光传感信号,具体包括:
所述耦合器用于将多个第二光信号分别输入至不同的光纤传感器;
光纤传感器用于根据所处的环境与第二光信号,输出的对应的光传感信号,并将多个光传感信号通过环形器合并输入至所述光信号处理单元。
进一步的,所述光信号处理单元包括模式选择光子灯笼光纤、少模光纤以及少模光纤光栅;
所述光信号处理单元将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,具体包括:
所述多个传感单元将对应的光传感信号合并输入所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤将多个光传感信号耦合至所述少模光纤内,并将多个光传感信号复用到所述少模光纤中不同横模通道上;
所述少模光纤将所述横模通道上的光传感信号传输至所述少模光纤光栅;
所述少模光纤光栅将处理后的光传感信号反射回所述少模光纤的不同横模通道中;
所述少模光纤将不同横模通道中的光传感信号发送至所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤将多个光传感信号分别发送至对应的采集单元。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:本申请实施例将光横模通道引入多节点传感网络,开拓了现有光纤传感网络传感节点复用新维度,有效扩展了光传感网络的传感通道数量。并且,本申请实施例通过将多个传感单元确定出的光传感信号合并输入至基于模式选择光子灯笼光纤的光信号处理单元,可以将传感探测量从波长检测转换为光强度监测,使光纤传感网络在成本及设备复杂度方面均有大幅优化。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本说明书实施例一提供的一种基于光子灯笼光纤的传感网络的结构示意图;
图2为本说明书实施例提供的多种传感量光纤传感示例;
图3为本说明书实施例提供的MZI型全光纤少模干涉传感器结构示意图;
图4为本说明书实施例提供的光纤传感网络的核心架构;
图5为本说明书实施例提供的干涉型光纤传感器的传输光谱示意图;
图6为本说明书实施例提供的FM-FBG的光谱特性示意图;
图7为本说明书实施例提供的传感网络的结构示意图;
图8为本说明书实施例二提供的一种基于光子灯笼光纤的传感方法的流程示意图。
具体实施方式
随着大型结构传感信息的实时监测需求增多,通常一个光纤传感网络中会有成百个上千传感单元需要同步检测,现有的光纤传感网络造价高昂、结构复杂、给工程安装带来不变。故而需要高精度、低成本、高速率的光纤传感技术,实现分布式、多参量、多功能、智能化的传感网络系统成为当前传感领域的研究热点。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1为本说明书实施例提供的一种基于光子灯笼光纤的传感网络的结构示意图,包括:宽带光源、耦合器、多个传感单元(传感单元1、传感单元2……传感单元N)、光信号处理单元以及采集单元。
宽带光源用于产生第一光信号,并将所述第一光信号发送至耦合器;
所述耦合器用于接收所述第一光信号,转化成多个第二光信号,并向多个传感单元分别输入对应的第二光信号;
多个传感单元用于根据所处的环境确定出每个第二光信号对应的光传感信号,并将对应的光传感信号合并输入至所述光信号处理单元的多个光横模通道中;
所述光信号处理单元用于将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,其中,所述光信号处理单元是基于模式选择光子灯笼光纤的处理单元。
需要说明的是,耦合器可以根据需求转化成多个第二光信号,每个第二光信号可以输入到不同的传感单元。
传感单元包括多个光纤传感器以及与光纤传感器连接的环形器。每个光纤传感器与环形器形成一个支路,可独立实现多种参量测量。第二光信号经过光纤传感器后,可以输出类似正弦的干涉光谱,每个光纤传感器对应光纤传感网络中的单个节点。
参见图2,示出了多种传感量光纤传感示例,光纤传感器可以为应力传感器、折射率传感器、液位传感器以及振动传感器中的一种或多种。光纤传感器可以为干涉型光纤传感器,如MZI或MI光纤传感器结构。其中,MZI为Mach-Zehnder interferometer,中文解释可以马赫增德尔干涉仪,MI为Michelson interferometer,中文解释可以为迈克尔逊干涉仪。
参见图3,示出了本说明书实施例MZI型全光纤少模干涉型光纤传感器的结构示意图。两根作为输入、输出端子的SMF(Single Mode Fiber,单模光纤)与两根相同长度的DMF分别同轴熔接,这两段DMF具有为输入/输出SMF激发/耦合高阶模式的作用;接着在以上两段结构之间插入一段SMF作为传输臂,最后组成了DMF-SMF-DMF结构干涉型全光纤器件。该传感器内仅有两个模式发生干涉,故而所形成的干涉光谱呈类正弦形状,便于系统后续使用。利用谐振波长、光功率强度、纵模参量等光学特性变化,可对温度、折射率、应力和震动等多种物理量进行传感测量。
耦合器用于将多个第二光信号分别输入至不同的光纤传感器;
光纤传感器用于根据所处的环境与第二光信号,输出的对应的光传感信号,并将多个光传感信号通过环形器合并输入至所述光信号处理单元。
需要说明的是,传感单元外界环境变化将对该光纤传感器进行传感调谐。使得每个第二光信号对应的干涉光谱独立形成波长编码的光传感信号。
所述光信号处理单元包括模式选择光子灯笼光纤、少模光纤以及少模光纤光栅;所述多个传感单元用于将对应的光传感信号合并输入所述模式选择光子灯笼光纤;所述模式选择光子灯笼光纤用于将多个光传感信号耦合至所述少模光纤内,并将多个光传感信号复用到所述少模光纤中不同横模通道上;所述少模光纤用于将所述横模通道上的光传感信号传输至所述少模光纤光栅;所述少模光纤光栅用于将处理后的光传感信号反射回所述少模光纤的不同横模通道中;所述少模光纤用于将不同横模通道中的光传感信号发送至所述模式选择光子灯笼光纤;所述模式选择光子灯笼光纤用于将多个光传感信号分别发送至对应的采集单元。
需要说明的是,每个传感单元可以将光传感信号承载在模式选择光子灯笼光纤(MSPL,Mode Selective Photonic Lanterns)中各个单模端的基模上。即,传感单元可以将携带传感信息的多个光传感信号共同导入MSPL锥区,汇总为一路光传感信号输出,再将光传感信号接在MSPL多模端的少模光纤(FMF,Few Mode Fiber)中。
需要说明的是,本说明书实施例利用MSPL的模式复用功能,将输入MSPL锥区的多个光传感信号近似无损耗的耦合进FMF内,并可以复用到FMF中不同正交横模通道上。
图4示出了本说明书实施例中光纤传感网络的核心架构。本说明书实施例提出的光纤传感网络使用传感器阵列、MSPL作为模式复用/解复用器件以及模式-波长相关的全反射镜。该系统的传感器测量范围可以根据需求进行设置。
进一步的,参见图5示出的干涉型光纤传感器的传输光谱示意图与图6示出的FM-FBG的光谱特性示意图,复用于不同横模通道上的光传感信号可以独立传输进入少模光纤光栅(FM-FBG,Few-Mode Fiber Bragg Grating),并被FM-FBG反射回FMF中继续传输。其中,可以结合FM-FBG反射光谱的模式-波长选择特性,不同横模通道可以对应不同的波长反射点,光传感信号通过FM-FBG后,承载不同传感信息的独立横模通道将在不同谐振点处形成反射,该反射峰便可以叠加到相应横模通道干涉光谱上,当反射峰波长恰好处于类正弦光谱的
Figure BDA0002603394610000091
Figure BDA0002603394610000092
部分,且接近0处左右的线性位置时,由于干涉光谱随传感量漂移,而FM-FBG的反射波长稳定,反射峰便沿图中斜率形成相对滑动,实现了模式通道(目的光纤传感器或参考光纤传感器所处支路)上的波长漂移感知转换为光栅反射峰的上下强度变化的感知。需要说明的是,干涉光谱的中心位置是由上下强度变化决定的,理论上当是固定的,当干涉光谱中心位置因温度等传感量发生变化就是光谱随传感量漂移。
反射回的光传感信号再次进入MSPL锥区,可以利用MSPL模式解复用功能,将不同横模通道的光传感信号低损耗的逆耦合回相应的单模端,实现横模通道光谱的空间分离,即可以将处理后的光传感信号发送至对应采集单元。
参见图5,本说明书实施例可以选取DMF(Dual-Mode Fiber,双模光纤)制作干涉型光纤传感器。在一定工作波长范围内,干涉光谱的FSR(Free Spectral Range,自由谱范围)近似是一个定值,且形状为类正弦曲线。图中的光传感信号具有稳定整齐的干涉光谱,其中,正弦
Figure BDA0002603394610000093
部分近似为线性,利于提升传感测量精度与传感分辨率,且可以很大程度的降低后续信号处理难度与系统复杂度。
参见图6,FM-FBG在本说明书实施例中可以起到模式-波长相关的全反射镜作用。为了匹配MSPL多模端输出的各传感模式,本说明书实施例与之模式相对应的FM-FBG可实现传感信号的全反射与模式-波长转换功能。FM-FBG具有特殊的光谱特性,使得其正向模式与反向模式之间发生特殊复杂的模式耦合效应,产生多数量、多强度的反射波长,使模式与反射波长相关起来,其光谱特性如图所示,存在自耦合与互耦合两种反射峰。合理设计该器件的结构参数,既要兼顾传感单元数目的增加,又需限制多模式下产生的交叉耦合效应。
进一步的,采集单元包括光电探测器、控制器与环形器;
光信号处理单元用于将光传感信号发送至对应的环形器;
环形器用于将光传感信号发送至对应的光电探测器;
光电探测器用于将光传感信号转化为电信号,并将所述电信号发送至所述控制器。
需要说明的是,传感单元的环形器与采集单元的环形器可以使用为同一个环形器。参见图7示出的传感网络的结构示意图,在传感单元时,环形器使用的是1端口与2端口,即从1端口进2端口出;在采集单元时,环形器使用的是2端口与3端口,即从2端口进3端口出。环形器可以使用光纤环形器,光纤环形器是一种多端口非互易光学器件,光只能沿一个方向传播。信号若从端口1输入,则从端口2输出;而信号从端口2输入,则将从端口3输出,其输出损耗都很小。光从端口2输入时,从端口1输出时损耗很大,同样光从端口3输入时,从端口1,2中输出时损耗也很大。由于其隔离性高,插入损耗小。
以上便是本说明书实施例的光纤传感网络的传感测量过程,可以由双模干涉型光纤传感器的传感感知功能、MSPL中模式复用/解复用功能和FM-FBG中模式-波长转换机制三方面构成。该系统可测量的参量有温度、折射率、应力、振动等传感信息,但不局限于以上参量,只要干涉型光纤传感器可感知的量都是本传感网络测量范畴。
需要说明的是,本说明书实施例将横模通道引入多个传感单元的光纤传感网络,扩展了光传感网络的传感通道数量,可以获得空间分开多路复用的传感光信号,并将正交光模式与传感量结合在一起,开拓了光纤传感网络传感单元复用新维度。
进一步的,每个所述传感单元与所述光信号处理单元之间设置有偏振控制器,参见图7,每个传感单元的环形器与MSPL之间设置有偏振控制器(PC,polarizationcontroller)。在光纤传感网络中,准确的控制光纤中的偏振量,关系着系统的稳定性与传感光信号消光比,在此处设置偏振控制器,可以很好的保证将第二光信号更好的传送到光信号处理单元。
需要说明的是,本说明书实施例提出的传感网络为实体结构,也可以为基于光子灯笼光纤的传感系统。
参见图7示出的传感网络的结构示意图,本说明书实施例的传感实现过程为:多路光信号分别射入光纤传感器,光纤传感器分别生成光传感信号,并多路光传感信号射入MSPL,MSPL将光传感信号传输至FMF,FMF将光传感信号传输至FM-FBG,FM-FBG将光传感信号返回传输至FMF,FMF将光传感信号传输至MSPL,MSPL将光传感信号传输至光电探测器,光电探测器将光传感信号转化为电信号,并将电信号发送至控制器。
进一步的,本说明书实施例的具体传感实现过程可以为:
步骤1:传感网络中共分布有N个干涉型光纤传感器,N个传感头处于待测量环境下,可独立实现多种参量测量。首先一束宽带光通过1×N光分束器分别射入干涉型光纤传感器。光束通过干涉型光纤传感器,输出类正弦干涉光谱,每个传感器可以对应分立式传感网络中的单个节点。
步骤2:外界环境变化将对干涉型光纤传感器进行传感调谐。每个干涉光谱独立形成波长编码的传感信号,并承载在MSPL中各个单模端的基模上。
步骤3:将携带传感信息的多节点光信号导入MSPL,汇总为一路光信号输出,进入接在MSPL多模端的FMF中。利用MSPL的模式复用功能,将输入MSPL的多个单模传感光谱近似无损耗的耦合进FMF内,并复用到FMF中不同正交横模上。
步骤4:复用于不同横模上的光传感信号独立传输进入FM-FBG,并被其反射回FMF中继续传输。结合FM-FBG反射光谱的模式-波长选择特性,不同横模对应不同的波长反射点。通过FM-FBG后,承载不同传感信息的独立横模将在不同谐振点处形成反射,该反射峰便叠加到了相应横模干涉光谱上,如图7中的光谱插图所示。当反射峰波长恰好处于类正弦光谱的
Figure BDA0002603394610000111
中接近0处左右的线性部分时,由于干涉光谱随传感量漂移,而FM-FBG的反射波长稳定,反射峰便沿图中斜率形成相对滑动,实现了模式通道上的波长漂移感知转换为光栅反射峰的上下强度变化的感知。
步骤5:反射回的光信号再次进入MSPL,利用其模式解复用功能,将不同横模的光信号低损耗的逆耦合回相应的单模端,实现横模光谱的空间分离。
步骤6:将分离后的传感光谱注入光电探测器,便可解调出各传感信息。由于上述过程已将波长传感信息转换到了相应模式的反射波长处,形成了该波长处稳定的强度调制,便可用探测器进行信息解调。
上述步骤为本说明书实施例的传感网络的传感测量过程,其核心传感机理可以由双模干涉型光纤传感器的传感感知功能、MSPL中模式复用/解复用功能和FM-FBG中模式-波长转换机制三方面构成。
与本说明书实施例一相对于的是,图8为本说明书实施例二提供的一种基于光子灯笼光纤的传感方法的流程示意图,所述方法包括:
步骤S101,宽带光源产生第一光信号,并将所述第一光信号发送至耦合器。
步骤S102,所述耦合器接收所述第一光信号,转化成多个第二光信号,并向多个传感单元分别输入对应的第二光信号。
步骤S103,多个传感单元根据所处的环境确定出每个第二光信号对应的光传感信号,并将对应的光传感信号合并输入至所述光信号处理单元的多个光横模通道中。
步骤S104,所述光信号处理单元将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元。
进一步的,所述传感单元包括多个光纤传感器以及与光纤传感器连接的环形器;
所述多个传感单元根据所处的环境确定出每个第二光信号对应的光传感信号,具体包括:
所述耦合器用于将多个第二光信号分别输入至不同的光纤传感器;
光纤传感器用于根据所处的环境与第二光信号,输出的对应的光传感信号,并将多个光传感信号通过环形器合并输入至所述光信号处理单元。
进一步的,所述光信号处理单元包括模式选择光子灯笼光纤、少模光纤以及少模光纤光栅;
所述光信号处理单元将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,具体包括:
所述多个传感单元将对应的光传感信号合并输入所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤将多个光传感信号耦合至所述少模光纤内,并将多个光传感信号复用到所述少模光纤中不同横模通道上;
所述少模光纤将所述横模通道上的光传感信号传输至所述少模光纤光栅;
所述少模光纤光栅将处理后的光传感信号反射回所述少模光纤的不同横模通道中;
所述少模光纤将不同横模通道中的光传感信号发送至所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤将多个光传感信号分别发送至对应的采集单元。
本申请实施例将光横模通道引入多节点传感网络,开拓了现有光纤传感网络传感节点复用新维度,有效扩展了光传感网络的传感通道数量。并且,本申请实施例通过将多个传感单元确定出的光传感信号合并输入至基于模式选择光子灯笼光纤的光信号处理单元,可以将传感探测量从波长检测转换为光强度监测,提升系统的使用效率,同时使光纤传感网络在成本及设备复杂度方面均有大幅优化。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

1.一种基于光子灯笼光纤的传感网络,其特征在于,包括:宽带光源、耦合器、多个传感单元、光信号处理单元以及采集单元;
宽带光源用于产生第一光信号,并将所述第一光信号发送至耦合器;
所述耦合器用于接收所述第一光信号,转化成多个第二光信号,并向多个传感单元分别输入对应的第二光信号;
多个传感单元用于根据所处的环境确定出每个第二光信号对应的光传感信号,并将对应的光传感信号合并输入至所述光信号处理单元的多个光横模通道中;
所述光信号处理单元用于将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,其中,所述光信号处理单元是基于模式选择光子灯笼光纤的处理单元。
2.根据权利要求1所述的基于光子灯笼光纤的传感网络,其特征在于,所述传感单元包括多个光纤传感器以及与光纤传感器连接的环形器;
所述耦合器用于将多个第二光信号分别输入至不同的光纤传感器;
光纤传感器用于根据所处的环境与第二光信号,输出的对应的光传感信号,并将多个光传感信号通过环形器合并输入至所述光信号处理单元。
3.根据权利要求1所述的基于光子灯笼光纤的传感网络,其特征在于,所述光信号处理单元包括模式选择光子灯笼光纤、少模光纤以及少模光纤光栅;
所述多个传感单元用于将对应的光传感信号合并输入所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤用于将多个光传感信号耦合至所述少模光纤内,并将多个光传感信号复用到所述少模光纤中不同横模通道上;
所述少模光纤用于将所述横模通道上的光传感信号传输至所述少模光纤光栅;
所述少模光纤光栅用于将处理后的光传感信号反射回所述少模光纤的不同横模通道中;
所述少模光纤用于将不同横模通道中的光传感信号发送至所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤用于将多个光传感信号分别发送至对应的采集单元。
4.根据权利要求1所述的基于光子灯笼光纤的传感网络,其特征在于,所述采集单元包括光电探测器、控制器与环形器;
所述光信号处理单元用于将光传感信号发送至对应的环形器;
所述环形器用于将光传感信号发送至对应的光电探测器;
所述光电探测器用于将光传感信号转化为电信号,并将所述电信号发送至所述控制器。
5.根据权利要求1所述的基于光子灯笼光纤的传感网络,其特征在于,所述光纤传感器为应力传感器、折射率传感器、液位传感器以及振动传感器中的一种或多种。
6.根据权利要求1所述的基于光子灯笼光纤的传感网络,其特征在于,所述光纤传感器的光纤结构类型为干涉型传感器。
7.根据权利要求1所述的基于光子灯笼光纤的传感网络,其特征在于,每个所述传感单元与所述光信号处理单元之间设置有偏振控制器。
8.一种基于光子灯笼光纤的传感方法,其特征在于,所述方法包括:
宽带光源产生第一光信号,并将所述第一光信号发送至耦合器;
所述耦合器接收所述第一光信号,转化成多个第二光信号,并向多个传感单元分别输入对应的第二光信号;
多个传感单元根据所处的环境确定出每个第二光信号对应的光传感信号,并将对应的光传感信号合并输入至所述光信号处理单元的多个光横模通道中;
所述光信号处理单元将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,其中,所述光信号处理单元是基于模式选择光子灯笼光纤的处理单元。
9.根据权利要求8所述的基于光子灯笼光纤的传感方法,其特征在于,所述传感单元包括多个光纤传感器以及与光纤传感器连接的环形器;
所述多个传感单元根据所处的环境确定出每个第二光信号对应的光传感信号,具体包括:
所述耦合器用于将多个第二光信号分别输入至不同的光纤传感器;
光纤传感器用于根据所处的环境与第二光信号,输出的对应的光传感信号,并将多个光传感信号通过环形器合并输入至所述光信号处理单元。
10.根据权利要求8所述的基于光子灯笼光纤的传感方法,其特征在于,所述光信号处理单元包括模式选择光子灯笼光纤、少模光纤以及少模光纤光栅;
所述光信号处理单元将光传感信号进行处理,并将处理后的光传感信号发送至对应的采集单元,具体包括:
所述多个传感单元将对应的光传感信号合并输入所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤将多个光传感信号耦合至所述少模光纤内,并将多个光传感信号复用到所述少模光纤中不同横模通道上;
所述少模光纤将所述横模通道上的光传感信号传输至所述少模光纤光栅;
所述少模光纤光栅将处理后的光传感信号反射回所述少模光纤的不同横模通道中;
所述少模光纤将不同横模通道中的光传感信号发送至所述模式选择光子灯笼光纤;
所述模式选择光子灯笼光纤将多个光传感信号分别发送至对应的采集单元。
CN202010731658.5A 2020-07-27 2020-07-27 一种基于光子灯笼光纤的传感网络及方法 Active CN111811553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010731658.5A CN111811553B (zh) 2020-07-27 2020-07-27 一种基于光子灯笼光纤的传感网络及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010731658.5A CN111811553B (zh) 2020-07-27 2020-07-27 一种基于光子灯笼光纤的传感网络及方法

Publications (2)

Publication Number Publication Date
CN111811553A true CN111811553A (zh) 2020-10-23
CN111811553B CN111811553B (zh) 2022-05-17

Family

ID=72861337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010731658.5A Active CN111811553B (zh) 2020-07-27 2020-07-27 一种基于光子灯笼光纤的传感网络及方法

Country Status (1)

Country Link
CN (1) CN111811553B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790808A (zh) * 2021-09-10 2021-12-14 中国科学院长春光学精密机械与物理研究所 条纹追踪方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000267A (zh) * 2006-12-25 2007-07-18 福建迅捷光电科技有限公司 全并行分布式光纤光栅温度传感方法及其系统
CN103152099A (zh) * 2013-01-31 2013-06-12 华中科技大学 基于模分复用的单纤双向传输系统
US20150086157A1 (en) * 2013-09-20 2015-03-26 Alcatel-Lucent Usa Inc. Photonic Lantern Spatial Multiplexers with mode selectivity
CN107664513A (zh) * 2017-08-25 2018-02-06 天津大学 一种级联式光纤呼吸传感系统及其测试方法
CN111238573A (zh) * 2020-03-16 2020-06-05 山东星冉信息科技有限公司 一种光纤型多参数电缆终端检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000267A (zh) * 2006-12-25 2007-07-18 福建迅捷光电科技有限公司 全并行分布式光纤光栅温度传感方法及其系统
CN103152099A (zh) * 2013-01-31 2013-06-12 华中科技大学 基于模分复用的单纤双向传输系统
US20150086157A1 (en) * 2013-09-20 2015-03-26 Alcatel-Lucent Usa Inc. Photonic Lantern Spatial Multiplexers with mode selectivity
CN107664513A (zh) * 2017-08-25 2018-02-06 天津大学 一种级联式光纤呼吸传感系统及其测试方法
CN111238573A (zh) * 2020-03-16 2020-06-05 山东星冉信息科技有限公司 一种光纤型多参数电缆终端检测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790808A (zh) * 2021-09-10 2021-12-14 中国科学院长春光学精密机械与物理研究所 条纹追踪方法

Also Published As

Publication number Publication date
CN111811553B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN101963515B (zh) 分布式Michelson光纤白光干涉传感装置
CN201476800U (zh) 一种基于awg的高速多通道光纤光栅传感解调系统
CN100588913C (zh) 一种简化式多路复用白光干涉光纤传感解调装置
CN101298992A (zh) 基于光纤腔衰荡技术的分布式光纤传感器
CN106556574B (zh) 在线双光束干涉型光纤折射率传感器及折射率检测装置
CN101995265B (zh) 非平衡Mach-Zehnder光学自相关器的低相干多路复用光纤干涉仪
CN101634571A (zh) 光纤脉栅分布传感装置
CN111854812B (zh) 一种基于光子灯笼光纤的传感解调系统及传感解调方法
CN104535007A (zh) 一种基于腔长可调f-p白光干涉解调装置的分布式光纤应变测量系统
CN104501731A (zh) 一种低相干多路复用准分布光纤应变测量系统
CN102183866A (zh) 基于非平衡Mach-Zehnder的多路复用光纤干涉仪的解调装置
CN102162742A (zh) 基于非平衡Michelson干涉式准分布光纤白光应变传感解调装置
CN100470191C (zh) 全光纤斐索干涉共焦测量装置
CN101995227A (zh) 一种用于分布式光纤应变传感测量的光程自相关器
CN204630604U (zh) 一种sms型并联多路复用光纤传感器
CN204405012U (zh) 一种低相干多路复用准分布光纤应变测量系统
CN111811553B (zh) 一种基于光子灯笼光纤的传感网络及方法
CN101290248A (zh) 基于马赫-曾德尔干涉仪滤波原理的单模红外光波长计
AU2020103661A4 (en) A distributed fiber strain measurement system based on an adjustable-cavity-length F-P white light interferometric demodulator
CN204555926U (zh) 一种基于腔长可调f-p白光干涉解调装置的分布式光纤应变测量系统
CN201043884Y (zh) 全光纤斐索干涉共焦测量装置
CN102135437A (zh) 用非平衡Mach-Zehnder干涉仪对多信号问讯的方法及装置
CN201247073Y (zh) 基于光纤腔衰荡技术的分布式光纤传感器
CN204555927U (zh) 一种基于Smith谐振干涉型光程匹配扫描器的低相干光纤形变传感器网络解调系统
AU2020103490A4 (en) A multiplexing optical fiber interferometer and its nesting construction method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant