CN111807368A - A kind of preparation method of high temperature resistant ultra-low density silicon carbide nanotube aerogel - Google Patents
A kind of preparation method of high temperature resistant ultra-low density silicon carbide nanotube aerogel Download PDFInfo
- Publication number
- CN111807368A CN111807368A CN202010502072.1A CN202010502072A CN111807368A CN 111807368 A CN111807368 A CN 111807368A CN 202010502072 A CN202010502072 A CN 202010502072A CN 111807368 A CN111807368 A CN 111807368A
- Authority
- CN
- China
- Prior art keywords
- aerogel
- preparation
- silicon carbide
- polyalkylsiloxane
- density silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004964 aerogel Substances 0.000 title claims abstract description 89
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 38
- 239000002071 nanotube Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 238000001035 drying Methods 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000008367 deionised water Substances 0.000 claims abstract description 18
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 18
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 12
- 229920003257 polycarbosilane Polymers 0.000 claims description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 claims description 8
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000008096 xylene Substances 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 6
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 claims description 4
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 claims description 4
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000005336 cracking Methods 0.000 claims description 3
- GOIPELYWYGMEFQ-UHFFFAOYSA-N dimethoxy-methyl-octylsilane Chemical compound CCCCCCCC[Si](C)(OC)OC GOIPELYWYGMEFQ-UHFFFAOYSA-N 0.000 claims description 3
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 claims description 3
- SJJCABYOVIHNPZ-UHFFFAOYSA-N cyclohexyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C1CCCCC1 SJJCABYOVIHNPZ-UHFFFAOYSA-N 0.000 claims description 2
- RTYZQVDVGVAXSW-UHFFFAOYSA-N cyclohexylmethyl(diethoxy)silane Chemical compound CCO[SiH](OCC)CC1CCCCC1 RTYZQVDVGVAXSW-UHFFFAOYSA-N 0.000 claims description 2
- WOZOEHNJNZTJDH-UHFFFAOYSA-N diethoxy-bis(2-methylpropyl)silane Chemical compound CCO[Si](CC(C)C)(CC(C)C)OCC WOZOEHNJNZTJDH-UHFFFAOYSA-N 0.000 claims description 2
- MNFGEHQPOWJJBH-UHFFFAOYSA-N diethoxy-methyl-phenylsilane Chemical compound CCO[Si](C)(OCC)C1=CC=CC=C1 MNFGEHQPOWJJBH-UHFFFAOYSA-N 0.000 claims description 2
- NHYFIJRXGOQNFS-UHFFFAOYSA-N dimethoxy-bis(2-methylpropyl)silane Chemical compound CC(C)C[Si](OC)(CC(C)C)OC NHYFIJRXGOQNFS-UHFFFAOYSA-N 0.000 claims description 2
- CVQVSVBUMVSJES-UHFFFAOYSA-N dimethoxy-methyl-phenylsilane Chemical compound CO[Si](C)(OC)C1=CC=CC=C1 CVQVSVBUMVSJES-UHFFFAOYSA-N 0.000 claims description 2
- YGUFXEJWPRRAEK-UHFFFAOYSA-N dodecyl(triethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OCC)(OCC)OCC YGUFXEJWPRRAEK-UHFFFAOYSA-N 0.000 claims description 2
- SCPWMSBAGXEGPW-UHFFFAOYSA-N dodecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OC)(OC)OC SCPWMSBAGXEGPW-UHFFFAOYSA-N 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 claims description 2
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 claims description 2
- 229960003493 octyltriethoxysilane Drugs 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 claims description 2
- OYGYKEULCAINCL-UHFFFAOYSA-N triethoxy(hexadecyl)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC OYGYKEULCAINCL-UHFFFAOYSA-N 0.000 claims description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 2
- FZMJEGJVKFTGMU-UHFFFAOYSA-N triethoxy(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC FZMJEGJVKFTGMU-UHFFFAOYSA-N 0.000 claims description 2
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 claims description 2
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 claims description 2
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 claims 1
- RSKGMYDENCAJEN-UHFFFAOYSA-N hexadecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OC)(OC)OC RSKGMYDENCAJEN-UHFFFAOYSA-N 0.000 claims 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 claims 1
- 238000001291 vacuum drying Methods 0.000 claims 1
- 125000005376 alkyl siloxane group Chemical group 0.000 abstract description 2
- 238000005191 phase separation Methods 0.000 abstract description 2
- 238000003980 solgel method Methods 0.000 abstract description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 abstract 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 abstract 1
- 235000019270 ammonium chloride Nutrition 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004965 Silica aerogel Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- NJOPBCZQSPNWLW-UHFFFAOYSA-N C(C)O[SiH2]OCC.CC=C Chemical compound C(C)O[SiH2]OCC.CC=C NJOPBCZQSPNWLW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- YQGOWXYZDLJBFL-UHFFFAOYSA-N dimethoxysilane Chemical compound CO[SiH2]OC YQGOWXYZDLJBFL-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- -1 hexadecyltrimethoxysilane triethoxysilane Chemical compound 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
- C01B32/963—Preparation from compounds containing silicon
- C01B32/977—Preparation from organic compounds containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0091—Preparation of aerogels, e.g. xerogels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种耐高温超低密度碳化硅纳米管气凝胶的制备方法,该气凝胶的制备方法包括以下具体步骤:(1)将烷基三烷氧基硅烷、二烷基二烷氧基硅烷、十六烷基三甲基溴化铵溶于去离子水中得到透明溶液,其中烷基三烷氧基硅烷、二烷基二烷氧基硅烷、十六烷基三甲基溴化铵、去离子水摩尔比为1:0.1~1:0.1~0.5:40~80。本发明以利用烷基硅氧烷在水体系中溶胶‑凝胶过程发生相分离获得具有大孔结构的聚烷基硅氧烷凝胶,大孔结构能够大幅度降低常压过程中的毛细管力,可以在常压干燥下获得低密度的气凝胶块体,制备方法更加简单。
The invention discloses a preparation method of a high temperature resistant ultra-low density silicon carbide nanotube aerogel. The preparation method of the aerogel comprises the following specific steps: (1) Alkyltrialkoxysilane, dialkyldialkylene Alkoxysilane and cetyltrimethylammonium bromide are dissolved in deionized water to obtain a transparent solution, wherein alkyltrialkoxysilane, dialkyldialkoxysilane, cetyltrimethyl bromide The molar ratio of ammonium chloride and deionized water is 1:0.1~1:0.1~0.5:40~80. In the present invention, the polyalkylsiloxane gel with macroporous structure is obtained by utilizing the phase separation of the alkyl siloxane in the sol-gel process in the water system, and the macroporous structure can greatly reduce the capillary force in the normal pressure process. , a low-density aerogel block can be obtained under normal pressure drying, and the preparation method is simpler.
Description
技术领域technical field
本发明属于多孔材料制备领域,尤其涉及一种耐高温超低密度碳化硅气凝胶的制备方法。The invention belongs to the field of porous material preparation, and in particular relates to a preparation method of high temperature resistant ultra-low density silicon carbide aerogel.
背景技术Background technique
气凝胶是一种具有三维纳米多孔结构的新材料,具有低密度(0.003~0.8 g·cm-3),高孔隙率(80~99.8%),高比表面积(200~1000 m2·g-1),低热导率(~0.02 W·m-1K-1)等性质,在航空航天、化工、节能建筑、军事、通讯、电子、冶金等应用领域有着十分广阔的前景。然而传统的二氧化硅气凝胶在超过650℃高温下出现烧结现象,导致纳米孔结构坍塌,性能下降,难以应用于高温领域。Aerogel is a new material with a three-dimensional nanoporous structure, with low density (0.003~0.8 g·cm-3), high porosity (80~99.8%), and high specific surface area (200~1000 m2·g- 1), low thermal conductivity (~0.02 W·m-1K-1) and other properties, it has a very broad prospect in aerospace, chemical industry, energy-saving buildings, military, communications, electronics, metallurgy and other application fields. However, the sintering phenomenon of traditional silica aerogels occurs at high temperatures over 650 °C, resulting in collapse of the nanoporous structure and performance degradation, making it difficult to apply in high temperature fields.
碳化硅气凝胶因其能耐1200℃以上高温而受到关注。目前制备碳化硅气凝胶主要有两种方法,一种是制备含碳源和硅源的气凝胶共前驱体,在进行高温还原,如中国专利(公开号CN102897764A)公开了以苯二酚、甲醛、硅源为原料经过溶胶-凝胶、老化和常压干燥得到RF-SiO2复合气凝胶,RF-SiO2复合气凝胶在氩气保护下进行碳热还原反应,然后在空气中煅烧即得到块状碳化硅气凝胶材料,该方法制得的碳化硅气凝胶密度偏高(0.2~0.3g/cm3);中国专利(公开号CN103864076A)以超临界干燥的二氧化硅气凝胶为模板,在该模板中渗入碳源后进行高温反应制备碳化硅气凝胶,但是该方法采用了昂贵的超临界设备;另一种制备方法是采用碳化硅前驱体与多乙烯基化合物制备碳化硅前驱体气凝胶,再进行高温反应制备。如中国专利(公开号CN105600785A)公开了聚碳硅烷和乙烯基化合物溶解于有机溶剂中,在70℃~90℃,karstedt催化剂催化反应4~8h,得到聚碳硅烷凝胶;将聚碳硅烷凝胶经干燥后得到聚碳硅烷气凝胶;将聚碳硅烷气凝胶经过热处理并在有氧条件下500℃~700℃煅烧1~5h,得到碳化硅气凝胶。该方法采用的多乙烯基化合物容易自聚,并且需要昂贵的含Pt催化剂。Silicon carbide aerogels have attracted attention due to their ability to withstand high temperatures above 1200 °C. At present, there are two main methods for preparing silicon carbide aerogels. One is to prepare an aerogel co-precursor containing a carbon source and a silicon source, and then perform high-temperature reduction. , formaldehyde, silicon source as raw materials, through sol-gel, aging and atmospheric drying to obtain RF-SiO2 composite aerogel, RF-SiO2 composite aerogel is subjected to carbothermic reduction reaction under argon protection, and then calcined in air That is, the bulk silicon carbide aerogel material is obtained, and the density of the silicon carbide aerogel obtained by this method is high (0.2~0.3g/cm3); Chinese patent (publication number CN103864076A) uses supercritically dried silica aerogel to condense The glue is used as a template, and the carbon source is infiltrated into the template to perform a high-temperature reaction to prepare silicon carbide aerogel, but this method uses expensive supercritical equipment; another preparation method is to use silicon carbide precursors and polyvinyl compounds to prepare Silicon carbide precursor aerogel is prepared by high temperature reaction. For example, a Chinese patent (publication number CN105600785A) discloses that polycarbosilane and vinyl compounds are dissolved in an organic solvent, and the karstedt catalyst catalyzes the reaction for 4 to 8 hours at 70°C to 90°C to obtain polycarbosilane gel; polycarbosilane is condensed After the glue is dried, polycarbosilane aerogel is obtained; the polycarbosilane aerogel is subjected to heat treatment and calcined at 500° C. to 700° C. for 1 to 5 hours under aerobic conditions to obtain silicon carbide aerogel. The polyvinyl compounds used in this method are easy to self-polymerize and require expensive Pt-containing catalysts.
因此,仍然需要一种工艺简单、效率高的生产方法制备低密度的SiC气凝胶。Therefore, there is still a need for a simple and efficient production method to prepare low-density SiC aerogels.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了克服现有技术的不足,提供一种耐高温超低密度碳化硅气凝胶的制备方法,该方法可以有效解决背景技术中提到的制备出的凝胶密度高以及利用昂贵催化剂的不足,本方法制备的方法简单。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a method for preparing a high temperature resistant ultra-low density silicon carbide aerogel, which can effectively solve the problems of the high density of the prepared gel and the use of Insufficient expensive catalyst, the preparation method of this method is simple.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种耐高温超低密度碳化硅纳米管气凝胶的制备方法,该气凝胶的制备方法包括以下具体步骤:A preparation method of high temperature resistant ultra-low density silicon carbide nanotube aerogel, the preparation method of the aerogel comprises the following specific steps:
(1)将烷基三烷氧基硅烷、二烷基二烷氧基硅烷、十六烷基三甲基溴化铵溶于去离子水中得到透明溶液,其中烷基三烷氧基硅烷、二烷基二烷氧基硅烷、十六烷基三甲基溴化铵、去离子水摩尔比为1:0.1~1: 0.1~0.5: 40~80;(1) Dissolve alkyltrialkoxysilane, dialkyldialkoxysilane and cetyltrimethylammonium bromide in deionized water to obtain a transparent solution, wherein alkyltrialkoxysilane, The molar ratio of alkyldialkoxysilane, cetyltrimethylammonium bromide and deionized water is 1:0.1~1:0.1~0.5:40~80;
(2) 在上述溶液中加入氨水调节溶液pH值9.0~12.0形成凝胶,将凝胶用无水乙醇浸泡3-5次,每次浸泡8-12 h;再将浸泡好的凝胶直接放入烘箱中进行常压干燥,干燥温度为80~180℃,干燥时间24-48 h得到聚烷基硅氧烷气凝胶;(2) Add ammonia water to the above solution to adjust the pH value of the solution to 9.0~12.0 to form a gel, soak the gel with absolute ethanol for 3-5 times, soaking for 8-12 hours each time; then put the soaked gel directly Put it into an oven for atmospheric drying, the drying temperature is 80-180 °C, and the drying time is 24-48 h to obtain a polyalkylsiloxane aerogel;
(3)将步骤(2)中的聚烷基硅氧烷气凝胶浸入含聚碳硅烷的二甲苯溶液直到溶液将凝胶全部润湿,将润湿好的聚烷基硅氧烷气凝胶进行真空干燥得到表面吸附聚碳硅烷的聚烷基硅氧烷气凝;(3) Immerse the polyalkylsiloxane aerogel in step (2) into the xylene solution containing polycarbosilane until the solution wets the gel completely, and aerosol the wetted polyalkylsiloxane The glue is vacuum-dried to obtain polyalkylsiloxane aerogels with surface adsorption of polycarbosilane;
(4)将步骤(3)中吸附聚碳硅烷的聚烷基硅氧烷气凝置于管式炉中,通入Ar后梯度升温至1400~1500℃裂解2-4h,自然冷却后将裂解产物用浓氢氧化钠溶液刻蚀2~5 h,再用去离子水清洗后烘干得到耐高温超低密碳化硅纳米管气凝胶。(4) The polyalkylsiloxane gas that adsorbed polycarbosilane in step (3) was placed in a tube furnace, and after passing Ar, the temperature was gradually heated to 1400-1500 ° C for 2-4 hours, and the cracking was carried out after natural cooling. The product was etched with concentrated sodium hydroxide solution for 2-5 h, washed with deionized water, and dried to obtain a high temperature resistant ultra-low density silicon carbide nanotube aerogel.
进一步地,步骤(1)所述的烷基三烷氧基硅烷为甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷、丙基三甲氧基硅烷、丙基三乙氧基硅烷、、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、辛基三甲氧基硅烷、辛基三乙氧基硅烷、十六烷基三甲氧基硅烷、十六烷基三乙氧基硅烷、十二烷基三甲氧基硅烷、十二烷基三乙氧基硅烷、十八烷基三甲氧基硅烷、十八烷基三乙氧基硅烷中的任一种。Further, the alkyltrialkoxysilane described in step (1) is methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyl group Trimethoxysilane, propyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, hexadecyltrimethoxysilane triethoxysilane, hexadecyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane any of the.
进一步地,步骤(1)所述的二烷基二烷氧基硅烷为二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、甲基乙烯基二甲氧基硅烷、甲基乙烯基二乙氧基硅烷、甲基苯基二甲氧基硅烷、甲基苯基二乙氧基硅烷、二异丁基二甲氧基硅烷、二异丁基二乙氧基硅烷、辛基甲基二甲氧基硅烷、辛基甲基二乙氧基硅烷、环己基甲基二甲氧基硅烷、环己基甲基二乙氧基硅烷中的任一种。Further, the dialkyldialkoxysilane described in step (1) is dimethyldimethoxysilane, dimethyldiethoxysilane, methylvinyldimethoxysilane, methylethylene Diethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, diisobutyldimethoxysilane, diisobutyldiethoxysilane, octylmethyl Any of oxydimethoxysilane, octylmethyldiethoxysilane, cyclohexylmethyldimethoxysilane, and cyclohexylmethyldiethoxysilane.
进一步地,步骤(2)所述的氨水浓度为2~4mol/L。Further, the ammonia concentration described in step (2) is 2-4 mol/L.
进一步地,步骤(3)所述的聚碳硅烷的二甲苯溶液中聚碳硅烷的质量浓度为1~5%。Further, the mass concentration of polycarbosilane in the xylene solution of polycarbosilane described in step (3) is 1-5%.
进一步地,步骤(4)所述的浓氢氧化钠溶液的质量浓度为40~70 %。Further, the mass concentration of the concentrated sodium hydroxide solution described in step (4) is 40~70%.
优选地,步骤(4)梯度升温速度为2-5℃/min,通入Ar的流量为0.5-2 mL/min。Preferably, in step (4), the gradient heating rate is 2-5°C/min, and the flow rate of Ar introduced is 0.5-2 mL/min.
一种耐高温超低密度碳化硅纳米管气凝胶,其特征在于:该气凝胶可应用于高温隔热领域。A high-temperature-resistant and ultra-low-density silicon carbide nanotube aerogel is characterized in that the aerogel can be used in the field of high-temperature heat insulation.
本发明的有益效果为:The beneficial effects of the present invention are:
一、本发明以利用烷基硅氧烷在水体系中溶胶-凝胶过程发生相分离获得具有大孔结构的聚烷基硅氧烷凝胶,大孔结构能够大幅度降低常压过程中的毛细管力,可以在常压干燥下获得低密度的气凝胶块体,制备方法更加简单。1. The present invention obtains a polyalkylsiloxane gel with a macroporous structure by utilizing alkyl siloxane in a sol-gel process in an aqueous system to undergo phase separation, and the macroporous structure can greatly reduce the pressure in the normal pressure process. Capillary force, low-density aerogel blocks can be obtained under normal pressure drying, and the preparation method is simpler.
二、本发明制备出来的聚烷基硅氧烷气凝胶具有大孔结构,平均孔径为420~2200nm,碳化硅纳米管气凝胶的密度为0.015~0.08 g/cm3,聚烷基硅氧烷气凝胶的大孔结构有利于聚碳硅烷溶液在气凝胶中扩散,形成均匀的聚碳硅烷吸附层,在最后的刻蚀过程中有利于碳化硅纳米管的形成,同时除去未反应的二氧化硅模板。2. The polyalkylsiloxane aerogel prepared by the present invention has a macroporous structure, the average pore diameter is 420~2200nm, the density of the silicon carbide nanotube aerogel is 0.015~0.08 g/cm3, and the polyalkylsiloxane The macroporous structure of the alkane aerogel is conducive to the diffusion of the polycarbosilane solution in the aerogel to form a uniform polycarbosilane adsorption layer, which is conducive to the formation of silicon carbide nanotubes in the final etching process, while removing unreacted Silica template.
三、本发明聚烷基硅氧烷气凝胶含有大量的甲基,有效降低了材料体系中的氧原子比例,可以降低在裂解过程中产生的SiCxOy晶间相对气凝胶结构的破坏。3. The polyalkylsiloxane aerogel of the present invention contains a large amount of methyl groups, which effectively reduces the proportion of oxygen atoms in the material system, and can reduce the destruction of the relative aerogel structure between SiCxOy crystals during the cracking process.
附图说明Description of drawings
图1是实施例1制备的碳化硅纳米管气凝胶的示意图。1 is a schematic diagram of the silicon carbide nanotube aerogel prepared in Example 1.
图2是实施例1制备的聚烷基硅氧烷气凝胶的微观形貌图Fig. 2 is the microscopic topography of the polyalkylsiloxane aerogel prepared in Example 1
图3是实施例2制备的SiC气凝胶的X射线衍射图。3 is an X-ray diffraction pattern of the SiC aerogel prepared in Example 2.
具体实施方式Detailed ways
以下通过具体实施例来详细说明本发明的技术方案,下述实施例只是为了详细说明本发明所作的举例,不是对本发明的实施方式的限定。对本领域的技术人员来说,在本发明内容说明的基础上可以作其他不同形式的变动,这里无需对所有实施方式进行列举。The technical solutions of the present invention are described in detail below through specific examples. The following examples are only examples for illustrating the present invention in detail, and are not intended to limit the embodiments of the present invention. For those skilled in the art, changes in other forms can be made on the basis of the description of the content of the present invention, and it is not necessary to list all the embodiments here.
实施例1Example 1
将甲基三甲氧基硅烷、二甲基二甲氧基硅烷、十六烷基三甲基溴化铵溶于去离子水中得到透明溶液,其中甲基三甲氧基硅烷、二甲基二甲氧基硅烷、十六烷基三甲基溴化铵、去离子水的摩尔比为1:0.1: 0.1: 80;在上述溶液中加入2 mol/L氨水调节溶液pH值为9.0形成凝胶,将凝胶用无水乙醇浸泡三次,每次12 h;将浸泡好的凝胶直接放入烘箱中进行常压干燥,干燥温度为80 ℃,干燥48 h得到聚烷基硅氧烷气凝胶。制备的聚烷基硅氧烷气凝胶的平均孔径为2200 nm。Dissolve methyltrimethoxysilane, dimethyldimethoxysilane and hexadecyltrimethylammonium bromide in deionized water to obtain a transparent solution, wherein methyltrimethoxysilane, dimethyldimethoxysilane The molar ratio of base silane, cetyltrimethylammonium bromide and deionized water is 1:0.1:0.1:80; adding 2 mol/L ammonia water to the above-mentioned solution to adjust the pH value of the solution to be 9.0 to form a gel. The gel was soaked three times with absolute ethanol for 12 h each time; the soaked gel was directly put into an oven for drying under normal pressure, and the drying temperature was 80 °C for 48 h to obtain a polyalkylsiloxane aerogel. The average pore size of the prepared polyalkylsiloxane aerogel is 2200 nm.
将聚烷基硅氧烷气凝胶浸入含1%的聚碳硅烷的二甲苯溶液中直到溶液将凝胶全部润湿,将润湿好的聚烷基硅氧烷气凝胶进行真空干燥(真空度小于20Pa,干燥温度30℃)得到表面吸附聚碳硅烷的聚烷基硅氧烷气凝胶,将吸附聚碳硅烷的聚烷基硅氧烷气凝置于管式炉中,0.5 mL/min的速度通入Ar后以3℃/min的速度加热到1450℃裂解4 h,自然冷却后将裂解产物用40%浓氢氧化钠溶液在60℃温度下刻蚀2 h,再用去离子水清洗后烘干得到耐高温超低密碳化硅纳米管气凝胶。Immerse the polyalkylsiloxane aerogel in a xylene solution containing 1% polycarbosilane until the solution fully wets the gel, and vacuum dry the wetted polyalkylsiloxane aerogel ( The vacuum degree is less than 20Pa, and the drying temperature is 30℃) to obtain the polyalkylsiloxane aerogel with adsorption of polycarbosilane on the surface. Ar was introduced at a speed of 3 °C/min and then heated to 1450 °C for 4 h at a rate of 3 °C/min. After natural cooling, the cracked product was etched with 40% concentrated sodium hydroxide solution at 60 °C for 2 h, and then used After cleaning with ionized water, drying is performed to obtain a high temperature resistant ultra-low density silicon carbide nanotube aerogel.
制备的耐高温超低密度碳化硅纳米管气凝胶密度为0.015 g/ cm3,热导率为0.024 W/(mK)。The prepared high temperature resistant ultra-low density silicon carbide nanotube aerogel has a density of 0.015 g/cm 3 and a thermal conductivity of 0.024 W/(mK).
实施例2Example 2
将甲基三甲氧基硅烷、二甲基二甲氧基硅烷、十六烷基三甲基溴化铵溶于去离子水中得到透明溶液,其中甲基三甲氧基硅烷、二甲基二甲氧基硅烷、十六烷基三甲基溴化铵、去离子水的摩尔比为1:0.2: 0.2: 60;在上述溶液中加入3 mol/L氨水调节溶液pH值为10.0形成凝胶,将凝胶用无水乙醇浸泡三次,每次12 h;将浸泡好的凝胶直接放入烘箱中进行常压干燥,干燥温度为100 ℃,干燥48 h得到聚烷基硅氧烷气凝胶。制备的聚烷基硅氧烷气凝胶的平均孔径为1200 nm。Dissolve methyltrimethoxysilane, dimethyldimethoxysilane and hexadecyltrimethylammonium bromide in deionized water to obtain a transparent solution, wherein methyltrimethoxysilane, dimethyldimethoxysilane The molar ratio of base silane, cetyltrimethylammonium bromide and deionized water is 1:0.2:0.2:60; in the above solution, adding 3 mol/L ammonia water to adjust the pH value of the solution to form a gel is 10.0, and the The gel was soaked three times with absolute ethanol for 12 h each time; the soaked gel was directly put into an oven for drying under normal pressure, the drying temperature was 100 °C, and the polyalkylsiloxane aerogel was obtained by drying for 48 h. The average pore size of the prepared polyalkylsiloxane aerogel is 1200 nm.
将聚烷基硅氧烷气凝胶浸入含2%的聚碳硅烷的二甲苯溶液中直到溶液将凝胶全部润湿,将润湿好的聚烷基硅氧烷气凝胶进行真空干燥(真空度小于20Pa,干燥温度40℃)得到表面吸附聚碳硅烷的聚烷基硅氧烷气凝胶,将吸附聚碳硅烷的聚烷基硅氧烷气凝置于管式炉中,0.5 mL/min的速度通入Ar后以2℃/min的速度加热到1400℃裂解4 h,自然冷却后将裂解产物用40%浓氢氧化钠溶液在45℃温度下刻蚀4 h,再用去离子水清洗后烘干得到耐高温超低密碳化硅纳米管气凝胶。Immerse the polyalkylsiloxane aerogel in a xylene solution containing 2% polycarbosilane until the solution wets the gel completely, and vacuum dry the wetted polyalkylsiloxane aerogel ( The vacuum degree is less than 20Pa, and the drying temperature is 40℃) to obtain the polyalkylsiloxane aerogel with adsorption of polycarbosilane on the surface. Ar was introduced at a rate of 2°C/min and then heated to 1400°C for 4 h at a rate of 2°C/min. After natural cooling, the cracked product was etched with 40% concentrated sodium hydroxide solution at 45°C for 4 h, and then used After cleaning with ionized water, drying is performed to obtain a high temperature resistant ultra-low density silicon carbide nanotube aerogel.
制备的耐高温超低密度碳化硅纳米管气凝胶密度为0.032 g/ cm3,热导率为0.027 W/(mK)。The prepared high temperature resistant ultra-low density silicon carbide nanotube aerogel has a density of 0.032 g/cm 3 and a thermal conductivity of 0.027 W/(mK).
实施例3Example 3
将乙基三甲氧基硅烷、二甲基二乙氧基硅烷、十六烷基三甲基溴化铵溶于去离子水中得到透明溶液,其中乙基三甲氧基硅烷、二甲基二乙氧基硅烷、十六烷基三甲基溴化铵、去离子水的摩尔比为1:0.5: 0.3: 60;在上述溶液中加入3 mol/L氨水调节溶液pH值为11.0形成凝胶,将凝胶用无水乙醇浸泡三次,每次12 h;将浸泡好的凝胶直接放入烘箱中进行常压干燥,干燥温度为120 ℃,干燥30 h得到聚烷基硅氧烷气凝胶。制备的聚烷基硅氧烷气凝胶的平均孔径为820 nm。Dissolve ethyltrimethoxysilane, dimethyldiethoxysilane and cetyltrimethylammonium bromide in deionized water to obtain a transparent solution, wherein ethyltrimethoxysilane, dimethyldiethoxysilane The molar ratio of base silane, hexadecyltrimethylammonium bromide and deionized water is 1:0.5:0.3:60; adding 3 mol/L ammonia water to the above solution to adjust the pH value of the solution to be 11.0 to form a gel, The gel was soaked three times with absolute ethanol for 12 h each time; the soaked gel was directly put into an oven for drying under normal pressure, the drying temperature was 120 °C, and the polyalkylsiloxane aerogel was obtained by drying for 30 h. The average pore size of the prepared polyalkylsiloxane aerogel is 820 nm.
将聚烷基硅氧烷气凝胶浸入含3%的聚碳硅烷的二甲苯溶液中直到溶液将凝胶全部润湿,将润湿好的聚烷基硅氧烷气凝胶进行真空干燥(真空度小于20Pa,干燥温度50℃)得到表面吸附聚碳硅烷的聚烷基硅氧烷气凝胶,将吸附聚碳硅烷的聚烷基硅氧烷气凝置于管式炉中,1 mL/min的速度通入Ar后以2℃/min的速度加热到1450℃裂解3 h,自然冷却后将裂解产物用60%浓氢氧化钠溶液在40℃温度下刻蚀2 h,再用去离子水清洗后烘干得到耐高温超低密碳化硅纳米管气凝胶。Immerse the polyalkylsiloxane aerogel in a xylene solution containing 3% polycarbosilane until the solution fully wets the gel, and vacuum dry the wetted polyalkylsiloxane aerogel ( The vacuum degree is less than 20Pa, and the drying temperature is 50℃) to obtain the polyalkylsiloxane aerogel with adsorption of polycarbosilane on the surface, and the polyalkylsiloxane with adsorption of polycarbosilane is placed in a tube furnace, 1 mL Ar was introduced at a rate of 2°C/min and then heated to 1450°C for 3 h at a rate of 2°C/min. After natural cooling, the cracked product was etched with 60% concentrated sodium hydroxide solution at 40°C for 2 h, and then used After cleaning with ionized water, drying is performed to obtain a high temperature resistant ultra-low density silicon carbide nanotube aerogel.
制备的耐高温超低密度碳化硅纳米管气凝胶密度为0.048 g/ cm3,热导率为0.028 W/(mK)。The prepared high temperature resistant ultra-low density silicon carbide nanotube aerogel has a density of 0.048 g/cm 3 and a thermal conductivity of 0.028 W/(mK).
实施例4Example 4
将乙烯基三乙氧基硅烷、甲基乙烯基二甲氧基硅烷、十六烷基三甲基溴化铵溶于去离子水中得到透明溶液,其中乙烯基三乙氧基硅烷、甲基乙烯基二甲氧基硅烷、十六烷基三甲基溴化铵、去离子水的摩尔比为1:0.8: 0.4: 50;在上述溶液中加入4 mol/L氨水调节溶液pH值为11.0形成凝胶,将凝胶用无水乙醇浸泡五次,每次8h;将浸泡好的凝胶直接放入烘箱中进行常压干燥,干燥温度为150 ℃,干燥26 h得到聚烷基硅氧烷气凝胶。制备的聚烷基硅氧烷气凝胶的平均孔径为640 nm。Dissolve vinyltriethoxysilane, methylvinyldimethoxysilane and cetyltrimethylammonium bromide in deionized water to obtain a transparent solution, wherein vinyltriethoxysilane, methylethylene The molar ratio of dimethoxysilane, hexadecyltrimethylammonium bromide and deionized water is 1:0.8:0.4:50; in the above solution, adding 4 mol/L ammonia water to adjust the pH value of the solution is 11.0 to form The gel was soaked in absolute ethanol for five times, 8 h each time; the soaked gel was directly put into an oven for drying under normal pressure, the drying temperature was 150 °C, and the polyalkylsiloxane was dried for 26 h. Aerogel. The average pore size of the prepared polyalkylsiloxane aerogel is 640 nm.
将聚烷基硅氧烷气凝胶浸入含4%的聚碳硅烷的二甲苯溶液中直到溶液将凝胶全部润湿,将润湿好的聚烷基硅氧烷气凝胶进行真空干燥(真空度小于20Pa,干燥温度30℃)得到表面吸附聚碳硅烷的聚烷基硅氧烷气凝胶,将吸附聚碳硅烷的聚烷基硅氧烷气凝置于管式炉中,2 mL/min的速度通入Ar后以5℃/min的速度加热到1500℃裂解2 h,自然冷却后将裂解产物用40%浓氢氧化钠溶液在40℃温度下刻蚀5 h,再用去离子水清洗后烘干得到耐高温超低密碳化硅纳米管气凝胶。Immerse the polyalkylsiloxane aerogel in a xylene solution containing 4% polycarbosilane until the solution fully wets the gel, and vacuum dry the wetted polyalkylsiloxane aerogel ( The vacuum degree is less than 20Pa, and the drying temperature is 30℃) to obtain the polyalkylsiloxane aerogel with adsorption of polycarbosilane on the surface. Ar was introduced at a rate of 5°C/min and then heated to 1500°C for 2 h at a rate of 5°C/min. After natural cooling, the cracked product was etched with 40% concentrated sodium hydroxide solution at 40°C for 5 h, and then used After cleaning with ionized water, drying is performed to obtain a high temperature resistant ultra-low density silicon carbide nanotube aerogel.
制备的耐高温超低密度碳化硅纳米管气凝胶密度为0.066 g/ cm3,热导率为0.031 W/(mK)。The prepared high temperature resistant ultra-low density silicon carbide nanotube aerogel has a density of 0.066 g/cm 3 and a thermal conductivity of 0.031 W/(mK).
实施例5Example 5
将甲基三甲氧基硅烷、二甲基二甲氧基硅烷、十六烷基三甲基溴化铵溶于去离子水中得到透明溶液,其中甲基三甲氧基硅烷、二甲基二甲氧基硅烷、十六烷基三甲基溴化铵、去离子水的摩尔比为1:0.1: 0.5: 40;在上述溶液中加入4 mol/L氨水调节溶液pH值为12.0形成凝胶,将凝胶用无水乙醇浸泡三次,每次12 h;将浸泡好的凝胶直接放入烘箱中进行常压干燥,干燥温度为180 ℃,干燥24 h得到聚烷基硅氧烷气凝胶。制备的聚烷基硅氧烷气凝胶的平均孔径为420 nm。Dissolve methyltrimethoxysilane, dimethyldimethoxysilane and hexadecyltrimethylammonium bromide in deionized water to obtain a transparent solution, wherein methyltrimethoxysilane, dimethyldimethoxysilane The molar ratio of base silane, cetyltrimethylammonium bromide and deionized water is 1:0.1:0.5:40; in the above solution, adding 4 mol/L ammonia water to adjust the pH value of the solution to be 12.0 to form a gel, the The gel was soaked three times with absolute ethanol for 12 h each time; the soaked gel was directly placed in an oven for drying under normal pressure, the drying temperature was 180 °C, and the polyalkylsiloxane aerogel was obtained by drying for 24 h. The average pore size of the prepared polyalkylsiloxane aerogel is 420 nm.
将聚烷基硅氧烷气凝胶浸入含5%的聚碳硅烷的二甲苯溶液中直到溶液将凝胶全部润湿,将润湿好的聚烷基硅氧烷气凝胶进行真空干燥(真空度小于20Pa,干燥温度40℃)得到表面吸附聚碳硅烷的聚烷基硅氧烷气凝胶,将吸附聚碳硅烷的聚烷基硅氧烷气凝置于管式炉中,1 mL/min的速度通入Ar后以5℃/min的速度加热到1500℃裂解2 h,自然冷却后将裂解产物用70%浓氢氧化钠溶液在30℃温度下刻蚀2 h,再用去离子水清洗后烘干得到耐高温超低密碳化硅纳米管气凝胶。Immerse the polyalkylsiloxane aerogel in a xylene solution containing 5% polycarbosilane until the solution fully wets the gel, and vacuum dry the wetted polyalkylsiloxane aerogel ( The vacuum degree is less than 20Pa, and the drying temperature is 40℃) to obtain the polyalkylsiloxane aerogel adsorbing polycarbosilane on the surface, and placing the polyalkylsiloxane adsorbing polycarbosilane in a tube furnace, 1 mL Ar was introduced at a speed of 5°C/min and then heated to 1500°C for 2 h at a rate of 5°C/min. After natural cooling, the cracked product was etched with 70% concentrated sodium hydroxide solution at 30°C for 2 h, and then used After cleaning with ionized water, drying is performed to obtain a high temperature resistant ultra-low density silicon carbide nanotube aerogel.
制备的耐高温超低密度碳化硅纳米管气凝胶密度为0.08 g/cm3,热导率为0.033W/(mK)。The prepared high temperature resistant ultra-low density silicon carbide nanotube aerogel has a density of 0.08 g/cm 3 and a thermal conductivity of 0.033 W/(mK).
以上涉及气凝胶检测是用激光热导仪检测的。The above-mentioned aerogel detection is detected with a laser thermal conductivity meter.
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010502072.1A CN111807368A (en) | 2020-06-04 | 2020-06-04 | A kind of preparation method of high temperature resistant ultra-low density silicon carbide nanotube aerogel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010502072.1A CN111807368A (en) | 2020-06-04 | 2020-06-04 | A kind of preparation method of high temperature resistant ultra-low density silicon carbide nanotube aerogel |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111807368A true CN111807368A (en) | 2020-10-23 |
Family
ID=72848565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010502072.1A Pending CN111807368A (en) | 2020-06-04 | 2020-06-04 | A kind of preparation method of high temperature resistant ultra-low density silicon carbide nanotube aerogel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111807368A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114452950A (en) * | 2021-12-15 | 2022-05-10 | 淮阴工学院 | Preparation method and application of high-strength double-crosslinked network rubidium/cesium special effect adsorbent |
CN114715896A (en) * | 2022-04-14 | 2022-07-08 | 中国科学技术大学先进技术研究院 | Preparation method of silicon carbide nanotube aerogel |
CN116814005A (en) * | 2023-07-03 | 2023-09-29 | 无菌时代复合新材料(苏州)有限公司 | High-temperature-resistant silicon carbide aerogel master batch and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103864076A (en) * | 2012-12-11 | 2014-06-18 | 河南工业大学 | Preparation method of silicon carbide airgel based on SiO2 airgel as template |
CN110511425A (en) * | 2019-08-14 | 2019-11-29 | 昆山达富久新材料科技有限公司 | A kind of soft silicone aeroge and preparation method thereof |
-
2020
- 2020-06-04 CN CN202010502072.1A patent/CN111807368A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103864076A (en) * | 2012-12-11 | 2014-06-18 | 河南工业大学 | Preparation method of silicon carbide airgel based on SiO2 airgel as template |
CN110511425A (en) * | 2019-08-14 | 2019-11-29 | 昆山达富久新材料科技有限公司 | A kind of soft silicone aeroge and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
裴立宅: "《高技术陶瓷材料》", 30 June 2015 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114452950A (en) * | 2021-12-15 | 2022-05-10 | 淮阴工学院 | Preparation method and application of high-strength double-crosslinked network rubidium/cesium special effect adsorbent |
CN114452950B (en) * | 2021-12-15 | 2023-10-20 | 淮阴工学院 | Preparation method and application of high-strength double-crosslinked network rubidium/cesium specific adsorbent |
CN114715896A (en) * | 2022-04-14 | 2022-07-08 | 中国科学技术大学先进技术研究院 | Preparation method of silicon carbide nanotube aerogel |
CN116814005A (en) * | 2023-07-03 | 2023-09-29 | 无菌时代复合新材料(苏州)有限公司 | High-temperature-resistant silicon carbide aerogel master batch and preparation method thereof |
CN116814005B (en) * | 2023-07-03 | 2024-01-30 | 无菌时代复合新材料(苏州)有限公司 | High-temperature-resistant silicon carbide aerogel master batch and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106747628B (en) | High-temperature-resistant foam-reinforced SiO2Aerogel thermal insulation material and preparation method thereof | |
CN101497444B (en) | Method for preparing nano polyporous material with large specific surface area by vacuum freeze-drying process | |
CN111807368A (en) | A kind of preparation method of high temperature resistant ultra-low density silicon carbide nanotube aerogel | |
CN111099596B (en) | Simple method for coating high-hydrophobicity boron nitride nanosheet thin layer on surface of silicon dioxide aerogel particle | |
CN112536004B (en) | High-temperature-resistant elastic graphene aerogel material and preparation method thereof | |
CN105600785B (en) | A kind of preparation method for the silica aerogel that is carbonized | |
CN107032360A (en) | A kind of graphene/silicon dioxide aerogel composite and preparation method thereof | |
CN104401977A (en) | Preparation method of graphene aerogel and graphene-carbon nanotube aerogel | |
CN108328621B (en) | A kind of preparation method of ultra-low density silica nanotube aerogel material | |
CN104478475B (en) | High-temperature-resistant high-strength SiC-coated carbon foam composite heat-insulating material and preparation method thereof | |
CN114315365B (en) | Silicon carbide aerogel material and preparation method thereof | |
CN110822816B (en) | Normal-pressure drying method of silsesquioxane aerogel | |
CN103523790A (en) | Gas phase chemical surface modification method for producing hydrophobic aerogel with low cost and on large scale | |
CN104787771B (en) | A kind of method for improving silicon dioxide silica aerogel composite material intensity | |
CN106431491A (en) | Preparation method of blocky mullite-silicon carbide composite aerogel material with high specific surface area | |
CN105601316A (en) | Silicon carbide aerogel and preparation method thereof | |
CN107628626A (en) | A kind of simple and easy method in the super-hydrophobic carbon nanotube layer of silica aerogel particles surface direct growth | |
CN112794705A (en) | A method for preparing superelastic silicon oxide nano-ceramic aerogel based on graphene as a template | |
CN114835122B (en) | A method for preparing silicon carbide airgel powder from coal gangue | |
CN109721330B (en) | A kind of preparation method of GO-SiO2 composite ultra-high molecular weight polyethylene fiber cloth aerogel | |
CN110668446A (en) | Preparation method of high temperature resistant SiC aerogel | |
CN112723362B (en) | Method for preparing silicon dioxide/phenolic resin composite aerogel material by taking water glass as silicon source | |
CN115974539B (en) | Preparation method of blocky high-temperature-resistant mullite ceramic aerogel | |
CN107324339B (en) | A kind of carbonization silica aerogel and preparation method thereof | |
CN106986605B (en) | Silica aerogel prepared by pure water system and production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201023 |