CN111806246A - A kind of suspension system control method for maglev train - Google Patents
A kind of suspension system control method for maglev train Download PDFInfo
- Publication number
- CN111806246A CN111806246A CN202010561052.1A CN202010561052A CN111806246A CN 111806246 A CN111806246 A CN 111806246A CN 202010561052 A CN202010561052 A CN 202010561052A CN 111806246 A CN111806246 A CN 111806246A
- Authority
- CN
- China
- Prior art keywords
- suspension system
- sliding mode
- suspension
- controller
- maglev train
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000013528 artificial neural network Methods 0.000 claims abstract description 23
- 230000002093 peripheral effect Effects 0.000 claims abstract description 9
- 238000012549 training Methods 0.000 claims abstract description 5
- 238000005339 levitation Methods 0.000 claims description 31
- 230000006870 function Effects 0.000 claims description 17
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 13
- 238000013178 mathematical model Methods 0.000 claims description 13
- 238000004804 winding Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000009897 systematic effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001258 synovial membrane Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/04—Magnetic suspension or levitation for vehicles
- B60L13/06—Means to sense or control vehicle position or attitude with respect to railway
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
本发明涉及一种用于磁悬浮列车的悬浮系统控制方法,具体包括以下步骤:基于磁悬浮列车的悬浮控制动力学模型构造二阶滑模面,并且引入与定位误差信号相关的、在线实时训练神经网络逼近的非线性有界函数,得到最终滑模变结构控制律模型,用于构建悬浮系统的磁悬浮控制器;磁悬浮控制器中输入设定的悬浮系统物理参数;磁悬浮控制器实时获取轨道和车体间的间隙数据后输出控制信号;悬浮系统的外围硬件接收控制信号后驱动悬浮电磁铁在有限时间内移动到目标位置。与现有技术相比,本发明能够实现对实际中不确定的工作模型参数进行任意逼近,提高控制器对多样环境的适应性,最终提高了悬浮系统控制的稳定性。
The invention relates to a suspension system control method for a maglev train, which specifically includes the following steps: constructing a second-order sliding mode surface based on a suspension control dynamics model of the maglev train, and introducing an online real-time training neural network related to a positioning error signal The approximated nonlinear bounded function is used to obtain the final sliding mode variable structure control law model, which is used to construct the magnetic suspension controller of the suspension system; the physical parameters of the suspension system are input into the magnetic suspension controller; the magnetic suspension controller obtains the track and the car body in real time. After receiving the control signal, the peripheral hardware of the suspension system drives the suspension electromagnet to move to the target position within a limited time. Compared with the prior art, the present invention can realize arbitrary approximation of the uncertain working model parameters in practice, improve the adaptability of the controller to various environments, and finally improve the stability of the suspension system control.
Description
技术领域technical field
本发明涉及磁悬浮列车领域,尤其是涉及一种用于磁悬浮列车的悬浮系统控制方法。The invention relates to the field of maglev trains, in particular to a suspension system control method for a maglev train.
背景技术Background technique
磁悬浮列车是一种具有非接触式电磁悬浮,引导和驱动系统的现代运输方式。它依靠电磁吸引或电斥力将火车悬挂在空中,以实现火车与轨道之间没有机械接触,并由直线电动机驱动。磁悬浮列车由于其速度快,能耗低,乘坐舒适且噪音低而成为理想的交通工具。目前按照磁浮车辆采用的悬浮原理及方式的不同,磁悬浮列车一般划分为两大类,一类为电动悬浮(Electrodynamic Suspension),简称EDS型;一类为电磁悬浮型(Electromagnetic Suspension),简称EMS型。EDS型磁浮系统利用电磁排斥力将车辆在轨道上方悬浮,而EMS型磁浮系统则利用位于轨道下方的电磁铁产生的吸引力将车辆抬起从而保证和轨道不接触。EDS型磁浮系统不需要施加控制即可稳定悬浮,而EMS型磁浮系统需要施加主动控制来保证系统稳定悬浮。目前商业化运行的,都是EMS型磁悬浮列车。Maglev train is a modern mode of transportation with non-contact electromagnetic levitation, guidance and drive systems. It relies on electromagnetic attraction or electric repulsion to suspend the train in the air so that there is no mechanical contact between the train and the track, and is driven by a linear motor. Maglev trains are ideal means of transportation due to their high speed, low energy consumption, comfortable ride and low noise. At present, according to the different suspension principles and methods used by maglev vehicles, maglev trains are generally divided into two categories, one is Electrodynamic Suspension, referred to as EDS type; the other is Electromagnetic Suspension, referred to as EMS type. . The EDS type maglev system uses electromagnetic repulsion to suspend the vehicle above the track, while the EMS type maglev system uses the attractive force generated by the electromagnet located under the track to lift the vehicle to ensure that it does not contact the track. The EDS type maglev system can suspend stably without applying control, while the EMS type maglev system needs to apply active control to ensure the stable suspension of the system. At present, the commercial operation is EMS type maglev train.
对于EMS磁悬浮列车来说,悬浮系统是磁悬浮列车的关键和核心。但是,悬浮系统具有很强的非线性和开环不稳定性。此外,系统参数具有不确定性,并且系统在运行过程中会遭受外部干扰。因此,对高性能的悬浮控制器的设计提出了很高的挑战。For the EMS maglev train, the suspension system is the key and core of the maglev train. However, the suspension system has strong nonlinearity and open-loop instability. In addition, the system parameters are uncertain, and the system is subject to external disturbances during operation. Therefore, the design of a high-performance suspension controller presents a high challenge.
EMS型磁悬浮列车的悬浮系统现在面临的最紧迫的问题是模型的不确定性和外在的干扰,例如乘客重量的不确定性,风的干扰等。目前,大多数磁浮车辆悬浮控制器是线性PID控制器。当参数更改或外部干扰较大时,在当前的线性控制器作用下,系统控制性能将降低,系统稳定性下降甚至失去稳定性。The most pressing problem that the levitation system of the EMS type maglev train faces now is the uncertainty of the model and external disturbances, such as the uncertainty of passenger weight, the disturbance of wind, etc. Currently, most maglev vehicle suspension controllers are linear PID controllers. When the parameters are changed or the external disturbance is large, under the action of the current linear controller, the control performance of the system will be degraded, and the stability of the system will decrease or even lose its stability.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用于磁悬浮列车的悬浮系统控制方法。The purpose of the present invention is to provide a suspension system control method for a maglev train in order to overcome the above-mentioned defects of the prior art.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种用于磁悬浮列车的悬浮系统控制方法,其特征在于,具体包括以下步骤:A suspension system control method for a maglev train, characterized in that it specifically comprises the following steps:
S1、基于磁悬浮列车的悬浮控制动力学模型构造二阶滑模面,并且引入与定位误差信号相关的、在线实时训练神经网络逼近的非线性有界函数,得到最终滑模变结构控制律模型,用于构建悬浮系统的磁悬浮控制器;S1. Construct a second-order sliding mode surface based on the suspension control dynamics model of the maglev train, and introduce a nonlinear bounded function that is related to the positioning error signal and approximated by an online real-time training neural network to obtain the final sliding mode variable structure control law model, Magnetic levitation controllers for building levitation systems;
S2、磁悬浮控制器中输入设定的悬浮系统物理参数;S2. Input the set physical parameters of the suspension system in the magnetic suspension controller;
S3、磁悬浮控制器实时获取轨道和车体间的间隙数据后输出控制信号;S3. The magnetic levitation controller obtains the gap data between the track and the car body in real time and outputs a control signal;
S4、悬浮系统的外围硬件接收控制信号后驱动悬浮电磁铁在有限时间内移动到目标位置,并保持在该位置误差限制范围内。S4. After receiving the control signal, the peripheral hardware of the suspension system drives the suspension electromagnet to move to the target position within a limited time, and keeps it within the limit range of the position error.
进一步地,所述的步骤S1中,最终滑模变结构控制律模型的表达式为:Further, in the described step S1, the expression of the final sliding mode variable structure control law model is:
其中,sgn(·)为符号函数,s是动态滑模面,e为系统误差,c1、c2、η、μ为控制增益参数,和分别为未知的非线性有界函数f(·)和g(·)的神经网络逼近,x为网络输入,j为第j个隐含层节点,W*,L*是f(·)和g(·)的理想网络权重,hf(x)和hg(x)为神经网络的Koski方程,r为理想跟踪指令;where sgn(·) is the sign function, s is the dynamic sliding mode surface, e is the system error, c 1 , c 2 , η, μ are the control gain parameters, and Neural network approximation of unknown nonlinear bounded functions f( ) and g( ), respectively, x is the network input, j is the jth hidden layer node, W * , L * are f( ) and g ( ) ideal network weights, h f (x) and h g (x) are the Koski equations of the neural network, and r is the ideal tracking instruction;
根据最小参数学习法,f(·)和g(·)的自适应率定义为单参数和 According to the minimum parameter learning method, the adaptation rates of f( ) and g( ) are defined as a single parameter and
其中,参数γ1,γ2,Ω1,Ω2∈R+。Among them, the parameters γ 1 , γ 2 , Ω 1 , Ω 2 ∈R + .
进一步地,所述步骤S1中最终滑模变结构控制律模型构建方法包括:Further, in the step S1, the final sliding mode variable structure control law model construction method includes:
S11、建立仿射非线性数学模型;S11. Establish an affine nonlinear mathematical model;
S12、根据仿射非线性数学模型进行滑模控制器的滑膜控制律设计,得到滑模变结构控制律模型和两个非线性有界函数f(·)和g(·);S12. Design the sliding film control law of the sliding mode controller according to the affine nonlinear mathematical model, and obtain a sliding mode variable structure control law model and two nonlinear bounded functions f(·) and g(·);
S13、通过RBF神经网络在线学习逼近滑模变结构控制律模型中的非线性有界函数f(·)和g(·),得到最终滑模变结构控制律模型。S13. Approximate the nonlinear bounded functions f(·) and g(·) in the sliding mode variable structure control law model through online learning of the RBF neural network, and obtain the final sliding mode variable structure control law model.
进一步地,所述的步骤S11中,仿射非线性数学模型的表达式为:Further, in the described step S11, the expression of the affine nonlinear mathematical model is:
其中,in,
式中,z1表示气隙间距,z2表示气隙间距变化速度,z3表示气隙间距加速度,m为车身质量,μ0为真空磁导率,Nm为线圈绕组个数,Am为磁体的截面积,Rm表示电磁铁绕组电阻。In the formula, z 1 represents the air gap spacing, z 2 represents the change speed of the air gap spacing, z 3 represents the air gap spacing acceleration, m is the body mass, μ 0 is the vacuum permeability, N m is the number of coil windings, A m is the cross-sectional area of the magnet, and R m represents the electromagnet winding resistance.
进一步地,所述的步骤S12中,滑模变结构控制律模型的表达式为:Further, in the described step S12, the expression of the sliding mode variable structure control law model is:
式中,uSMC(x,t)为控制输出,η,μ∈R+分别表示恒定到达系数和指数到达系数,r为理想跟踪指令,c1,c2∈R+是正的位置控制增益,e表示系统误差,s表示动态滑模面。In the formula, u SMC (x, t) is the control output, η, μ ∈ R + represent the constant arrival coefficient and exponential arrival coefficient, respectively, r is the ideal tracking command, c 1 , c 2 ∈ R + is the positive position control gain, e is the systematic error and s is the dynamic sliding surface.
进一步地,所述的悬浮系统包括间隙传感器、斩波器、磁悬浮控制器和电磁铁,所述的间隙传感器通过斩波器连接磁浮控制器,所述的电磁铁通过外围硬件磁浮控制器,所述间隙传感器安装电磁铁上。Further, the suspension system includes a gap sensor, a chopper, a magnetic levitation controller and an electromagnet, the gap sensor is connected to the magnetic levitation controller through the chopper, and the electromagnet passes through the peripheral hardware magnetic levitation controller, so the The gap sensor is installed on the electromagnet.
进一步地,所述的间隙传感器通过间隙处理板、控制板和接口转换板连接斩波器。Further, the gap sensor is connected to the chopper through the gap processing board, the control board and the interface conversion board.
进一步地,所述的磁悬浮控制器包括计算机硬件和算法软件,用于执行神经网络逼近算法的运行、获取输入的设定的悬浮系统物理参数,以及实时获取轨道和车体间的间隙数据并输出控制信号。Further, the magnetic levitation controller includes computer hardware and algorithm software, which is used to execute the operation of the neural network approximation algorithm, obtain the set physical parameters of the suspension system of the input, and obtain and output the gap data between the track and the vehicle body in real time. control signal.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明通过重新设立了悬浮系统的磁悬浮控制器,基于磁悬浮列车的悬浮控制动力学模型构造二阶滑模面,并且引入与定位误差信号相关的、在线实时训练神经网络逼近的非线性有界函数,得到最终滑模变结构控制律模型,能够实现对实际中不确定的工作模型参数进行任意逼近,提高控制器对多样环境的适应性,最终提高了悬浮系统控制的稳定性。The invention re-establishes the magnetic suspension controller of the suspension system, constructs the second-order sliding mode surface based on the suspension control dynamics model of the magnetic suspension train, and introduces the nonlinear bounded function related to the positioning error signal and approximated by the online real-time training neural network. , the final sliding mode variable structure control law model can be obtained, which can achieve arbitrary approximation of the uncertain working model parameters in practice, improve the adaptability of the controller to various environments, and finally improve the stability of the suspension system control.
附图说明Description of drawings
图1为本发明的流程示意图。FIG. 1 is a schematic flow chart of the present invention.
图2为磁悬浮列车悬浮控制动力学模型示意图。FIG. 2 is a schematic diagram of the suspension control dynamics model of the maglev train.
图3为磁悬浮控制器闭环控制系统的示意图。FIG. 3 is a schematic diagram of a closed-loop control system of a magnetic levitation controller.
图4为悬浮系统的结构示意图。FIG. 4 is a schematic diagram of the structure of the suspension system.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. This embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner and a specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
如图1所示,本实施例提供了一种用于磁悬浮列车的悬浮系统控制方法,具体包括以下步骤:As shown in FIG. 1 , this embodiment provides a suspension system control method for a maglev train, which specifically includes the following steps:
步骤S1、基于磁悬浮列车的悬浮控制动力学模型构造二阶滑模面,并且引入与定位误差信号相关的、在线实时训练神经网络逼近的非线性有界函数,得到最终滑模变结构控制律模型,用于构建悬浮系统的磁悬浮控制器;Step S1, construct a second-order sliding mode surface based on the suspension control dynamics model of the maglev train, and introduce a nonlinear bounded function related to the positioning error signal and approximated by an online real-time training neural network to obtain a final sliding mode variable structure control law model , a magnetic levitation controller for building a levitation system;
步骤S2、磁悬浮控制器中输入设定的悬浮系统物理参数;Step S2, input the physical parameters of the suspension system set in the magnetic suspension controller;
步骤S3、磁悬浮控制器实时获取轨道和车体间的间隙数据后输出控制信号;Step S3, the magnetic levitation controller obtains the gap data between the track and the vehicle body in real time and outputs a control signal;
步骤S4、悬浮系统的外围硬件接收控制信号后驱动悬浮电磁铁在有限时间内移动到目标位置,并保持在该位置误差限制范围内,达到稳定可靠的悬浮控制效果。In step S4, the peripheral hardware of the suspension system drives the suspension electromagnet to move to the target position within a limited time after receiving the control signal, and keeps it within the position error limit range to achieve a stable and reliable suspension control effect.
在步骤S1中,最终滑模变结构控制律模型构建方法包括:In step S1, the final sliding mode variable structure control law model construction method includes:
步骤S11、建立仿射非线性数学模型;Step S11, establishing an affine nonlinear mathematical model;
步骤S12、根据仿射非线性数学模型进行滑模控制器的滑膜控制律设计,得到滑模变结构控制律模型和两个非线性有界函数f(·)和g(·);Step S12, design the synovial film control law of the sliding mode controller according to the affine nonlinear mathematical model, and obtain a sliding mode variable structure control law model and two nonlinear bounded functions f(·) and g(·);
步骤S13、通过RBF(径向基)神经网络在线学习逼近滑模变结构控制律模型中的非线性有界函数f(·)和g(·),得到最终滑模变结构控制律模型。In step S13, the nonlinear bounded functions f(·) and g(·) in the sliding mode variable structure control law model are approximated by online learning through the RBF (radial basis) neural network, and the final sliding mode variable structure control law model is obtained.
上述步骤的具体展开如下:The specific expansion of the above steps is as follows:
如图2所示,磁悬浮列车的悬浮控制动力学模型为使用牛顿定律与麦克斯韦方程建立的电磁和力学方程组:As shown in Figure 2, the suspension control dynamics model of the maglev train is a system of electromagnetic and mechanical equations established using Newton's law and Maxwell's equations:
上式中,状态量x1(t)=xm(t)为气隙间距,状态量为气隙间距的变化速度,状态量x3(t)=im(t)为控制输入电流,Nm为线圈绕组个数,Am为磁体的截面积,m为车身质量,g为重力常数,um(t)为控制电压,fd为干扰度,μ0为真空磁导率,Rm表示电磁铁绕组电阻。In the above formula, the state quantity x 1 (t)=x m (t) is the air gap distance, and the state quantity is the change speed of the air gap spacing, the state quantity x 3 (t)=im (t) is the control input current, N m is the number of coil windings, A m is the cross-sectional area of the magnet, m is the body mass, and g is the gravity Constant, um (t) is the control voltage, f d is the interference degree, μ 0 is the vacuum permeability, and R m is the electromagnet winding resistance.
步骤S11、建立仿射非线性数学模型。Step S11, establishing an affine nonlinear mathematical model.
为了获得悬浮系统的仿射非线性数学模型,根据非线性坐标变换的原理,选择非线性变换坐标为:In order to obtain the affine nonlinear mathematical model of the suspension system, according to the principle of nonlinear coordinate transformation, the nonlinear transformation coordinates are selected as:
η=[z1z2z3]T∈Ωη,Ωη∈R3 η=[z 1 z 2 z 3 ] T ∈Ω η , Ω η ∈R 3
其中,in,
式中,z1表示气隙间距,z2表示气隙间距变化速度,z3表示气隙间距加速度;x1、x2、x3即为状态量x1(t)、x2(t)、x3(t)。In the formula, z 1 represents the air gap spacing, z 2 represents the change speed of the air gap spacing, and z 3 represents the air gap spacing acceleration; x 1 , x 2 , and x 3 are the state quantities x 1 (t), x 2 (t) , x 3 (t).
对上式进行求导,得到:Derivating the above formula, we get:
为了简化表述,定义k和L如下:To simplify the formulation, define k and L as follows:
根据麦克斯韦方程和Biot-Savar理论,还可以表示为:According to Maxwell's equations and Biot-Savar theory, It can also be expressed as:
因此,得到仿射非线性数学模型:Therefore, the affine nonlinear mathematical model is obtained:
其中,定义两个非线性有界函数:Among them, two nonlinear bounded functions are defined:
步骤S12、根据仿射非线性数学模型进行滑膜控制律设计。Step S12 , design the control law of the synovial membrane according to the affine nonlinear mathematical model.
磁悬浮系统的状态变量选择为z1=x1=xm(t),定义系统误差为e,误差变化率为其中e=z1-r,r为期望位置。The state variables of the magnetic levitation system are selected as z 1 =x 1 =x m (t), Define the systematic error as e, and the error rate of change where e=z 1 -r, where r is the desired position.
滑模面设计为:The sliding surface is designed as:
其中,c1,c2∈R+是正的位置控制增益,有e=z1-r=x1-r。Among them, c 1 , c 2 ∈ R + is a positive position control gain, e=z 1 -r=x 1 -r.
对上式进行求导得到:Derivation of the above formula yields:
其中,f(x)和g(x)即为仿射非线性数学模型中的两个非线性有界函数f(x)和g(x)。Among them, f(x) and g(x) are two nonlinear bounded functions f(x) and g(x) in the affine nonlinear mathematical model.
由此,得到滑模变结构控制律模型如下:Thus, the sliding mode variable structure control law model is obtained as follows:
其中,uSMC(x,t)为控制器输出,η,μ∈R+分别表示恒定到达系数和指数到达系数,r为理想跟踪指令。Among them, u SMC (x, t) is the controller output, η, μ ∈ R + represent the constant arrival coefficient and exponential arrival coefficient, respectively, and r is the ideal tracking command.
对滑模变结构控制律模型进行验证:Verify the sliding mode variable structure control law model:
李雅普诺夫方程定义为:The Lyapunov equation is defined as:
该方程正半正定,两边同时求导得到:This equation is positive semi-definite, and the derivative of both sides can be obtained at the same time:
因此,基于李雅普诺夫理论,该控制系统全局稳定。Therefore, based on the Lyapunov theory, the control system is globally stable.
上述的滑模变结构控制律模型,但其中f(·),g(·)是不确定的甚至是未知的,因此需要通过RBF神经网络在线学习逼近f(·),g(·)。The above sliding mode variable structure control law model, but f(·), g(·) are uncertain or even unknown, so it is necessary to approximate f(·), g(·) through RBF neural network online learning.
步骤S13、通过RBF神经网络在线学习逼近f(·),g(·)对滑模变结构控制律模型进行修正得到最终滑模变结构控制律模型。In step S13, the sliding mode variable structure control law model is revised to obtain the final sliding mode variable structure control law model by approximating f(·) and g(·) through online learning of the RBF neural network.
闭环控制系统的示意图如图3所示。A schematic diagram of the closed-loop control system is shown in Figure 3.
RBF神经网络的输入和输出为:The input and output of the RBF neural network are:
f(x)=W*Thf(x)+εf,g(x)=L*Thg(x)+εg f(x)=W *T h f (x)+ε f ,g(x)=L *T h g (x)+ε g
其中,x为网络输入,j为第j个隐含层节点,h=[hj]T是高斯方程输出,W,L为近似网络逼近权重,W*,L*是f(·),g(·)的理想网络权重,εf,εg分别为网络近似误差,|εf|≤εMf,|εg|≤εMg,c为神经网络节点中心向量,b为高斯基函数宽度。Among them, x is the network input, j is the jth hidden layer node, h=[h j ] T is the output of the Gaussian equation, W, L are the approximate network approximation weights, W * , L * are f( ),g (·) ideal network weight, ε f , ε g are the network approximation errors, |ε f |≤ε Mf , |ε g |≤ε Mg , c is the center vector of the neural network node, and b is the width of the Gaussian basis function.
当x=[x1x2x3]T被确定,RBF神经网络的输出为:When x=[x1x2x3] T is determined, the output of the RBF neural network is:
其中,hf(x)和hg(x)为RBF神经网络的Koski方程,和是f(x)和g(x)的估计网络权重。where h f (x) and h g (x) are the Koski equations of the RBF neural network, and are the estimated network weights for f(x) and g(x).
将神经网络最小参数学习法分别用于f(·)和g(·)。使φ=W*2,φ是正实数,是φ的在线估计值,学习误差使 是正实数,是的在线估计值,学习误差为 The neural network minimum parameter learning method is used for f(·) and g(·), respectively. Let φ=W* 2 , φ is a positive real number, is the online estimate of φ, the learning error Make is a positive real number, Yes The online estimate of , and the learning error is
由此,最终滑模变结构控制律模型表达为:Therefore, the final sliding mode variable structure control law model is expressed as:
其中,sgn(·)是符号方程,s是动态滑模面,um(x,t)为控制输出。where sgn( ) is the symbolic equation, s is the dynamic sliding mode surface, and um (x, t) is the control output.
根据最小参数学习法,f(·)和g(·)的自适应律定义为单参数和 According to the minimum parameter learning method, the adaptive laws of f( ) and g( ) are defined as a single parameter and
其中,γ1,γ2,Ω1,Ω2∈R+。Among them, γ 1 , γ 2 , Ω 1 , Ω 2 ∈R + .
对最终滑模变结构控制律模型进行验证:Verify the final sliding mode variable structure control law model:
根据步骤S13,可以得到方程:According to step S13, the equation can be obtained:
李雅普诺夫方程定义为:The Lyapunov equation is defined as:
可以知道:V≥0It can be known: V≥0
其中,in,
有,Have,
同理,Similarly,
因为RBF神经网络逼近误差εf为极小实数,重写为如下:Because the RBF neural network approximation error εf is a very small real number, it can be rewritten as follows:
综合自适应率:Comprehensive adaptation rate:
其中, in,
可得如下:Available as follows:
其中, in,
解不等式可得:solve inequalities Available:
可以看出,该系统最终是均匀有界的。因此,证明了系统的有界性和收敛性。It can be seen that the system is ultimately uniformly bounded. Therefore, the boundedness and convergence of the system are proved.
本实施例通过悬浮系统的软硬件配合完成实现。This embodiment is implemented through the cooperation of software and hardware of the suspension system.
如图4所示,悬浮系统包括间隙传感器、斩波器、磁悬浮控制器和悬浮电磁铁。间隙传感器通过斩波器连接磁浮控制器,悬浮电磁铁通过外围硬件磁浮控制器,间隙传感器安装悬浮电磁铁上。进一步地,间隙传感器通过间隙处理板、控制板和接口转换板连接斩波器。As shown in Figure 4, the levitation system includes a gap sensor, a chopper, a magnetic levitation controller and a levitation electromagnet. The gap sensor is connected to the maglev controller through a chopper, the suspension electromagnet is connected to the magnetic levitation controller through the peripheral hardware, and the gap sensor is installed on the suspension electromagnet. Further, the gap sensor is connected to the chopper through the gap processing board, the control board and the interface conversion board.
其中,磁悬浮控制器包括计算机硬件和算法软件。编制该磁悬浮控制器的算法软件,存储于计算机硬件中。当磁悬浮控制器工作时,负责执行神经网络逼近算法的运行、获取输入的设定的悬浮系统物理参数,以及实时获取轨道和车体间的间隙数据并计算和控制输出控制信号。The magnetic levitation controller includes computer hardware and algorithm software. The algorithm software of the magnetic levitation controller is compiled and stored in the computer hardware. When the magnetic levitation controller is working, it is responsible for executing the operation of the neural network approximation algorithm, obtaining the set physical parameters of the levitation system input, and obtaining the gap data between the track and the car body in real time, and calculating and controlling the output control signal.
本实施例的工作原理为:The working principle of this embodiment is:
间隙传感器实时高速不间断测量采集气隙间距数据,经模数转化滤波调制后,通过通信线路,将气隙间距数据传递给承载磁悬浮控制器的计算机设备。承载磁悬浮控制器的计算机设备将磁悬浮控制器所得出的控制量输出至外围硬件,驱动悬浮电磁铁工作,将列车悬浮起来。气隙间距与目标位置的误差通过磁悬浮控制器计算得到控制输出量。随着在间隙传感器、计算机设备、悬浮电磁铁外围硬件的实时不间断的工作,列车将会在有限时间内移动到目标位置,并保持在该位置误差限制范围内,达到稳定可靠的悬浮控制效果。The gap sensor measures and collects air gap spacing data in real time and at high speed. After analog-to-digital conversion, filtering and modulation, the air gap spacing data is transmitted to the computer equipment carrying the magnetic levitation controller through the communication line. The computer equipment carrying the magnetic levitation controller outputs the control quantity obtained by the magnetic levitation controller to the peripheral hardware, drives the levitation electromagnet to work, and suspends the train. The error between the air gap distance and the target position is calculated by the magnetic suspension controller to obtain the control output. With the real-time and uninterrupted work of the gap sensor, computer equipment, and peripheral hardware of the suspension electromagnet, the train will move to the target position within a limited time, and keep it within the limit of the position error to achieve a stable and reliable suspension control effect. .
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described above in detail. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, any technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2020102005823 | 2020-03-20 | ||
CN202010200582 | 2020-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111806246A true CN111806246A (en) | 2020-10-23 |
Family
ID=72846360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010561052.1A Pending CN111806246A (en) | 2020-03-20 | 2020-06-18 | A kind of suspension system control method for maglev train |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111806246A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113263921A (en) * | 2021-05-28 | 2021-08-17 | 同济大学 | Dynamic suspension control method of magnetic-levitation train combined with vibration identification |
CN114002953A (en) * | 2021-10-09 | 2022-02-01 | 福州大学 | Adaptive Notch Sliding Mode Differentiator Method for Maglev Train Signal Processing |
CN115230481A (en) * | 2022-08-23 | 2022-10-25 | 香港理工大学 | Train control method, device and controller based on magnetic suspension train control system |
CN116774588A (en) * | 2023-07-25 | 2023-09-19 | 石家庄铁道大学 | Dual cross-coupling adaptive back-stepping control method for EMS type maglev train suspension frame |
CN118163623A (en) * | 2024-03-04 | 2024-06-11 | 同济大学 | Finite time control method, device and storage medium for levitation system of maglev train |
CN118393967A (en) * | 2024-06-24 | 2024-07-26 | 华东交通大学 | Control method, device, medium and product for operation process of heavy-duty train |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050059230A (en) * | 2002-10-01 | 2005-06-17 | 마그네모션, 인코포레이티드 | Suspending, guiding and propelling vehicles using magnetic forces |
WO2016051145A1 (en) * | 2014-09-29 | 2016-04-07 | Special Products Limited | A suspension |
CN105751916A (en) * | 2016-02-29 | 2016-07-13 | 同济大学 | Magnetic-levitation train levitation control method |
US20180273304A1 (en) * | 2017-03-21 | 2018-09-27 | B&R Industrial Automation GmbH | Method for controlling the normal force of a transport unit of a long stator linear motor |
CN108984815A (en) * | 2018-04-20 | 2018-12-11 | 江苏大学 | The control method of vehicle-mounted flying wheel battery radial suspension supporting system based on operating condition |
CN109532509A (en) * | 2018-12-28 | 2019-03-29 | 西南交通大学 | A kind of magnetic floating train suspending control method based on Sliding mode variable structure control |
CN110244558A (en) * | 2019-05-09 | 2019-09-17 | 重庆大学 | Design method of fuzzy controller based on EMS suspension system |
-
2020
- 2020-06-18 CN CN202010561052.1A patent/CN111806246A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050059230A (en) * | 2002-10-01 | 2005-06-17 | 마그네모션, 인코포레이티드 | Suspending, guiding and propelling vehicles using magnetic forces |
WO2016051145A1 (en) * | 2014-09-29 | 2016-04-07 | Special Products Limited | A suspension |
CN105751916A (en) * | 2016-02-29 | 2016-07-13 | 同济大学 | Magnetic-levitation train levitation control method |
US20180273304A1 (en) * | 2017-03-21 | 2018-09-27 | B&R Industrial Automation GmbH | Method for controlling the normal force of a transport unit of a long stator linear motor |
CN108984815A (en) * | 2018-04-20 | 2018-12-11 | 江苏大学 | The control method of vehicle-mounted flying wheel battery radial suspension supporting system based on operating condition |
CN109532509A (en) * | 2018-12-28 | 2019-03-29 | 西南交通大学 | A kind of magnetic floating train suspending control method based on Sliding mode variable structure control |
CN110244558A (en) * | 2019-05-09 | 2019-09-17 | 重庆大学 | Design method of fuzzy controller based on EMS suspension system |
Non-Patent Citations (2)
Title |
---|
CHEN CHEN: "Sliding Mode Robust Adaptive Control of Maglev Vehicle"s Nonlinear Suspension System Based on Flexible Track: Design and Experiment", 《IEEE ACCESS》 * |
YOUGANG SUN: "Adaptive Neural-Fuzzy Robust Position Control Scheme for Maglev Train Systems With Experimental Verification", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113263921A (en) * | 2021-05-28 | 2021-08-17 | 同济大学 | Dynamic suspension control method of magnetic-levitation train combined with vibration identification |
CN113263921B (en) * | 2021-05-28 | 2022-07-15 | 同济大学 | Dynamic suspension control method of magnetic-levitation train combined with vibration identification |
CN114002953A (en) * | 2021-10-09 | 2022-02-01 | 福州大学 | Adaptive Notch Sliding Mode Differentiator Method for Maglev Train Signal Processing |
CN114002953B (en) * | 2021-10-09 | 2023-12-08 | 福州大学 | Self-adaptive notch sliding mode differentiator method for magnetic levitation train signal processing |
CN115230481A (en) * | 2022-08-23 | 2022-10-25 | 香港理工大学 | Train control method, device and controller based on magnetic suspension train control system |
CN116774588A (en) * | 2023-07-25 | 2023-09-19 | 石家庄铁道大学 | Dual cross-coupling adaptive back-stepping control method for EMS type maglev train suspension frame |
CN116774588B (en) * | 2023-07-25 | 2024-01-23 | 石家庄铁道大学 | EMS type magnetic suspension train suspension frame double cross coupling self-adaptive backstepping control method |
CN118163623A (en) * | 2024-03-04 | 2024-06-11 | 同济大学 | Finite time control method, device and storage medium for levitation system of maglev train |
CN118393967A (en) * | 2024-06-24 | 2024-07-26 | 华东交通大学 | Control method, device, medium and product for operation process of heavy-duty train |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111806246A (en) | A kind of suspension system control method for maglev train | |
Wai et al. | Backstepping fuzzy-neural-network control design for hybrid maglev transportation system | |
Fei et al. | Adaptive sliding mode control of dynamic systems using double loop recurrent neural network structure | |
Xu et al. | Model-free cooperative adaptive sliding-mode-constrained-control for multiple linear induction traction systems | |
CN107272677B (en) | A Variable Structure Adaptive Trajectory Tracking Control Method for Mobile Robots | |
CN105629729A (en) | Network mobile robot locus tracking control method based on linearity auto-disturbance rejection | |
Zhao et al. | Deterministic learning from adaptive neural network control for a 2-dof helicopter system with unknown backlash and model uncertainty | |
CN110244558A (en) | Design method of fuzzy controller based on EMS suspension system | |
CN212289523U (en) | Magnetic Levitation Control System | |
Wang et al. | Event driven model free control of quadrotor | |
CN117226613A (en) | Robot constant force control polishing method based on PPO reinforcement learning | |
Li et al. | Barrier function-based adaptive neuro network sliding mode vibration control for flexible double-clamped beams with input saturation | |
CN112147894B (en) | Active Control Method of Wheeled Mobile Robot Based on Kinematics and Dynamics Model | |
CN116700014A (en) | Intelligent wheelchair track tracking control method based on supercoiled sliding mode observer | |
Zhou et al. | Super-twisting algorithm-based fractional-order sliding-mode control of nonlinear systems with mismatched uncertainties | |
CN110701187B (en) | Intelligent double-integral sliding mode control method and equipment for five-degree-of-freedom magnetic bearing | |
CN110440778A (en) | A kind of MEMS gyroscope non-overshoot guaranteed cost fuzzy wavelet nerve control method | |
Jalili-Kharaajoo et al. | Sliding mode control of voltage-controlled magnetic levitation systems | |
CN116766181B (en) | An active compliance control method for a robotic arm based on full drive system theory | |
Tan et al. | Disturbance compensation-based deep reinforcement learning control strategy for underactuated overhead crane systems: Design and experiments | |
CN114488790B (en) | Omnidirectional mobile robot self-adaptive sliding film control method based on nominal model | |
CN116560375A (en) | Trajectory Tracking Control Method of Wheeled Mobile Robot Based on Neural Network Observer | |
CN116991064A (en) | Differential AGV trajectory tracking method and system based on actuator anti-saturation control | |
Chen et al. | Three controllers via 2nd-order sliding mode for leader-following formation control of multi-robot systems | |
Ahmadi et al. | Optimized Adaptive Combined Hierarchical Sliding Mode Controller Design for a Class of Uncertain Under-actuated Time-Varying Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201023 |