CN111800515A - Wireless communication management method for Internet of things embedded equipment - Google Patents
Wireless communication management method for Internet of things embedded equipment Download PDFInfo
- Publication number
- CN111800515A CN111800515A CN202010695656.5A CN202010695656A CN111800515A CN 111800515 A CN111800515 A CN 111800515A CN 202010695656 A CN202010695656 A CN 202010695656A CN 111800515 A CN111800515 A CN 111800515A
- Authority
- CN
- China
- Prior art keywords
- internet
- state
- things
- equipment
- wireless communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0261—Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
- H04W52/0274—Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephonic Communication Services (AREA)
Abstract
The invention discloses a life cycle management method and a life cycle management system of an Internet of things embedded device, which comprise the following steps: the method comprises the steps that the Internet of things embedded equipment enters a production mode, product detection is carried out on the equipment, and a command for switching to a transportation mode is sent when the product passes the detection; receiving a mode switching instruction, performing encryption authentication on the Internet of things embedded equipment, and entering a transportation mode; the method comprises the steps of entering a to-be-activated mode after equipment installation is carried out on the Internet of things embedded equipment, starting a standby power supply and configuring equipment ID information for the equipment; and generating a wireless communication certificate according to the equipment ID information and sending an activation instruction, and entering an activation mode by the Internet of things embedded equipment to formally start operation. Its advantages are: the operation power consumption of the embedded system of the Internet of things is reduced, the safety and reliability of the power supply of the equipment are guaranteed, the information safety of the system is improved, and the cost of communication resources is reduced.
Description
Technical Field
The invention relates to the technical field of embedded internet of things supervision methods, in particular to a life cycle management method and system of internet of things embedded equipment.
Background
The internet of things is a huge network formed by collecting various required information such as any object or process needing monitoring, connection and interaction in real time through various information sensing devices and combining the information with the internet. The object is to realize the connection of objects, objects and people and the connection of all objects and a network, and the object identification, management and control are more convenient and faster through the remote assistance of the internet. The embedded equipment of the Internet of things can acquire the states of the sensors through current and voltage and output voltage and current modes to control the action part; or connected with other devices through Ethernet, RS485 bus, USB, I2C bus, CAN bus to obtain information and control objects.
The existing embedded system of the internet of things has the following four problems in the using process:
power consumption: in recent decades, with the development of communication technology and semiconductor technology, the power consumption of the internet of things embedded system has been greatly improved, but because the internet of things embedded system needs to be connected with a background server in a wireless communication mode, the power consumption is still over 1W. For unattended application scenes such as agriculture, forestry and traffic, batteries or solar power supplies are often used for reducing power consumption, and the lower power consumption means a longer life maintenance period, so the life period management of embedded system equipment is very important.
A standby power supply: in the equipment of the embedded system of the internet of things, a standby battery is often arranged in the embedded system of the internet of things, so that alarm information can be sent to a background server in time when the system has a power failure. Because the internet of things embedded system has a long storage logistics period from the completion of factory production to the installation and starting of the internet of things embedded system, in order to avoid long-time discharge failure in the process of the standby power supply, the standby power supply system is usually connected into the internet of things embedded system when the internet of things embedded system is installed on the use site. For the internet of things embedded system used in a severe environment, if the mode of installing the standby power supply on site is adopted, stricter reliability is required, and the engineering technical requirement for accessing the standby power supply on site is correspondingly improved.
Information security: the embedded system of the internet of things can collect a large amount of information in the operation process, and the data information has important commercial value. During the operation process of the internet of things embedded system, when the remote control function is realized on articles, if the remote control function is not used properly, network safety accidents such as production data information leakage and the like are easily caused. Therefore, how to guarantee the information transmission security in the internet of things is a major challenge in the field of internet of things.
Telecommunication operator communication resources: the Internet of things embedded system uses a wireless communication technology, and accesses the Internet through a telecom operator, so that the communication resources of the telecom operator are efficiently used, and the operation cost of the whole Internet of things system is reduced. In some industries with high requirements on communication reliability environment, a patch SIM IC mode is often used because the conventional SIM Card mode cannot be satisfied. This means that the communication resources of the telecom operator are already enabled by the internet of things embedded system in the production stage and the transportation stage of a factory, and each month, communication month charges need to be paid to the operator according to each system device; in the storage logistics transportation stage before the installation and the starting, the internet of things embedded system does not work, but related monthly fees still need to be paid to a telecom operator, which is actually a waste of communication resources of the telecom operator, and the working cost of the internet of things embedded system is increased.
Disclosure of Invention
The invention aims to provide a life cycle management system and a life cycle management method of an internet of things embedded device, which can reduce power consumption, ensure the reliability of a standby power supply, ensure the information security of the internet of things and avoid the resource waste of a telecom operator, aiming at the defects in the prior art.
In order to achieve the purpose, the invention adopts the technical scheme that: a life cycle management method of an Internet of things embedded device comprises the following steps:
step 01, the Internet of things embedded equipment enters a production mode, product detection is carried out on the equipment, and an instruction for switching to a transportation mode is sent when the product passes the detection;
step 02, receiving a mode switching instruction, performing encryption authentication on the Internet of things embedded equipment, and then entering a transportation mode;
step 03, after equipment installation is carried out on the Internet of things embedded equipment, the equipment enters a to-be-activated mode, a standby power supply is started, and equipment ID information is configured for the equipment;
and step 04, generating a wireless communication certificate according to the equipment ID information and sending an activation instruction, and entering an activation mode by the Internet of things embedded equipment to formally start operation.
Further, the method further comprises the step 05 of entering a product scrapping mode by sending a scrapping instruction when the embedded equipment of the internet of things needs to be stopped after the embedded equipment of the internet of things is in the activated mode, and completely closing the wireless communication function of the equipment in the mode.
Further, the product detection in step 01 comprises: whether the wireless communication function is normal or not is detected, whether the equipment power supply is safe and reliable or not is detected, the wireless communication function is in an unopened state in the production mode is detected, and the standby power supply is in an off state in the production mode is detected.
Further, the encryption authentication in step 02 includes: and configuring a temporary certificate for the embedded equipment of the Internet of things, so that encryption authentication is performed through the temporary certificate when data interaction is performed between the embedded equipment of the Internet of things and the server.
Furthermore, the wireless communication function of the equipment is in an enabled state only in the activated mode, and the wireless communication function of the equipment is in a closed state in other modes; the power supply of the equipment is in a disconnected state in the production mode and the transportation mode, and the power supply of the equipment is in a disconnected state in the to-be-activated mode and the scrapping mode.
Further, in step 04, the internet of things embedded device includes three working states, i.e., an operating state, a standby state, and a silent state, when entering the active mode.
Further, the three working state change processes of the internet of things embedded device comprise: after all services of the Internet of things embedded equipment are finished, the trigger equipment enters a standby state from an operating state; when the equipment is started or an abnormal event occurs, the equipment is triggered to directly enter an operating state; when the equipment receives a remote control instruction, the equipment is triggered to enter an operating state from a standby state; and when the standby time of the equipment reaches the standby time preset by the system, triggering the equipment to enter a silent state from the standby state.
Correspondingly to the method, the technical scheme of the system adopted by the invention is as follows: a life cycle management system of an Internet of things embedded device comprises:
the product detection module is used for detecting the product of the equipment when the Internet of things embedded equipment enters a production mode;
the sending instruction module is used for sending and receiving a mode switching instruction;
the power supply management module is used for monitoring and managing the disconnection and starting states of the main power supply and the standby power supply;
the wireless communication function management module is used for monitoring and managing the closing and starting states of the wireless communication function;
the information security management module is used for configuring a temporary certificate for encryption authentication and configuring equipment ID information to generate a wireless communication certificate;
and the working state management module is used for controlling the migration of the working state of the Internet of things embedded equipment in the activation mode.
Furthermore, the product detection module comprises a comprehensive tester device for testing the function and performance of the wireless communication device.
Further, the operating state management module includes:
the state change triggering unit is used for judging the type of the state change triggering event;
and the state transition path control unit is used for selecting a transition path of the working state according to the type of the state change trigger event.
The invention has the advantages that:
1. the invention reduces the operation power consumption of the system, prolongs the service cycle of the equipment, ensures the reliability, durability and safety of the system power supply and ensures the sufficient electric quantity of the standby power supply by controlling and managing the working modes of the equipment in different life cycles, thereby being suitable for the long-time storage and transportation process.
2. The invention ensures the safety of the power supply by managing the power supply state of the equipment in different modes, ensures that the standby power supply can normally maintain the system to work and trigger the alarm service when the main power supply is abnormal in an inactive mode and an active mode.
3. According to the information security management module, the binding of the TLS certificate and the physical information of the terminal equipment is guaranteed through the combination of the temporary encryption and the equipment ID information authentication encryption mode, the accuracy of acquired data is guaranteed, the certificate is generated after the information is bound, the waste of certificate resources is avoided, the certificate is downloaded directly from a background server to an Internet of things embedded system, and compared with the mode that an offline tool is used for writing the certificate, the information security management module has higher security.
4. The invention saves communication resources and saves the communication cost of the whole life cycle of the system by controlling the wireless communication function of the system equipment in different modes.
Drawings
For a more complete understanding of the objects, features and advantages of the present invention, reference is now made to the following detailed description of the preferred embodiments of the invention, taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic diagram illustrating the switching process between modes in the lifecycle management method of the present invention;
FIG. 2 is a schematic diagram of the framework of the system of the present invention;
fig. 3 is a schematic diagram illustrating the working state transition of the internet of things embedded device in the activation mode;
Detailed Description
Referring to fig. 1 and fig. 2, in this embodiment, a life cycle management system of an internet of things embedded device of the present invention includes:
the product detection module is used for detecting the product of the equipment when the Internet of things embedded equipment enters a production mode;
the sending instruction module is used for sending and receiving a mode switching instruction;
the power supply management module is used for monitoring and managing the disconnection and starting states of the main power supply and the standby power supply;
the wireless communication function management module is used for monitoring and managing the closing and starting states of the wireless communication function;
the information security management module is used for configuring a temporary certificate for encryption authentication and configuring equipment ID information to generate a wireless communication certificate;
and the working state management module is used for controlling the migration of the working state of the Internet of things embedded equipment in the activation mode. The module comprises:
the state change triggering unit is used for judging the type of the state change triggering event;
and the state transition path control unit is used for selecting a transition path of the working state according to the type of the state change trigger event.
Based on the functional module, the life cycle management method of the Internet of things embedded equipment comprises the following steps:
step 01, the Internet of things embedded equipment enters a production mode, product detection is carried out on the equipment, and an instruction for switching to a transportation mode is sent when the product passes the detection;
the production mode refers to a mode in which the internet of things embedded system is produced in a factory in a large scale. In this mode, the product detection module detects all functions and performance of the product. The performance of the wireless communication function is detected by using special instruments such as a comprehensive tester and the like; and detecting the state of the standby power supply of the product containing the standby power supply. In this mode, all devices of the internet of things embedded system do not have any business function. The product detection result meets the product qualification standard preset by the system: the wireless communication function can be normally used, and the wireless communication function is in an unopened state in the current mode; the main power supply and the standby power supply of the equipment can be safely used, and the power supply is in an off state in the current mode. For products meeting the detection standard, the production line tool triggers the sending instruction module to send a mode switching instruction to the next mode.
Step 02, receiving a mode switching instruction, performing encryption authentication on the Internet of things embedded equipment, and then entering a transportation mode;
the transportation mode refers to a mode in which the warehouse logistics are located after the production of the Internet of things embedded system equipment is completed. In this mode, the power management module controls all power supplies of the product equipment to be in a power-off state, the whole system does not run, and the standby power supply is not started. The wireless communication function management module controls the wireless communication function of the product equipment to be in a closed state and has no service function. In the production mode of the equipment, in order to facilitate production, the information security management module is a unified temporary certificate which is arranged in all product equipment so as to ensure the convenience of production. Before the activation action is completed, the information security management module carries out encryption authentication on the temporary certificate of the physical network embedded system and the background server, and the information security of data interaction is ensured.
Step 03, after equipment installation is carried out on the Internet of things embedded equipment, the equipment enters a to-be-activated mode, a standby power supply is started by a power supply management module, and meanwhile, equipment ID information is configured for the equipment by an information safety management module;
after the equipment is transported to a destination, an engineer installs and powers on the Internet of things embedded system, and at the moment, the equipment enters a to-be-activated mode. In the activation mode, an engineer can write a sensor Sequence (SN) or a serial number of associated Equipment into a physical network embedded system by using a special tool, an information security management module of the Internet of things embedded system generates unique terminal device ID information according to the relevant serial number and the information such as the serial number of the engineer, an SIM IC card number (ICCID), an Identity code of communication Equipment (IMEI), and the like, and the engineer reads the device ID information by using the special tool and uploads the device ID information to a background server manually to complete installation and configuration work.
Step 04, generating a wireless communication certificate according to the equipment ID information and sending an activation instruction, enabling the Internet of things embedded equipment to enter an activation mode after receiving the activation instruction, and formally starting operation;
in the process of activating action, the information security management module transmits the equipment ID information to the background server, the background server generates a corresponding TLS certificate according to the equipment ID information, the TLS certificate is issued to the Internet of things embedded system in a wireless communication mode, and the instruction sending module sends an activation instruction to complete equipment activation action. The binding of the TLS certificate and the physical information of the terminal equipment is realized, and the accuracy of data acquisition is ensured. In the process, after the information is bound, the certificate is generated, so that the waste of certificate resources is avoided; the certificate is downloaded to the Internet of things embedded system directly from the background server, and compared with the traditional method of writing the certificate by using an off-line tool, the method has higher safety.
Step 05, when the embedded equipment of the internet of things needs to be stopped after being in the activation mode, the embedded equipment of the internet of things enters a product scrapping mode by sending a scrapping instruction, and the wireless communication function of the equipment is completely closed in the mode. When equipment in a certain activation mode needs to be scrapped, the background server sends a scrapping instruction to the corresponding Internet of things embedded system through the instruction sending module to enter a product scrapping mode. After the equipment enters a product scrapping mode, the power supply management module disconnects all power supplies, and the wireless communication function management module closes the wireless communication function of the system equipment; and meanwhile, the background server interacts with the telecom operator server to complete the charge settlement of the related number.
In the process from the production mode to the product scrapping mode of the Internet of things embedded equipment, communication resources of telecom operators are greatly saved.
In the production mode, the functions and the performances of the wireless communication module are tested by using equipment such as a comprehensive tester and the like in the production process, and the test scheme can complete all test works without connecting the Internet of things embedded system equipment to a communication operator base station, so that in the production mode, an SIM IC is not required to be started, and the communication cost and monthly rental cost of a mobile operator are not generated.
Because the SIM IC is not started, the long-time warehouse logistics process can not generate a large amount of monthly telephone number fee.
When the Internet of things embedded system is installed and activated, firstly, a background server and a telecom operator server are required to interact, and SIM IC in the corresponding Internet of things embedded system is activated according to SIMIC card number information; after the SIM IC is activated, the embedded system of the Internet of things can be connected to a communication operator base station and accessed to the Internet; at the moment, the background server can interact with the corresponding Internet of things embedded system through the operator wireless communication network to complete the activation process.
When some equipment needs to be scrapped, the background server sends a scrapping instruction to the corresponding Internet of things embedded system to enter a scrapping state, and the wireless communication function of the Internet of things embedded system is closed; and meanwhile, the background server interacts with the telecom operator server to complete the charge settlement of the related number.
As shown in fig. 3, the internet of things embedded system device is in an active mode, and includes three working states, i.e., an operating state, a standby state, and a silent state, the system selects different working states according to the characteristics of different services, and the overall power consumption of the system is reduced by the comprehensive transition of the working states.
The operation state is as follows: in the state, all functional modules of the Internet of things embedded system equipment normally operate, and the state information of the sensor and the related equipment is collected and reported to the background server; or receiving the instruction of the background server to remotely control the related equipment.
Standby state: in the state, all functional module power supplies of the Internet of things embedded system equipment are kept in a starting state, and all modules are dormant; the system can be awakened at any time by the wireless communication module, the sensor detection module and the bus communication module.
Silence state: in this state, the embedded system of the physical network turns off the power supply of the wireless communication module, and the power supply of the sensor detection module and the bus communication module keeps entering a sleep mode. The system can be awakened by the sensor detection module and the bus communication module. In the silent state, the power of the wireless communication module is turned off, so that the overall power consumption is lower than that in the standby state.
The three working state change and migration processes of the internet of things embedded equipment are as follows:
and all services of the Internet of things embedded equipment are finished, the relevant equipment stops working, the Internet of things embedded system does not need to acquire relevant information, and the data acquisition service stops. The state change triggering unit judges that the system is in a service completion state at the moment, and the triggering state transition path control unit selects a transition path of the equipment from the running state to the standby state.
The method comprises the steps that related equipment of the Internet of things embedded system starts to work or abnormal events (sensor state abnormity, power supply abnormity and the like) occur locally, a state change triggering unit judges that the system is in a local service requirement triggering event at the moment, a triggering state migration path control unit selects a migration path of the equipment from a standby state or a silent state to an operating state, the Internet of things embedded system enters the operating state, and data acquisition service or alarm service is executed.
The background server initiates a remote control instruction to the Internet of things embedded system through a wireless communication function by the operation of related personnel. The state change triggering unit judges that the system is in a background remote service requirement triggering event at the moment, the triggering state transition path control unit selects a transition path of the equipment from a standby state to an operating state, and the Internet of things embedded system enters the operating state to execute the remote control service.
After the embedded device of the internet of things enters a standby state for a period of time (the standby time can be preset by an operator according to the actual situation, defining proper system preset time), after the standby duration time is reached, the state change triggering unit judges that the system is in a state that the standby duration time reaches the state, and the state transition path control unit is triggered to select a transition path of the device from the standby state to a silent state. The internet of things embedded system entering the silent state does not allow the background to initiate a remote control instruction any more in service, and the power consumption of the physical network embedded system is further reduced in the silent state.
The above description is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, several modifications and additions can be made without departing from the method of the present invention, and these modifications and additions should also be regarded as the protection scope of the present invention.
Claims (10)
1. A wireless communication management method of an Internet of things embedded device is characterized by comprising the following steps:
s01, in the production mode, not enabling the SIM IC;
s03, in the transportation mode, not enabling the SIM IC;
s05, in the to-be-activated mode, the background server interacts with the telecom operator server, and the SIM IC in the corresponding Internet of things embedded system is activated according to the SIMIC card number information;
s07, after the SIM IC is activated, the Internet of things embedded equipment is wirelessly connected with a communication operator base station and is accessed to the Internet; meanwhile, the background server interacts with the Internet of things embedded equipment through the operator wireless communication network to complete the activation process.
2. The wireless communication management method of the internet of things embedded device according to claim 1, further comprising the following steps:
and S09, when the embedded equipment of the Internet of things needs to be scrapped, the background server sends out a scrapping instruction, the embedded equipment of the Internet of things enters a scrapping state, and the wireless communication function is closed.
3. The wireless communication management method of the internet of things embedded device as claimed in claim 2, wherein the step S09 further includes the background server interacting with the telecom operator server to complete the charge settlement of the relevant number.
4. The wireless communication management method for the internet of things embedded device according to claim 1, wherein the step S01 further includes: and testing the function and performance of the wireless communication module by using the comprehensive tester in the production process.
5. The wireless communication management method of the internet of things embedded device according to claim 1, further comprising the following steps:
and S08, in the activation mode, the Internet of things embedded device includes three working states of an operation state, a standby state and a silent state, and the state transition path control unit is triggered to select a transition path of the device from the standby state or the silent state to the operation state.
6. The wireless communication management method of the internet of things embedded device according to claim 5, wherein the step S08 further comprises the steps of entering an operation state of the internet of things embedded system, and executing a data acquisition service or an alarm service.
7. The wireless communication management method of the internet of things embedded device as claimed in claim 5, wherein the step S08 further includes the step of the state change triggering unit determining that the local service requires a triggering event.
8. The wireless communication management method of the internet of things embedded device according to claim 5, wherein the step S08 further comprises the background server initiating a remote control command to the internet of things embedded system through a wireless communication function.
9. The wireless communication management method of the internet of things embedded device according to claim 8, wherein the step S08 further includes the step of determining that the system is in a background remote service requirement triggering event, the triggering state transition path control unit selecting a transition path for the device to enter the running state from the standby state, and the internet of things embedded device entering the running state to execute the remote control service.
10. The wireless communication management method of the internet of things embedded device according to claim 8, wherein the step S08 further includes that after the internet of things embedded device enters the standby state for a period of time, the standby time can be customized for a preset time, and after the standby duration is reached, the state change triggering unit determines that the system is in the state where the standby duration reaches the state, the state transition path control unit is triggered to select a transition path where the device enters the silent state from the standby state, and the internet of things embedded device entering the silent state no longer allows the background to initiate the remote control instruction in service.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010695656.5A CN111800515A (en) | 2017-12-06 | 2017-12-06 | Wireless communication management method for Internet of things embedded equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711276963.4A CN107948302B (en) | 2017-12-06 | 2017-12-06 | Life cycle management method and system of Internet of things embedded equipment |
CN202010695656.5A CN111800515A (en) | 2017-12-06 | 2017-12-06 | Wireless communication management method for Internet of things embedded equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711276963.4A Division CN107948302B (en) | 2017-12-06 | 2017-12-06 | Life cycle management method and system of Internet of things embedded equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111800515A true CN111800515A (en) | 2020-10-20 |
Family
ID=61945890
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010695656.5A Withdrawn CN111800515A (en) | 2017-12-06 | 2017-12-06 | Wireless communication management method for Internet of things embedded equipment |
CN201711276963.4A Active CN107948302B (en) | 2017-12-06 | 2017-12-06 | Life cycle management method and system of Internet of things embedded equipment |
CN202010747049.9A Withdrawn CN111885626A (en) | 2017-12-06 | 2017-12-06 | Power consumption management method for Internet of things embedded equipment |
CN202010745828.5A Withdrawn CN111885687A (en) | 2017-12-06 | 2017-12-06 | Power consumption management module of embedded equipment of thing networking |
CN202010696526.3A Withdrawn CN111866126A (en) | 2017-12-06 | 2017-12-06 | Wireless communication management module of embedded equipment of thing networking |
CN202010696527.8A Withdrawn CN111866127A (en) | 2017-12-06 | 2017-12-06 | Information security management module of embedded equipment of thing networking |
CN202010696000.5A Withdrawn CN111866125A (en) | 2017-12-06 | 2017-12-06 | Information security management method for Internet of things embedded equipment |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711276963.4A Active CN107948302B (en) | 2017-12-06 | 2017-12-06 | Life cycle management method and system of Internet of things embedded equipment |
CN202010747049.9A Withdrawn CN111885626A (en) | 2017-12-06 | 2017-12-06 | Power consumption management method for Internet of things embedded equipment |
CN202010745828.5A Withdrawn CN111885687A (en) | 2017-12-06 | 2017-12-06 | Power consumption management module of embedded equipment of thing networking |
CN202010696526.3A Withdrawn CN111866126A (en) | 2017-12-06 | 2017-12-06 | Wireless communication management module of embedded equipment of thing networking |
CN202010696527.8A Withdrawn CN111866127A (en) | 2017-12-06 | 2017-12-06 | Information security management module of embedded equipment of thing networking |
CN202010696000.5A Withdrawn CN111866125A (en) | 2017-12-06 | 2017-12-06 | Information security management method for Internet of things embedded equipment |
Country Status (1)
Country | Link |
---|---|
CN (7) | CN111800515A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111027844A (en) * | 2019-12-05 | 2020-04-17 | 新奥数能科技有限公司 | Method and device for managing life cycle of equipment, readable medium and electronic equipment |
CN111866060A (en) * | 2020-05-26 | 2020-10-30 | 普联国际有限公司 | TLS (transport layer service) connection method of communication equipment, communication equipment and communication system |
CN112203267A (en) * | 2020-09-10 | 2021-01-08 | 上海麦腾物联网技术有限公司 | SIM IC self-adaptive solution of Internet of things embedded equipment |
CN112203268A (en) * | 2020-09-10 | 2021-01-08 | 上海麦腾物联网技术有限公司 | SIM IC self-adaptive solution of Internet of things embedded equipment |
CN112422289B (en) * | 2020-09-30 | 2022-02-22 | 郑州信大捷安信息技术股份有限公司 | Method and system for offline security distribution of digital certificate of NB-IoT (NB-IoT) terminal equipment |
CN112579283B (en) * | 2020-11-23 | 2024-02-20 | 全球能源互联网研究院有限公司 | Resource scheduling method and system for edge node of electric power Internet of things |
CN112348446A (en) * | 2020-11-30 | 2021-02-09 | 重庆斯铂电气自动化设备有限公司 | Warehouse management system based on tray |
CN115996276B (en) * | 2021-10-18 | 2024-08-06 | 广州开得联智能科技有限公司 | Remote operation and maintenance control method, device, equipment and storage medium of recording and broadcasting equipment |
CN114157588B (en) * | 2021-10-22 | 2024-03-19 | 国网山西省电力公司阳泉供电公司 | Automatic flow monitoring method on life cycle line of Internet of things card |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201830014U (en) * | 2010-09-30 | 2011-05-11 | 苏州捷泰科信息技术有限公司 | Switching control device for main and standby power sources |
CN102054223A (en) * | 2010-12-25 | 2011-05-11 | 深圳市科陆电子科技股份有限公司 | Power transmission and distribution equipment full-life cycle management system based on Internet of Things technology |
CN103118356B (en) * | 2013-02-07 | 2015-09-09 | 中国联合网络通信集团有限公司 | Embedded smart card eUICC Activiation method, system, terminal and platform |
CN103747104A (en) * | 2014-01-24 | 2014-04-23 | 中国联合网络通信集团有限公司 | Method and system for migrating user information among internet of things equipment |
US9538311B2 (en) * | 2014-02-04 | 2017-01-03 | Texas Instruments Incorporated | Auto-provisioning for internet-of-things devices |
KR20150123540A (en) * | 2014-04-25 | 2015-11-04 | 삼성전자주식회사 | A method and an apparatus operating of a smart system for optimization of power consumption |
CN105527050A (en) * | 2015-12-29 | 2016-04-27 | 广东工业大学 | Wireless rechargeable ZigBee network air pressure sensor |
CN106028304A (en) * | 2016-05-03 | 2016-10-12 | 王家城 | Mobile communication terminal having wireless transmission function of embedded SIM card data |
CN106301799A (en) * | 2016-08-09 | 2017-01-04 | 上海斐讯数据通信技术有限公司 | A kind of intelligent power supply method of vehicle-mounted router and system and vehicle-mounted router |
-
2017
- 2017-12-06 CN CN202010695656.5A patent/CN111800515A/en not_active Withdrawn
- 2017-12-06 CN CN201711276963.4A patent/CN107948302B/en active Active
- 2017-12-06 CN CN202010747049.9A patent/CN111885626A/en not_active Withdrawn
- 2017-12-06 CN CN202010745828.5A patent/CN111885687A/en not_active Withdrawn
- 2017-12-06 CN CN202010696526.3A patent/CN111866126A/en not_active Withdrawn
- 2017-12-06 CN CN202010696527.8A patent/CN111866127A/en not_active Withdrawn
- 2017-12-06 CN CN202010696000.5A patent/CN111866125A/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN111885626A (en) | 2020-11-03 |
CN107948302B (en) | 2020-09-08 |
CN111866126A (en) | 2020-10-30 |
CN111885687A (en) | 2020-11-03 |
CN111866125A (en) | 2020-10-30 |
CN107948302A (en) | 2018-04-20 |
CN111866127A (en) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107948302B (en) | Life cycle management method and system of Internet of things embedded equipment | |
CN210983601U (en) | Portable power source leased equipment and module and portable power source charge thereof | |
CN202384780U (en) | Charging device and electric vehicle charging system | |
CN103568863B (en) | Real-time monitoring and diagnosing system and method for battery management system of electric vehicle | |
CN107590874A (en) | Safety route inspection method and inspection mobile terminal | |
CN102324707A (en) | Method and system for patrolling and maintaining power distribution network automatic terminal | |
CN113985852B (en) | Log processing method, device and system for vehicle-mounted terminal | |
CN105140886A (en) | Protective relaying system and method for gathering data using thereof | |
CN110136297A (en) | Electric vehicle fault determination method, device, handheld device and storage medium | |
KR20110005368A (en) | An operation maintenance system and method for photovoltaic power generator | |
WO2023064646A1 (en) | Methods of using bidirectional charging to supply back-up power and increase resiliency of powered networks | |
CN104201784B (en) | A kind of transmission line online monitoring system and operation conditions monitoring method and apparatus thereof | |
CN113376433A (en) | Remote diagnosis and debugging system for alternating-current charging pile and implementation method thereof | |
CN108336713A (en) | Configure the power distribution network intelligent controller of coded communication module | |
CN103533626B (en) | Dormancy awakening method based on cascading skip wireless communication network | |
CN104794812A (en) | Card swiping system and managing method thereof | |
CN101477342B (en) | Collection device type oriented interval data acquisition method | |
KR101323139B1 (en) | Remote monitoring system and method thereof | |
CN204013616U (en) | Intelligent instrument and intelligent monitor system | |
CN204270387U (en) | A kind of unlock key management machine | |
CN204680096U (en) | A kind of card-punching system | |
CN211151562U (en) | Portable power source leased equipment and module and portable power source charge thereof | |
Rojas-Hernandez | Electric Vehicle Fleet control through OCPP deployment | |
CN112203267A (en) | SIM IC self-adaptive solution of Internet of things embedded equipment | |
CN209821303U (en) | Lightning protection equipment detecting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20201020 |