CN111797478A - A Strong Maneuvering Target Tracking Method Based on Variable Structure Multiple Models - Google Patents
A Strong Maneuvering Target Tracking Method Based on Variable Structure Multiple Models Download PDFInfo
- Publication number
- CN111797478A CN111797478A CN202010734714.0A CN202010734714A CN111797478A CN 111797478 A CN111797478 A CN 111797478A CN 202010734714 A CN202010734714 A CN 202010734714A CN 111797478 A CN111797478 A CN 111797478A
- Authority
- CN
- China
- Prior art keywords
- model
- target
- tracking
- detector
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000005259 measurement Methods 0.000 claims abstract description 51
- 238000001514 detection method Methods 0.000 claims description 54
- 238000001914 filtration Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 13
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 10
- 238000004088 simulation Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/277—Analysis of motion involving stochastic approaches, e.g. using Kalman filters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及目标跟踪领域,具体为一种基于变结构多模型的强机动目标跟踪方法。The invention relates to the field of target tracking, in particular to a strong maneuvering target tracking method based on variable structure and multiple models.
背景技术Background technique
在目标跟踪领域,通常采用卡尔曼滤波进行跟踪,联合目标运动模型和量测数据,对量测数据进行修正的算法。主要解决三方面的问题:一是观测器的测量误差,包括常值偏差和随机偏差,量测数据的不稳定性及精度限制在目标跟踪算法中得到了一定的修正;二是目标的机动,由于目标和跟踪方属于不同的机构,无法准确获得目标的机动模式,其机动带有很大的随机性和不确定性,可以在跟踪过程中依据残差对目标是否发生机动进行辨别,提供参考依据;三是传感器通常只能探测到目标的位置数据,对于目标的速度和相关参数数据无法获取,在目标跟踪算法中,可以对目标状态向量进行扩维,进而得到相关参数的估计值,增加对目标运动模式的了解,也提高目标跟踪的精确度。In the field of target tracking, Kalman filtering is usually used for tracking, and the algorithm is combined with the target motion model and measurement data to correct the measurement data. It mainly solves three problems: first, the measurement error of the observer, including constant deviation and random deviation, the instability and accuracy of the measurement data have been corrected in the target tracking algorithm; the second is the target's maneuvering, Since the target and the tracking party belong to different institutions, the maneuvering mode of the target cannot be accurately obtained, and its maneuvering has great randomness and uncertainty. During the tracking process, it is possible to identify whether the target has maneuvered according to the residual error, and provide a reference The third is that the sensor can only detect the position data of the target, and the speed and related parameter data of the target cannot be obtained. In the target tracking algorithm, the target state vector can be expanded, and then the estimated value of the relevant parameters can be obtained. Knowledge of target motion patterns also improves the accuracy of target tracking.
临近空间领域是指距离地面20~100km的空域,该空间内的高速飞行器飞行速度可以达到5马赫以上,并且由于临近空间内含有稀薄大气的特性,使得飞行器具有一定的机动能力,其速度、加速度等参数变化剧烈。该类行器能够做到灵活机动、快速响应和超强突防,具有战略威慑和实战应用能力,对于震慑强敌、控制危机和打赢战争具有重要战略意义。在防御领域,传统跟踪算法已经不能实现准确跟踪,这对于临近空间超高速目标的跟踪预测有很大难度。因而,开展临近空间强机动目标跟踪算法研究,具有非常重要的军事意义和现实意义。The field of near space refers to the airspace between 20 and 100 km from the ground. The flying speed of high-speed aircraft in this space can reach Mach 5 or more, and due to the characteristics of the thin atmosphere in the near space, the aircraft has a certain maneuverability, and its speed, acceleration parameters change drastically. This type of vehicle can achieve flexible maneuverability, rapid response and super penetration, and has strategic deterrence and actual combat application capabilities. It has important strategic significance for deterring strong enemies, controlling crises and winning wars. In the field of defense, traditional tracking algorithms have been unable to achieve accurate tracking, which is very difficult to track and predict ultra-high-speed targets in near space. Therefore, it is of great military and practical significance to carry out the research on the tracking algorithm of strong maneuvering targets in the near space.
目前,针对强机动目标跟踪,常用模型有当前统计模型、Jerk模型等运动学模型,临近空间跟踪常采用多模型结合的算法,进行融合输出,匹配飞行器的不同机动模式。变结构跟踪算法中,IMM算法跟踪精度最好,但是对跟踪模型设定值具有一定的局限性;基于有向图切换的变结构多模型算法(VSMM算法),可以解决该问题,但是在模型切换中却延时问题严重;自适应变结构算法(AGIMM算法)反应灵活,跟踪精度高,但是在跟踪拟合的过程中会出现过拟合的现象,导致拟合结果变化快、不稳定,致使最终的跟踪误差变大。At present, for the tracking of strong maneuvering targets, the commonly used models include the current statistical model, the Jerk model and other kinematic models. Near space tracking often uses a multi-model combination algorithm to perform fusion output and match the different maneuvering modes of the aircraft. Among the variable structure tracking algorithms, the IMM algorithm has the best tracking accuracy, but has certain limitations on the setting value of the tracking model; the variable structure multi-model algorithm (VSMM algorithm) based on directed graph switching can solve this problem, but in the model However, the delay problem is serious during switching; the adaptive variable structure algorithm (AGIMM algorithm) has flexible response and high tracking accuracy, but over-fitting will occur in the process of tracking and fitting, resulting in fast and unstable fitting results. resulting in a larger tracking error.
发明内容SUMMARY OF THE INVENTION
本发明的目的是:针对临近空间高速强机动目标的跟踪时,目标跟踪精确度低的问题,提出一种基于变结构多模型的强机动目标跟踪方法。The purpose of the present invention is to propose a strong maneuvering target tracking method based on variable structure and multiple models, aiming at the problem of low target tracking accuracy when tracking high-speed strong maneuvering targets in the near space.
本发明为了解决上述技术问题采取的技术方案是:The technical scheme that the present invention takes in order to solve the above-mentioned technical problems is:
一种基于变结构多模型的强机动目标跟踪方法,包括以下步骤:A strong maneuvering target tracking method based on variable structure multi-model, comprising the following steps:
步骤一:利用目标飞行器的动力学特性构建动力学跟踪模型集,然后获取机动目标跟踪系统的状态方程集;Step 1: Use the dynamic characteristics of the target aircraft to build a dynamic tracking model set, and then obtain the state equation set of the maneuvering target tracking system;
步骤二:建立系统测量模型,并根据建立的系统测量模型得到系统的测量方程和测量噪声;Step 2: establish a system measurement model, and obtain the system measurement equation and measurement noise according to the established system measurement model;
步骤三:基于系统的状态方程集、系统的测量方程和测量噪声,对目标飞行器的运动状态以及气动参数进行递推估计。Step 3: Based on the set of state equations of the system, the measurement equations of the system and the measurement noise, recursively estimate the motion state and aerodynamic parameters of the target aircraft.
进一步的,所述步骤一的具体步骤为:Further, the specific steps of the
步骤一一:根据目标机动特性,选择跟踪模型气动参数,Step 11: According to the maneuvering characteristics of the target, select the aerodynamic parameters of the tracking model,
所述跟踪模型气动参数为:The aerodynamic parameters of the tracking model are:
其中,CL(α)和CD(α)为气动参数,CL(α)为升力系数,CD(α)为阻力系数,S为目标飞行器的特征面积,m为目标飞行器的质量,αD,αL为阻力参数和升力参数;Among them, C L (α) and C D (α) are aerodynamic parameters, C L (α) is the lift coefficient, C D (α) is the drag coefficient, S is the characteristic area of the target aircraft, m is the mass of the target aircraft, α D , α L are drag parameters and lift parameters;
步骤一二:利用高斯白噪声对气动参数的变化特性建模,获取机动目标跟踪系统的状态方程,机动目标跟踪系统的状态方程为:
其中,ωe为地球自转角速度矢量,g为地球重力加速度,r为目标在探测系下的位置矢量,v为目标在探测系下的速度,为弹道坐标系到探测系的转移矩阵,θ为速度倾角,σ为方位角,γv为速度倾侧角,ωγ为倾侧角的高斯白噪声,ωD,ωL为气动参数的高斯白噪声,R为气动力,其中S为目标飞行器的特征面积:Among them, ω e is the angular velocity vector of the earth's rotation, g is the acceleration of gravity of the earth, r is the position vector of the target under the detection system, v is the speed of the target under the detection system, is the transfer matrix from the ballistic coordinate system to the detection system, θ is the velocity inclination angle, σ is the azimuth angle, γ v is the velocity inclination angle, ω γ is the Gaussian white noise of the inclination angle, ω D , ω L is the Gaussian white noise of the aerodynamic parameters , R is the aerodynamic force, where S is the characteristic area of the target aircraft:
步骤一三:将步骤一二中速度倾侧角γv作为模型变量,选取不同的速度倾侧角γv构建机动目标跟踪系统的状态方程集。
进一步的,所述步骤二中系统的测量方程和测量噪声的获取步骤具体为:Further, the steps of obtaining the measurement equation and measurement noise of the system in the second step are as follows:
步骤二一:根据跟踪任务的需求建立探测坐标系,确定探测器和目标在探测坐标系下的位置矢量;Step 21: Establish a detection coordinate system according to the requirements of the tracking task, and determine the position vector of the detector and the target in the detection coordinate system;
步骤二二:根据红外的探测原理,获取目标飞行器在探测器本体系下的三维位置坐标;Step 22: According to the infrared detection principle, obtain the three-dimensional position coordinates of the target aircraft under the detector system;
步骤二三:利用目标飞行器在探测器本体系下的三维位置坐标,对定位均方差展开分析,确定跟踪系统的测量方程和测量噪声。
进一步的,所述步骤二一中探测器和目标在探测坐标系下的位置矢量为:Further, in the step 21, the position vector of the detector and the target in the detection coordinate system is:
目标在探测坐标系下的位置矢量:r=(x,y,z);The position vector of the target in the detection coordinate system: r=(x, y, z);
探测器在探测坐标系下的位置矢量:Sl=(xl,yl,zl),l代表第l个探测器。The position vector of the detector in the detection coordinate system: S l =(x l , y l , z l ), where l represents the lth detector.
进一步的,所述步骤二二的具体步骤为:Further, the specific steps of the second and second steps are:
首先,探测器指向目标的矢量为:First, the vector of the detector pointing to the target is:
探测器探测角αl和βl表示为:The detector detection angles α l and β l are expressed as:
转换获得:Convert to get:
利用最小二乘法获得目标飞行器在探测器下的三维位置坐标X=(x,y,z)Using the least squares method to obtain the three-dimensional position coordinates of the target aircraft under the detector X=(x, y, z)
最小二乘表示为:其中M为量测矩阵,X为状态量,Y为量测量。The least squares representation is: Among them, M is the measurement matrix, X is the state quantity, and Y is the quantity measurement.
进一步的,所述步骤二三中确定跟踪系统的测量方程和测量噪声的具体步骤为:Further, the specific steps of determining the measurement equation of the tracking system and the measurement noise in the
首先根据几何原理确定目标与探测器的相对位置角度关系:First, determine the relative position and angle relationship between the target and the detector according to the geometric principle:
式中,x1,y1,z1为第一个探测器在探测系下x、y、z三个方向的位置分量;x2,y2,z2为第二个探测器在探测系下x、y、z三个方向的位置分量;Δκ=κ2-κ1, In the formula, x 1 , y 1 , z 1 are the position components of the first detector in the three directions of x, y, and z under the detection system; x 2 , y 2 , z 2 are the x, y, and z directions of the second detector under the detection system. Position components in the three directions of y and z; Δκ=κ 2 -κ 1 ,
然后通过测量噪声公式获取噪声R,测量噪声公式为:Then the noise R is obtained by measuring the noise formula. The measuring noise formula is:
其中,in,
上式中,c1=κ2(x2-x1)-(y2-y1),c2=-κ1(x2-x1)+(y2-y1); 和分别为探测器自身的位置坐标的均方差,为目标定位均方差,为探测器探测角α1的均方误差,为探测器探测角α2的均方误差,为探测器探测角β1的均方误差,为探测器探测角β2的均方误差。In the above formula, c 1 =κ 2 (x 2 -x 1 )-(y 2 -y 1 ), c 2 =-κ 1 (x 2 -x 1 )+(y 2 -y 1 ); and are the mean square error of the position coordinates of the detector itself, is the mean square error of target positioning, is the mean square error of the detector detection angle α1, is the mean square error of the detector detection angle α2, is the mean square error of the detector detection angle β1, is the mean square error of the detector detection angle β2.
进一步的,所述步骤三中利用改进的变结构多模型算法对目标飞行器的运动状态以及气动参数进行递推估计;所述改进的变结构多模型算法具体步骤为:Further, in the
第一步,输入交互:The first step, enter the interaction:
M为模型全体的集合,i,j表示第i,j个模型, M is the set of all models, i,j represent the i,jth model,
其中,pij是模型i转移到j的转移概率,μi,j(k-1/k-1)为混合概率Among them, p ij is the transition probability of model i to j, and μ i,j (k-1/k-1) is the mixing probability
第二步,滤波The second step, filtering
对模型Mj(k)以进行卡尔曼滤波,Φj为状态转移矩阵,预测为:For the model M j (k) with Kalman filtering is performed, Φ j is the state transition matrix, and the prediction is:
预测误差协方差为:The prediction error covariance is:
滤波为:Filter is:
滤波协方差为:The filtering covariance is:
观测方程估计,卡尔曼增益为:The observation equation estimates, the Kalman gain is:
第三步,模型概率更新The third step, the model probability update
其中,Λj(k)=N(rj(k),0,Sj(k)),k时刻模式j的似然函数,定义一个变量rj(k),均值为0,方差是Sj(k)的高斯分布,Λj(k)为:Among them, Λ j (k)=N(r j (k),0,S j (k)), the likelihood function of mode j at time k, defines a variable r j (k), the mean is 0, and the variance is S The Gaussian distribution of j (k), Λ j (k) is:
第四步,输出交互:The fourth step, output interaction:
第五步,模型集更新:The fifth step, model set update:
计算最大模型概率:Compute the maximum model probability:
umax=max{u1,u2,u3}u max =max{u 1 ,u 2 ,u 3 }
其对应的模型设为模型j,则距离函数为:The corresponding model is set as model j, then the distance function is:
跟踪模型调整,类比于有向图切换的原理进行模型调整,Tracking model adjustment, analogous to the principle of directed graph switching for model adjustment,
当u1max时,若D1(k)≥M,则When u1 max , if D 1 (k)≥M, then
其中G0为最小网格间距,k1,k2为可调参数,where G 0 is the minimum grid spacing, k 1 , k 2 are adjustable parameters,
若D1(k)<M,则按照有向图切换的方法进行模型更新,即If D 1 (k)<M, the model is updated according to the method of directed graph switching, that is
当u2max时,若D2(k)≥M,则When u2 max , if D 2 (k)≥M, then
若D2(k)<M,则按照有向图切换的方法进行模型更新,即If D 2 (k)<M, the model is updated according to the method of directed graph switching, that is,
当u3max时,若D3(k)≥M,则When u3 max , if D 3 (k)≥M, then
若D3(k)<M,则按照有向图切换的方法进行模型更新,即If D 3 (k)<M, the model is updated according to the method of directed graph switching, that is,
对于新激活模型的状态向量和协方差的初始化,采用上一时刻各模型的概率加权组合来进行初始化,即:For the initialization of the state vector and covariance of the new activation model, the probability weighted combination of each model at the previous moment is used to initialize, namely:
本发明的有益效果是:The beneficial effects of the present invention are:
本发明基于目标飞行器的动力学特性构建动力学跟踪模型集,提高了目标运动的描述精度,进而采用改进的变结构多模型跟踪算法提高了目标跟踪精确度,并且本发明通过检测目标机动对模型和对应概率进行更新,提高了目标机动的鲁棒性。The present invention builds a dynamic tracking model set based on the dynamic characteristics of the target aircraft, improves the description accuracy of the target motion, and further improves the target tracking accuracy by using an improved variable-structure multi-model tracking algorithm, and the present invention detects the target maneuver for the model. And the corresponding probability is updated, which improves the robustness of the target maneuver.
附图说明Description of drawings
图1为变结构多模型算法跟踪原理框图;Figure 1 is a block diagram of the tracking principle of the variable structure multi-model algorithm;
图2为仿真算例目标实际运动轨迹图;Fig. 2 is the actual motion trajectory diagram of the target in the simulation example;
图3为仿真算例目标实际运动速度倾侧角变化图;Fig. 3 is the change chart of the inclination angle of the actual moving speed of the target in the simulation example;
图4为弱机动状态下变结构跟踪算法跟踪误差图;Fig. 4 is the tracking error diagram of the variable structure tracking algorithm in the weak maneuvering state;
图5为弱机动状态下各算法对目标倾侧角拟合误差图;Fig. 5 is the fitting error diagram of each algorithm to the target tilt angle in the weak maneuvering state;
图6为强机动状态下变结构跟踪算法跟踪误差图;Fig. 6 is the tracking error diagram of the variable structure tracking algorithm under strong maneuvering state;
图7为强机动状态下各算法对目标倾侧角拟合误差图。Figure 7 is a graph of the fitting error of each algorithm to the target tilt angle in a strong maneuvering state.
具体实施方式Detailed ways
具体实施方式一:Specific implementation one:
参照图1具体说明本实施方式,本发明的目标是提高临近空间高速强机动目标的跟踪定位精度,结合跟踪原理进行目标的气动特征参数的预测和目标机动检测。通过建立飞行器动力学模型,将目标的气动特征参数扩维进目标跟踪状态量,进行滤波跟踪;同时结合基于机动检测的变结构多模型算法获得目标的跟踪数据。上述发明目的是通过以下技术方案实现的:The present embodiment is described in detail with reference to FIG. 1 . The goal of the present invention is to improve the tracking and positioning accuracy of high-speed and strong maneuvering targets in the near space, and combine the tracking principle to predict the aerodynamic parameters of the target and detect target maneuvering. By establishing the aircraft dynamics model, the aerodynamic characteristic parameters of the target are expanded into the target tracking state quantity, and the filter tracking is performed. The above-mentioned purpose of the invention is achieved through the following technical solutions:
本发明步骤1中,根据目标飞行器的动力学特性构建动力学跟踪模型集,获取机动目标跟踪系统的状态方程集。In
本发明步骤2中,根据探测装置的原理及分布,建立系统测量模型;获得系统的测量方程和测量噪声。红外观测量为目标的方位角,属于无源测向定位,通过两个或以上红外探测器对目标进行定位。In
本发明步骤3中,基于系统的状态方程、系统的测量方程和测量噪声,利用基于目标机动检测的改进变结构多模型算法,对目标飞行器的运动状态以及控制参数进行递推估计。In
本发明中,步骤1中所述根据目标飞行器的动力学特性构建动力学跟踪模型集,获取机动目标跟踪系统的状态方程集的具体方法为:In the present invention, the dynamic tracking model set is constructed according to the dynamic characteristics of the target aircraft in
步骤1-1、分析目标机动特性,选择跟踪模型气动参数:Step 1-1. Analyze the maneuvering characteristics of the target and select the aerodynamic parameters of the tracking model:
在自由滑翔段飞行器机动主要来源于气动力,方式为通过对可以将气动加速度沿弹道系三个方向分为阻力加速度、转弯加速度和爬升加速度,即:In the free-gliding stage, the maneuvering of the aircraft mainly comes from aerodynamic force. The method is that the aerodynamic acceleration can be divided into drag acceleration, turning acceleration and climbing acceleration along the three directions of the ballistic system by pairing, namely:
由该式可知,气动参数CL(α)与气动参数存在的关系。飞行攻角α频繁且幅度较大的调整,会导致气动参数变化复杂、飞行器剧烈震荡,难以控制,通常滑翔过程中α的变化率很小,气动参数随攻角变化较为平缓,即短时间内参数变化较小,可作为状态量进行估计,故本文的跟踪模型中的气动参数设置为:It can be seen from this formula that the aerodynamic parameters C L (α) and the aerodynamic parameters exist Relationship. The frequent and large adjustment of the flight angle of attack α will lead to complex changes in aerodynamic parameters, the aircraft will vibrate violently, and it is difficult to control. Usually, the rate of change of α during the gliding process is very small, and the aerodynamic parameters change relatively smoothly with the angle of attack, that is, in a short period of time. The parameter changes are small and can be estimated as a state quantity, so the aerodynamic parameters in the tracking model in this paper are set as:
其中S为目标飞行器的特征面积,m为目标飞行器的质量。αD,αL为阻力参数和升力参数。步骤一二、利用高斯白噪声对气动参数的变化特性建模,获取机动目标跟踪系统的状态方程:where S is the characteristic area of the target aircraft, and m is the mass of the target aircraft. α D , α L are drag parameters and lift parameters.
其中γv为速度倾侧角,ωγ为倾侧角的高斯白噪声,ωD,ωL为气动参数的高斯白噪声,R为气动力,表达式如下:where γ v is the velocity tilt angle, ω γ is the Gaussian white noise of the tilt angle, ω D , ω L are the Gaussian white noise of the aerodynamic parameters, R is the aerodynamic force, and the expression is as follows:
本发明将速度倾侧角γv作为模型变量,选取不同的γv以构建机动目标跟踪模型集。进一步地,本发明中,步骤2所述获得系统的测量方程和测量噪声的具体方法为:In the present invention, the velocity inclination angle γv is used as a model variable, and different γv are selected to construct a maneuvering target tracking model set. Further, in the present invention, the specific method for obtaining the measurement equation of the system and the measurement noise described in
步骤2-1、根据跟踪任务需求建立探测系,确定探测器和目标在探测坐标系下的位置矢量;Step 2-1. Establish a detection system according to the requirements of the tracking task, and determine the position vector of the detector and the target in the detection coordinate system;
步骤2-2、根据红外的探测原理,获取目标飞行器在探测器下的三维位置坐标,实现对目标飞行器进行定位;Step 2-2, according to the infrared detection principle, obtain the three-dimensional position coordinates of the target aircraft under the detector, and realize the positioning of the target aircraft;
步骤2-3、目标飞行器在探测器下的三维位置坐标,对定位均方差展开分析,确定跟踪系统的测量方程和测量噪声。Steps 2-3, the three-dimensional position coordinates of the target aircraft under the detector, analyze the positioning mean square error, and determine the measurement equation and measurement noise of the tracking system.
进一步地,本发明中,步骤2-1中根据探测器的位置建立探测坐标系,确定探测器基点和目标在探测坐标系下的位置矢量;Further, in the present invention, in step 2-1, a detection coordinate system is established according to the position of the detector, and the position vector of the detector base point and the target under the detection coordinate system is determined;
目标在探测系下的位置矢量:r=(x,y,z);The position vector of the target under the detection system: r=(x, y, z);
探测器基点在探测系下的位置矢量:Sl=(xl,yl,zl),l代表第l个探测器;The position vector of the detector base point under the detection system: S l = (x l , y l , z l ), l represents the lth detector;
由探测器指向目标的矢量为:Rl=r-Sl=(x-xl,y-yl,z-zl)。The vector directed by the detector to the target is: R l =rS l =(xx l , yy l , zz l ).
进一步地,本发明中,步骤2-2中所述根据红外的探测原理,获取目标飞行器在探测器下的三维位置坐标,实现对目标飞行器进行定位的具体方法为:Further, in the present invention, according to the infrared detection principle described in step 2-2, the three-dimensional position coordinates of the target aircraft under the detector are obtained, and the specific method for positioning the target aircraft is:
令目标飞行器与探测器的距离:Let the distance between the target aircraft and the detector:
由于探测器探测角αl和βl有:Since the detector detection angles α l and β l have:
转换获得:Convert to get:
利用最小二乘法有:获得目标飞行器在探测器下的三维位置坐标X=(x,y,z)。Using the least squares method there are: Obtain the three-dimensional position coordinates X=(x, y, z) of the target aircraft under the detector.
进一步地,本发明中,步骤2-3中所述确定跟踪系统测量噪声的具体方法为:Further, in the present invention, the specific method for determining the measurement noise of the tracking system described in steps 2-3 is:
根据几何原理确定:Determined according to geometric principles:
式中,其中,x1,y1,z1为第一个探测器在探测系下x、y、z三个方向的位置分量;x2,y2,z2为第二个探测器在探测系下x、y、z三个方向的位置分量;Δκ=κ2-κ1,通过测量噪声公式:In the formula, Among them, x 1 , y 1 , z 1 are the position components of the first detector in the three directions of x, y and z under the detection system; x 2 , y 2 , z 2 are the position components of the second detector under the detection system Position components in the three directions of x, y, and z; Δκ=κ 2 -κ 1 , By measuring the noise formula:
获取噪声R,其中,Get the noise R, where,
上式中,c1=κ2(x2-x1)-(y2-y1),c2=-κ1(x2-x1)+(y2-y1); 和分别为探测器自身的位置坐标的均方差,为目标定位均方差,为探测器探测角α1的均方误差,为探测器探测角α2的均方误差,为探测器探测角β1的均方误差,为探测器探测角β2的均方误差。In the above formula, c 1 =κ 2 (x 2 -x 1 )-(y 2 -y 1 ), c 2 =-κ 1 (x 2 -x 1 )+(y 2 -y 1 ); and are the mean square error of the position coordinates of the detector itself, is the mean square error of target positioning, is the mean square error of the detector detection angle α1, is the mean square error of the detector detection angle α2, is the mean square error of the detector detection angle β1, is the mean square error of the detector detection angle β2.
进一步地,本发明步骤3中,利用基于目标机动检测的改进变结构多模型算法,对目标飞行器的运动状态以及气动参数进行递推估计:Further, in
确定滤波器初始状态量和初始协方差:Determine the filter initial state quantity and initial covariance:
其中,为滤波器初始状态量,E(x0)为目标飞行器的初始状态量均值;取均值为初始协方差,x0为目标飞行器的初始状态量;in, is the initial state quantity of the filter, E(x 0 ) is the mean value of the initial state quantity of the target aircraft; take the mean value is the initial covariance, and x 0 is the initial state quantity of the target aircraft;
随机变量构成的矩阵的数学期望定义为它们的各个元素的数学期望所构成的矩阵,E(X)=μ。多维随机变量的协方差矩阵是以对称矩阵,在一定意义上起着一维随机变量方差的作用。X的协方差矩阵C可表示为:The mathematical expectation of a matrix composed of random variables is defined as the matrix composed of the mathematical expectations of their individual elements, E(X)=μ. The covariance matrix of a multi-dimensional random variable is a symmetric matrix, which plays the role of the variance of a one-dimensional random variable in a certain sense. The covariance matrix C of X can be expressed as:
C=E((X-μ)T(X-μ))C=E((X-μ) T (X-μ))
设则:Assume but:
Cov(X1,X2)=ρσ1σ1 Cov(X 1 ,X 2 )=ρσ 1 σ 1
则(X1,X2)的协方差矩阵为 Then the covariance matrix of (X 1 , X 2 ) is
其概率密度为:Its probability density is:
C的行列式为 The determinant of C is
逆矩阵为 The inverse matrix is
记x=(x1,x2),Write x=(x 1 , x 2 ),
则有:Then there are:
于是(X1,X2)的概率密度可表示为:So the probability density of (X 1 , X 2 ) can be expressed as:
若n维随机变量X=(X1,X2,…Xn)的概率密度为:If the probability density of n-dimensional random variable X=(X 1 , X 2 ,...X n ) is:
设nj为模型j正确的事件,具有先验概率j=1,2…r,则在模型j的前提下,k时刻量测数据的似然函数为:Let n j be the event for which model j is correct, with a prior probability j=1,2...r, then under the premise of model j, the likelihood function of the measured data at time k is:
其中为滤波器j计算的新息残差的概率密度,如下所示:in innovation residual computed for filter j The probability density of , as follows:
则在贝叶斯理论的指导下,k时刻模型j的后验概率密度为:Then under the guidance of Bayesian theory, the posterior probability density of model j at time k is:
1.变结构多模型算法1. Variable structure multi-model algorithm
第一步,输入交互:The first step, enter the interaction:
其中,pij是模型i转移到j的转移概率。μi,j(k-1/k-1)混合概率where p ij is the transition probability for model i to transition to j. μ i,j (k-1/k-1) mixing probability
第二步,滤波The second step, filtering
对应模型Mj(k)以进行卡尔曼滤波Corresponding model M j (k) with perform Kalman filter
预测:predict:
预测误差协方差:Prediction error covariance:
滤波:Filter:
滤波协方差:Filter covariance:
观测方程估计:Observation equation estimate:
卡尔曼增益:Kalman gain:
第三步,模型概率更新The third step, the model probability update
Λj(k)=N(rj(k),0,Sj(k)),k时刻模式j的似然函数,定义了一个变量rj(k),均值为0,方差是Sj(k)的高斯分布(也称正态分布)。Λ j (k)=N(r j (k),0,S j (k)), the likelihood function of mode j at time k, defines a variable r j (k), the mean is 0, and the variance is S j (k) Gaussian distribution (also called normal distribution).
第四步,输出交互The fourth step, output interaction
第五步,模型集更新The fifth step, model set update
根据模型概率更新进一步得到相应的模型决策,取决于设定的模型变换的算法,是模型自适应过程,用于下一时刻的滤波。对于新激活模型的状态向量和协方差的初始化,采用上一时刻各模型的概率加权组合来进行初始化,即:According to the model probability update, the corresponding model decision is further obtained, which depends on the set model transformation algorithm, which is a model adaptive process and is used for filtering at the next moment. For the initialization of the state vector and covariance of the new activation model, the probability weighted combination of each model at the previous moment is used to initialize, namely:
2.改进变结构多模型方法2. Improved variable structure multi-model method
变结构跟踪算法针对强机动问题具有很好的跟踪效果,其主要为将多个跟踪滤波器同时进行工作,根据各个滤波器的残差及其协方差进行其各自的滤波器输出概率计算,最后结合各滤波器的交互输出结果作为跟踪数据,该方法通常使用圆周转弯模型作为滤波跟踪模型,本方案将目标的倾侧角作为区分各个模型的标准。其具体流程如图1所示。The variable structure tracking algorithm has a good tracking effect for strong maneuvering problems. It mainly works on multiple tracking filters at the same time, and calculates their respective filter output probability according to the residuals and covariances of each filter. Finally, Combined with the interactive output results of each filter as the tracking data, this method usually uses the circular turning model as the filter tracking model, and this scheme uses the tilt angle of the target as the standard to distinguish each model. Its specific process is shown in Figure 1.
本文针对强机动飞行目标跟踪,跟踪过程中需要对目标是否发生强机动进行检测,结合变结构多模型算法,利用目标跟踪过程中滤波的新息及其协方差进行判别检测。在机动时刻应该较多地遗忘过去信息;非机动时刻应较多地利用过去信息,通过利用过去信息自适应调整模型,使模型参数更接近真实的模型,提高对目标非机动时刻的跟踪精度。改进多模型算法(GIMM算法)跟踪结果介于IMM算法和AGIMM算法之间,但是相比于IMM算法,不受预先设置模型的限制,相对于AGIMM算法,不会出现过拟合的现象,相对稳定。In this paper, aiming at the strong maneuvering flight target tracking, it is necessary to detect whether the target has strong maneuvering during the tracking process. Combined with the variable structure multi-model algorithm, the filtering innovation and its covariance in the target tracking process are used for discriminating detection. More past information should be forgotten at the maneuvering moment; more past information should be used at the non-maneuvering moment, and the model parameters should be closer to the real model by using the past information to adjust the model adaptively, and the tracking accuracy of the target non-maneuvering moment should be improved. The tracking result of the improved multi-model algorithm (GIMM algorithm) is between the IMM algorithm and the AGIMM algorithm, but compared with the IMM algorithm, it is not limited by the preset model. Compared with the AGIMM algorithm, there is no over-fitting phenomenon. Stablize.
其具体方法如下:The specific method is as follows:
在滤波的过程中,新息rk+1|k和新息协方差Sk+1|k表示一步预测的误差,当一步预测出现很大误差时,极有可能是目标发生了强机动,而此时跟踪系统还没有检测出并做相应调整。故在每一时刻滤波结束后,计算:u_max=max(uL,uC,uR),其后验概率最大的模型代表着此时刻最符合的模型,若其所对应的模型的新息依旧很大,则认为飞行器发生了强机动,此时需要对飞行器是否发生强机动进行判别,计算D(k)=r(k)TS(k)-1r(k),r(k)表示最大概率模型在k时刻的新息;S(k)表示最大概率模型在k时刻的新息协方差。合理设置门限值M,若D(k)>M,则认为目标发生了强机动。In the filtering process, the innovation r k+1|k and the innovation covariance S k+1|k represent the error of one-step prediction. When there is a large error in the one-step prediction, it is very likely that the target has undergone a strong maneuver. At this time, the tracking system has not detected and adjusted accordingly. Therefore, after filtering at each moment, calculate: u_max=max(u L , u C , u R ), and the model with the largest posterior probability represents the most suitable model at this moment. If it is still very large, it is considered that the aircraft has a strong maneuver. At this time, it is necessary to judge whether the aircraft has a strong maneuver, and calculate D(k)=r(k) T S(k) -1 r(k), r(k) Represents the innovation of the maximum probability model at time k; S(k) represents the innovation covariance of the maximum probability model at time k. Set the threshold value M reasonably. If D(k)>M, it is considered that the target has a strong maneuver.
以下为该种方法具体内容:The following is the specific content of this method:
某时刻k滤波结束后,获取最大概率模型对应的新息及其协方差。After k filtering at a certain time, the innovation and its covariance corresponding to the maximum probability model are obtained.
计算最大模型概率:Compute the maximum model probability:
umax=max{u1,u2,u3}u max =max{u 1 ,u 2 ,u 3 }
其对应的模型设为模型j,则距离函数Its corresponding model is set to model j, then the distance function
跟踪模型调整:Tracking model adjustments:
类比于有向图切换的原理进行模型调整。Model adjustment is analogous to the principle of directed graph switching.
当u1max时,若D1(k)≥M,则When u1 max , if D 1 (k)≥M, then
其中G0为最小网格间距,k1,k2为可调参数。Among them, G 0 is the minimum grid spacing, and k 1 and k 2 are adjustable parameters.
若D1(k)<M,则按照有向图切换的方法进行模型更新,即If D 1 (k)<M, the model is updated according to the method of directed graph switching, that is
当u2max时,若D2(k)≥M,则When u2 max , if D 2 (k)≥M, then
若D2(k)<M,则按照有向图切换的方法进行模型更新,即If D 2 (k)<M, the model is updated according to the method of directed graph switching, that is,
当u3max时,若D3(k)≥M,则When u3 max , if D 3 (k)≥M, then
若D3(k)<M,则按照有向图切换的方法进行模型更新,即If D 3 (k)<M, the model is updated according to the method of directed graph switching, that is,
实施例:Example:
本发明实施例仿真采用的计算机配置为:CPU为i7-8550U,主频1.80GHz,内存8GB。The computer configuration adopted for the simulation in the embodiment of the present invention is as follows: the CPU is i7-8550U, the main frequency is 1.80GHz, and the memory is 8GB.
仿真场景:目标在临近空间做机动运动,运动轨迹如图2所示,在此过程中目标的攻角变化缓慢,目标机动情况主要依据目标运动速度倾侧角的变化实现,其倾侧角变化如图3所示。Simulation scene: The target is maneuvering in the near space, and the motion trajectory is shown in Figure 2. During this process, the attack angle of the target changes slowly. The target maneuvering situation is mainly realized according to the change of the target movement speed and the tilt angle. The change of the tilt angle is shown in the figure. 3 shown.
多种多模型算法结合目标跟踪动力学模型,实现对临近空间强机动目标的跟踪,进行多次蒙塔卡罗仿真,以下主要分析比较各算法的精度、收敛速度和稳定度。A variety of multi-model algorithms are combined with the target tracking dynamic model to achieve the tracking of strong maneuvering targets in the near space, and perform multiple Monte Carlo simulations. The following mainly analyzes and compares the accuracy, convergence speed and stability of each algorithm.
目标跟踪状态量为X=[x y z vx vy vz αD αL]T,将倾侧角γv类比于圆周转弯模型中的角速度作为多模型间区分值,采用ckf滤波方法进行滤波跟踪,并且将各模型所使用的速度倾侧角进行交互输出,作为倾侧角的估计值,作为判断跟踪精度之一。The target tracking state quantity is X=[xyzv x v y v z α D α L ] T , the tilt angle γ v is analogous to the angular velocity in the circular turning model as the multi-model distinguishing value, and the ckf filtering method is used to filter and track, and The velocity inclination angle used by each model is output interactively as an estimated value of the inclination angle, which is used as one of the judgment tracking accuracy.
量测量采用双红外探测,红外探测系原点距离地面高度5000m,与当地地理坐标系重合,采用北—天—东坐标系,两红外探测器相距900km,每个红外探测器探测距离为1100km,探测角度误差为6×10-4rad。The measurement adopts dual infrared detection. The origin of the infrared detection system is 5000m above the ground, which coincides with the local geographic coordinate system. The north-sky-east coordinate system is adopted. The distance between the two infrared detectors is 900km, and the detection distance of each infrared detector is 1100km. The angle error is 6×10 -4 rad.
算法跟踪性能指标采用归一化位置误差(normalized position error NPE)来表示,NPE是位置滤波的均方根误差(root mean square error,RMSE)和位置量测的RMSE的比值,具体表示如下:The algorithm tracking performance index is expressed by the normalized position error (NPE), which is the ratio of the root mean square error (RMSE) of the position filter and the RMSE of the position measurement, which is specifically expressed as follows:
其中,M为蒙特卡洛仿真次数。where M is the number of Monte Carlo simulations.
仿真一:跟踪上述目标590-640s时间段,此时目标处于弱机动状态,跟踪结果如图4所示,倾侧角拟合误差如图5所示。下述为NEP误差情况:Simulation 1: Track the above target for 590-640s time period, at this time the target is in a weak maneuvering state, the tracking result is shown in Figure 4, and the tilt angle fitting error is shown in Figure 5. The following are the NEP error conditions:
表格1仿真结果对比Table 1 Comparison of simulation results
仿真二:跟踪上述目标540-590s时间段,此时目标处于强机动状态,跟踪结果如图6所示,倾侧角拟合误差如图7所示。下述为NEP误差情况仿真结果:Simulation 2: Tracking the above target for 540-590s time period, the target is in a strong maneuvering state at this time, the tracking result is shown in Figure 6, and the tilt angle fitting error is shown in Figure 7. The following are the simulation results of the NEP error case:
表格1跟踪结果比较Table 1 Tracking Results Comparison
从上述仿真图像及数据中可以看出:It can be seen from the above simulation images and data that:
1)跟踪精度方面:当目标机动性不强时,四种变结构多模型跟踪方法跟踪误差均达到百米内,在发生强机动时,跟踪精度也保持在百米左右;综合比较,GIMM算法在弱机动和强机动方面综合跟踪精度最好。1) Tracking accuracy: when the target maneuverability is not strong, the tracking errors of the four variable-structure multi-model tracking methods all reach within 100 meters, and when strong maneuvering occurs, the tracking accuracy is also maintained at about 100 meters; comprehensive comparison, the GIMM algorithm is in the The comprehensive tracking accuracy is the best in weak maneuvering and strong maneuvering.
2)收敛速度方面:AGIMM算法在强机动情况下反应最快,可以跟上目标的机动变化,其次是GIMM算法,但在处理数据时间方面,各方法并无较大差异。2) Convergence speed: The AGIMM algorithm has the fastest response in the case of strong maneuvering and can keep up with the maneuvering changes of the target, followed by the GIMM algorithm, but there is no big difference between the methods in terms of processing data time.
3)稳定度方面:四种方法在滤波过程中都可以依据目标机动情况随时调整,都可以保证跟踪误差稳定在一定范围内,且无发散情况。3) In terms of stability: in the filtering process, all four methods can be adjusted at any time according to the target maneuvering situation, and all of them can ensure that the tracking error is stable within a certain range, and there is no divergence.
本文针对临近空间强机动飞行器跟踪问题进行探讨,将目标动力学模型与变结构多模型方法进行结合,对目标进行定位跟踪。在提高跟踪精度的同时,获得了目标的气动特性和机动状态,对认知目标和轨迹预报都有很大的帮助。This paper discusses the tracking problem of strong maneuvering aircraft in the near space, and combines the target dynamic model with the variable structure multi-model method to locate and track the target. While improving the tracking accuracy, the aerodynamic characteristics and maneuvering state of the target are obtained, which is of great help to cognitive target and trajectory prediction.
由上可知,本发明实施例实现了临近空间强机动飞行器跟踪问题。但以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,本发明同样适用于其它相关跟踪问题。凡在本发明的原则和精神之内所作的任何修改、等同替换和改进等,均就包含在本发明的保护范围之内。It can be seen from the above that the embodiment of the present invention realizes the problem of tracking the strong maneuvering aircraft in the near space. However, the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. The present invention is also applicable to other related tracking problems. Any modifications, equivalent replacements and improvements made within the principles and spirit of the present invention are included within the protection scope of the present invention.
需要注意的是,具体实施方式仅仅是对本发明技术方案的解释和说明,不能以此限定权利保护范围。凡根据本发明权利要求书和说明书所做的仅仅是局部改变的,仍应落入本发明的保护范围内。It should be noted that the specific embodiments are only explanations and descriptions of the technical solutions of the present invention, and cannot be used to limit the protection scope of the rights. Any changes made according to the claims and description of the present invention are only partial changes, which should still fall within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010734714.0A CN111797478B (en) | 2020-07-27 | 2020-07-27 | Strong maneuvering target tracking method based on variable structure multi-model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010734714.0A CN111797478B (en) | 2020-07-27 | 2020-07-27 | Strong maneuvering target tracking method based on variable structure multi-model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111797478A true CN111797478A (en) | 2020-10-20 |
CN111797478B CN111797478B (en) | 2022-11-11 |
Family
ID=72827390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010734714.0A Active CN111797478B (en) | 2020-07-27 | 2020-07-27 | Strong maneuvering target tracking method based on variable structure multi-model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111797478B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111798491A (en) * | 2020-07-13 | 2020-10-20 | 哈尔滨工业大学 | A Maneuvering Target Tracking Method Based on Elman Neural Network |
CN112257259A (en) * | 2020-10-21 | 2021-01-22 | 中国人民解放军战略支援部队信息工程大学 | Ballistic missile whole-course ballistic estimation method and system based on improved autonomous multi-model |
CN112577489A (en) * | 2020-12-08 | 2021-03-30 | 北京电子工程总体研究所 | Seeker sight rotation rate extraction method based on interactive multi-model filtering |
CN112784506A (en) * | 2021-01-29 | 2021-05-11 | 中国人民解放军空军工程大学 | Reentry maneuvering trajectory target tracking algorithm based on variable structure multi-model |
CN114019792A (en) * | 2021-10-08 | 2022-02-08 | 北京控制工程研究所 | Mars atmosphere entering process lift guidance error analysis method and system |
CN115268487A (en) * | 2022-07-13 | 2022-11-01 | 北京电子工程总体研究所 | Aircraft altitude control method and system based on disturbance estimation compensation LOS guidance law |
CN115390560A (en) * | 2022-08-18 | 2022-11-25 | 哈尔滨工业大学 | Ground target track tracking method based on mixed grid multi-model |
CN118194609A (en) * | 2024-05-17 | 2024-06-14 | 北京理工大学前沿技术研究院 | Group target tracking method, device and storage medium based on generalization multivariable model |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104020466A (en) * | 2014-06-17 | 2014-09-03 | 西安电子科技大学 | Maneuvering target tracking method based on variable structure multiple models |
CN104793201A (en) * | 2015-05-04 | 2015-07-22 | 哈尔滨工业大学 | Modified variable-structure grid interaction multi-model filtering method for tracking hypersonic-speed target of near space |
CN107544067A (en) * | 2017-07-06 | 2018-01-05 | 西北工业大学 | One kind is based on the approximate Hypersonic Reentry Vehicles tracking of Gaussian Mixture |
-
2020
- 2020-07-27 CN CN202010734714.0A patent/CN111797478B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104020466A (en) * | 2014-06-17 | 2014-09-03 | 西安电子科技大学 | Maneuvering target tracking method based on variable structure multiple models |
CN104793201A (en) * | 2015-05-04 | 2015-07-22 | 哈尔滨工业大学 | Modified variable-structure grid interaction multi-model filtering method for tracking hypersonic-speed target of near space |
CN107544067A (en) * | 2017-07-06 | 2018-01-05 | 西北工业大学 | One kind is based on the approximate Hypersonic Reentry Vehicles tracking of Gaussian Mixture |
Non-Patent Citations (5)
Title |
---|
WEI H等: "Review of the algorithms for radar single target tracking", 《IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE》 * |
于红娟等: "基于变结构多模型的机动目标跟踪算法", 《火力与指挥控制》 * |
刘德虎: "基于变结构多模型算法的高机动目标跟踪研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
娄益茂: "变结构多模型机动目标跟踪算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
陈志锋: "强机动目标自适应跟踪算法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111798491A (en) * | 2020-07-13 | 2020-10-20 | 哈尔滨工业大学 | A Maneuvering Target Tracking Method Based on Elman Neural Network |
CN112257259B (en) * | 2020-10-21 | 2023-08-22 | 中国人民解放军战略支援部队信息工程大学 | Ballistic missile trajectory estimation method and system based on improved autonomous multi-model |
CN112257259A (en) * | 2020-10-21 | 2021-01-22 | 中国人民解放军战略支援部队信息工程大学 | Ballistic missile whole-course ballistic estimation method and system based on improved autonomous multi-model |
CN112577489A (en) * | 2020-12-08 | 2021-03-30 | 北京电子工程总体研究所 | Seeker sight rotation rate extraction method based on interactive multi-model filtering |
CN112577489B (en) * | 2020-12-08 | 2024-05-07 | 北京电子工程总体研究所 | Seeker sight rotation rate extraction method based on interactive multi-model filtering |
CN112784506A (en) * | 2021-01-29 | 2021-05-11 | 中国人民解放军空军工程大学 | Reentry maneuvering trajectory target tracking algorithm based on variable structure multi-model |
CN112784506B (en) * | 2021-01-29 | 2023-04-07 | 中国人民解放军空军工程大学 | Reentry maneuvering trajectory target tracking algorithm based on variable structure multi-model |
CN114019792B (en) * | 2021-10-08 | 2023-08-01 | 北京控制工程研究所 | Mars atmosphere entry process lift force guidance error analysis method and system |
CN114019792A (en) * | 2021-10-08 | 2022-02-08 | 北京控制工程研究所 | Mars atmosphere entering process lift guidance error analysis method and system |
CN115268487A (en) * | 2022-07-13 | 2022-11-01 | 北京电子工程总体研究所 | Aircraft altitude control method and system based on disturbance estimation compensation LOS guidance law |
CN115268487B (en) * | 2022-07-13 | 2024-05-28 | 北京电子工程总体研究所 | Aircraft altitude control method and system based on disturbance estimation and compensation LOS guidance law |
CN115390560A (en) * | 2022-08-18 | 2022-11-25 | 哈尔滨工业大学 | Ground target track tracking method based on mixed grid multi-model |
CN115390560B (en) * | 2022-08-18 | 2023-09-15 | 哈尔滨工业大学 | A ground target trajectory tracking method based on hybrid grid multi-model |
CN118194609A (en) * | 2024-05-17 | 2024-06-14 | 北京理工大学前沿技术研究院 | Group target tracking method, device and storage medium based on generalization multivariable model |
Also Published As
Publication number | Publication date |
---|---|
CN111797478B (en) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111797478B (en) | Strong maneuvering target tracking method based on variable structure multi-model | |
CN108536171B (en) | A Path Planning Method for Cooperative Tracking of Multiple UAVs under Multiple Constraints | |
CN106443622B (en) | A kind of distributed object tracking based on improvement joint probability data association | |
Li et al. | Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm | |
CN110514567B (en) | Gas source search method based on information entropy | |
CN104050368B (en) | Error compensation-based group track fine association algorithm under system error | |
CN106199580B (en) | A kind of Singer model refinement algorithms based on fuzzy inference system | |
CN115840221A (en) | A Method of Target Feature Extraction and Multi-Target Tracking Based on 4D Millimeter Wave Radar | |
CN104504728B (en) | Multiple maneuver target tracking methods, system and broad sense JPDA device thereof | |
Li et al. | IPJC: The incremental posterior joint compatibility test for fast feature cloud matching | |
CN110516193A (en) | Maneuvering Target Tracking Method Based on Transformed Rayleigh Filter in Cartesian Coordinate System | |
Tian et al. | Performance evaluation of deception against synthetic aperture radar based on multifeature fusion | |
CN108152812A (en) | A kind of improvement AGIMM trackings for adjusting grid spacing | |
CN108073742A (en) | Interception guided missile terminal flight method for estimating state based on improved particle filter algorithm | |
CN113761662B (en) | Generation method of trajectory prediction pipeline of gliding target | |
CN114489101A (en) | Terminal guidance control method and system for unmanned aerial vehicle | |
CN115900511A (en) | Magnetic dipole target positioning method based on nonlinear separable least square | |
CN110941795A (en) | Ping-pong ball rotation angle acquisition method, acquisition device and storage medium | |
Cao et al. | Research on application of computer vision assist technology in high-precision UAV navigation and positioning | |
KR102252823B1 (en) | Apparatus and method for tracking targets and releasing warheads | |
Ehrman et al. | Extended Kalman filter for estimating aircraft orientation from velocity measurements | |
CN117932894A (en) | Multimode seeker information fusion target state estimation method | |
Brunet et al. | Stereo Vision for Unmanned Aerial VehicleDetection, Tracking, and Motion Control | |
CN116069058A (en) | Unmanned aerial vehicle formation track optimization method based on reconnaissance positioning task | |
CN113885557A (en) | A Construction Method of Nonlinear Predictive Guidance Law Based on Space-time Large Maneuvering Target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |