CN111796268A - Generalized time window-based tracking beam arrangement method for rotary phased array radar - Google Patents

Generalized time window-based tracking beam arrangement method for rotary phased array radar Download PDF

Info

Publication number
CN111796268A
CN111796268A CN202010536218.4A CN202010536218A CN111796268A CN 111796268 A CN111796268 A CN 111796268A CN 202010536218 A CN202010536218 A CN 202010536218A CN 111796268 A CN111796268 A CN 111796268A
Authority
CN
China
Prior art keywords
target
tracking
window
time
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010536218.4A
Other languages
Chinese (zh)
Other versions
CN111796268B (en
Inventor
李纪三
班阳阳
侯娇
陈稳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
724th Research Institute of CSIC
Original Assignee
724th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 724th Research Institute of CSIC filed Critical 724th Research Institute of CSIC
Priority to CN202010536218.4A priority Critical patent/CN111796268B/en
Publication of CN111796268A publication Critical patent/CN111796268A/en
Application granted granted Critical
Publication of CN111796268B publication Critical patent/CN111796268B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0218Very long range radars, e.g. surface wave radar, over-the-horizon or ionospheric propagation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

The invention relates to a rotating phased array radar tracking wave beam arranging method based on a generalized time window. The method is mainly suitable for beam arrangement of a tracking task of the rotary phased array radar. The technical scheme is as follows: the method comprises the steps of calculating a tracking azimuth window of a target according to the limitation of beam deflection scanning of a rotary phased array radar, converting a generalized time window of target tracking according to the rotating speed of an antenna, arranging beams by using the generalized time window, determining the execution time of target tracking after arranging, extrapolating the azimuth and elevation of the target at the tracking execution time according to the state information of the target, and taking the azimuth and elevation as the position of task request execution.

Description

Generalized time window-based tracking beam arrangement method for rotary phased array radar
Technical Field
The invention belongs to a wave beam arrangement technology in the resource management of a rotary phased array radar.
Background
According to the situation of task load, the rotary phased array radar can self-adaptively adjust working parameters under the action of a radar controller, and switches beams among various working modes such as searching, tracking and the like. Therefore, under a certain hardware condition, the research of a more flexible and efficient task scheduling algorithm has important significance for further improving the performance to fully exert the potential of the phased array radar. Task scheduling refers to reasonably arranging execution sequences of various tasks under the condition of a given task set so as to improve the scheduling success rate and the time utilization rate of the tasks to the maximum extent while meeting constraint conditions.
In order to fully exert the multifunctional advantages, the resources such as limited time and energy of the system must be effectively managed and reasonably distributed. Huizing proposed the concept of radar task time windows when multi-phased array radar resource simulation was done in 1996. With this time window constraint, the resource allocation can be flexibly arranged when designing the resource scheduler. Therefore, the specific meaning of the time window is an effective range in which the actual emission time of the beam dwell can move around the expected emission time, and if the beam dwell is not executed beyond the range of the time window, the radar time request is considered to be failed.
The concept of the time window is based on a radar tracking working mode, the specific meaning of the time window is that the actual emission time of a radar event can move within an effective range around the expected emission time, and if the radar event is not executed beyond the range of the time window, and even if the radar event is called again, the radar event is abandoned to be scheduled. In this way, many events that are discarded due to time conflicts can be scheduled by scheduling the time window, thereby improving the time utilization.
According to the basic principle of the time window, the relevant factors of the time window design are analyzed. And according to the predicted target position, applying for a radar beam to irradiate the airspace at the time t0, so that the axis of the antenna points to the target direction, and the signal received by the radar is strongest at the moment. t0 is the expected execution time for the radar event. When the radar event is performed at time t1 (t1> t0), the radar event is performed so that the target can be detected as long as the target does not pass through the radar discrimination unit. But once the target passes the radar resolution unit, it does not make any sense to perform the event again. The analysis described above is directed to deferred execution, as well as advanced execution.
According to the self-adaptive scheduling strategy designed based on the time window, the range is larger in a certain distance according to the fact that a radar distinguishing unit (beam width), the time that a target flies through the distinguishing unit is longer at the moment, the time that the target passes through the distinguishing unit can be known according to the position, the speed and the distance of the target of Kalman filtering and the time that the radar distinguishing unit passes through the distinguishing unit, and the size of a radar tracking task time window is designed according to the time.
For high-speed, highly mobile targets, the distance of the target through the radar resolution unit is relatively small in the range of relatively close distance to the radar, so the time window for tracking is also particularly small, typically between tens of milliseconds and tens of milliseconds. Research shows that under the condition of large tracking task load, a larger time window can improve the success rate of task scheduling, and a small time window can cause a plurality of tasks to compete for the same time slice to cause task scheduling failure.
Disclosure of Invention
The invention provides a method for arranging tracking beams of a rotary phased array radar based on a generalized time window, aiming at the problems that the tracking time window is small in a traditional scheduling algorithm for providing a position request and an execution time in data processing, and the scheduling fails when multiple tracking tasks are performed in the same direction and multiple tasks compete for the same time slice.
The invention provides a generalized time window-based rotating phased array radar tracking beam arranging method, which comprises the steps of firstly calculating a target tracking azimuth window according to the limitation of the deflection scanning range of a rotating phased array radar beam, converting the tracking azimuth window into a tracking generalized time window according to the rotating speed of an antenna, arranging the beam by using the generalized time window, determining the target tracking execution time after arranging, externally deducing the azimuth and the elevation of the target at the tracking execution time according to the state information of the target, and taking the azimuth and the elevation as the tracking task execution angle.
The method comprises the following specific steps:
s1: calculating a tracking azimuth window of the target according to the limitation of the beam deflection scanning of the rotary phased array radar; the maximum azimuth sweep angle of the phased array radar is
Figure BDA0002537078970000021
When the target is at the azimuth position psi, the antenna array is at the azimuth
Figure BDA0002537078970000022
I.e., the tracked azimuth window Azi _ window has a size:
Figure BDA0002537078970000023
s2: converting a generalized tracking time window t _ window of target tracking according to the rotating speed of the antenna; the rotation period of the antenna is T, and the time when the antenna rotates through the target azimuth window is the generalized tracking time window:
Figure BDA0002537078970000024
s3: receiving a tracking request provided by data processing, and calculating a time window of the request: the tracking request comprises parameters of a target batch number, a position under a target geodetic coordinate system, an azimuth elevation distance under the target geodetic coordinate system, a task expected execution time t _ hope and a task priority; the time window is [ t _ hope-0.5 t _ window, t _ hope +0.5 t _ window ];
s4: arranging tasks according to the expected execution time of the tasks and the generalized tracking time window calculated in the step S2; putting tasks which are not laid back to a task linked list, and determining the execution time t _ excute of the tasks;
s5: extrapolating the target position at the task execution time according to the state of the target:
first, the position (x, y, z) of the target at the time of extrapolation in a rectangular coordinate system is calculated:
x=x_0+v_x*(t_excute-t_hope);
y=y_0+v_y*(t_excute-t_hope);
z=z_0+v_z*(t_excute-t_hope);
converting the position under the rectangular coordinate system into the distance, the elevation angle and the azimuth under the measuring coordinate system: (r, β, θ)
Figure BDA0002537078970000031
S6: and sending the position (r, beta, theta) calculated in the step 5 and the t _ excute calculated in the step 4 to the wave control as the task execution time and position.
Further, the arranging method in step S4 includes: when the scheduling interval comes, the tasks with the time windows falling in the scheduling interval are taken out, the tasks are scheduled according to the priority, and the tasks which are not scheduled are put back to the task chain table.
The invention provides a scheduling method of a generalized time window aiming at high-speed high-mobility target tracking, and compared with the traditional smaller time window, the scheduling method of the generalized time window has the advantages of simple structure, clear logic, easy engineering realization and capability of greatly improving the success rate of task scheduling.
Drawings
Fig. 1 is a flowchart of a generalized time window based tracking beam arrangement of a rotating phased array radar.
Detailed Description
The invention is described in further detail below with reference to the figures and examples.
The invention provides a generalized time window-based method for arranging tracking beams of a rotary phased array radar, which comprises the following implementation process embodiments:
1. and (3) carrying out sector division on the alert area: suppose 0-360 equally divided into 10 sectors (2 scheduling intervals per sector), 36 per sector. When the expected transmission time of the search task is set, the long-range search is placed in the normal direction of the antenna, the beam gain is maximum at the moment, the radar power can be ensured, and the short-range search and tracking can be arranged at the angle of the beam deviating from the normal direction.
2. Calculating an orientation window of target tracking:
the maximum azimuth sweep angle of the phased array radar is
Figure BDA0002537078970000032
The target is at the azimuth position psi, thenArray of antennas in azimuth
Figure BDA0002537078970000033
I.e., the tracked azimuth window Azi _ window has a size:
Figure BDA0002537078970000034
if the phased array is swept at an angle of 45, the tracking window size is 90 degrees.
3. Calculating the size of a generalized time window t _ window tracked by the target;
the rotation period of the antenna is T, and the time when the antenna rotates through the target azimuth window is the generalized tracking time window:
Figure BDA0002537078970000035
if the rotation period of the antenna is 1 second, the generalized time window for target tracking is 250 ms. Much larger than the size of the time window disclosed in the literature.
4. Receiving a tracking request provided by data processing, and calculating a time window of the request:
the trace request includes the following parameters: target batch number, position under a target geodetic coordinate system, azimuth and elevation distances under the target geodetic coordinate system, task expected execution time t _ hope, task priority and the like.
The time window is [ t _ hope-125, t _ hope +125]
5. And (3) scheduling the tasks according to the expected execution time of the tasks and the time window calculated in the step (2), wherein the scheduling method comprises the steps of taking out the tasks of which the time windows fall in the scheduling interval when the scheduling interval comes, scheduling according to the priority, and returning the tasks which are not scheduled to the task chain table. Determining the execution time t _ excute of the task;
first, the position (x, y, z) of the target at the time of extrapolation in a rectangular coordinate system is calculated:
x=x_0+v_x*(t_excute-t_hope)
y=y_0+v_y*(t_excute-t_hope)
z=z_0+v_z*(t_excute-t_hope)
converting the position in the rectangular coordinate system into distance, elevation angle and azimuth (r, beta, theta) in the measuring coordinate system
Figure BDA0002537078970000041
6. And sending the position (r, beta, theta) calculated in the step 5 and the t _ excute calculated in the step 4 to the wave control as the task execution time and position.

Claims (2)

1. The method for arranging the tracking beams of the rotating phased array radar based on the generalized time window is characterized in that:
s1: calculating a tracking azimuth window of the target according to the limitation of the beam deflection scanning of the rotary phased array radar; the maximum azimuth sweep angle of the phased array radar is
Figure FDA0002537078960000011
When the target is at the azimuth position psi, the antenna array is at the azimuth
Figure FDA0002537078960000012
I.e., the tracked azimuth window Azi _ window has a size:
Figure FDA0002537078960000013
s2: converting a generalized tracking time window t _ window of target tracking according to the rotating speed of the antenna; the rotation period of the antenna is T, and the time when the antenna rotates through the target azimuth window is the generalized tracking time window:
Figure FDA0002537078960000014
s3: receiving a tracking request provided by data processing, and calculating a time window of the request: the tracking request comprises parameters of a target batch number, a position under a target geodetic coordinate system, an azimuth elevation distance under the target geodetic coordinate system, a task expected execution time t _ hope and a task priority; the time window is [ t _ hope-0.5 t _ window, t _ hope +0.5 t _ window ];
s4: arranging tasks according to the expected execution time of the tasks and the generalized tracking time window calculated in the step S2;
s5: extrapolating the target position at the task execution time according to the state of the target: first, the position (x, y, z) of the target at the time of extrapolation in a rectangular coordinate system is calculated:
x=x_0+v_x*(t_excute-t_hope);
y=y_0+v_y*(t_excute-t_hope);
z=z_0+v_z*(t_excute-t_hope);
converting the position in the rectangular coordinate system into distance, elevation angle and azimuth (r, beta, theta) in the measuring coordinate system
Figure FDA0002537078960000015
S6: the position (r, β, θ) calculated in step S5 and t _ excute calculated in step S4 are sent to the wave controller as the task execution time and position.
2. The generalized time window based rotating phased array radar tracking beam scheduling method of claim 1, wherein: the arranging method in the step S4 includes: when the scheduling interval comes, the tasks with the time windows falling in the scheduling interval are taken out, the tasks are scheduled according to the priority, and the tasks which are not scheduled are put back to the task chain table.
CN202010536218.4A 2020-06-12 2020-06-12 Generalized time window-based rotating phased array radar tracking beam arranging method Active CN111796268B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010536218.4A CN111796268B (en) 2020-06-12 2020-06-12 Generalized time window-based rotating phased array radar tracking beam arranging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010536218.4A CN111796268B (en) 2020-06-12 2020-06-12 Generalized time window-based rotating phased array radar tracking beam arranging method

Publications (2)

Publication Number Publication Date
CN111796268A true CN111796268A (en) 2020-10-20
CN111796268B CN111796268B (en) 2022-05-20

Family

ID=72804703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010536218.4A Active CN111796268B (en) 2020-06-12 2020-06-12 Generalized time window-based rotating phased array radar tracking beam arranging method

Country Status (1)

Country Link
CN (1) CN111796268B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076333A (en) * 2014-07-05 2014-10-01 中国船舶重工集团公司第七二四研究所 Method for implementing rotating phased array radar beam self-adaption arrangement based on twice sorting
CN104077488A (en) * 2014-07-05 2014-10-01 中国船舶重工集团公司第七二四研究所 Rotary phased array radar sliding window resource scheduling technique based on sectors
CN107505599A (en) * 2017-07-27 2017-12-22 中国船舶重工集团公司第七二四研究所 A kind of rotating phased array radar electron beam points to real-time control method
CN109581342A (en) * 2018-12-07 2019-04-05 中国船舶重工集团公司第七二四研究所 A kind of rotating phased array radar complete period time resource distribution method
CN109581341A (en) * 2018-12-07 2019-04-05 中国船舶重工集团公司第七二四研究所 A kind of change swing circle phased array radar track task method of combination
CN110412561A (en) * 2019-07-20 2019-11-05 中国船舶重工集团公司第七二四研究所 It is a kind of to be navigated method based on TAS essence with the fast run-up of low altitude high speed target of wave beam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076333A (en) * 2014-07-05 2014-10-01 中国船舶重工集团公司第七二四研究所 Method for implementing rotating phased array radar beam self-adaption arrangement based on twice sorting
CN104077488A (en) * 2014-07-05 2014-10-01 中国船舶重工集团公司第七二四研究所 Rotary phased array radar sliding window resource scheduling technique based on sectors
CN107505599A (en) * 2017-07-27 2017-12-22 中国船舶重工集团公司第七二四研究所 A kind of rotating phased array radar electron beam points to real-time control method
CN109581342A (en) * 2018-12-07 2019-04-05 中国船舶重工集团公司第七二四研究所 A kind of rotating phased array radar complete period time resource distribution method
CN109581341A (en) * 2018-12-07 2019-04-05 中国船舶重工集团公司第七二四研究所 A kind of change swing circle phased array radar track task method of combination
CN110412561A (en) * 2019-07-20 2019-11-05 中国船舶重工集团公司第七二四研究所 It is a kind of to be navigated method based on TAS essence with the fast run-up of low altitude high speed target of wave beam

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
程小枫等: "双波段旋转相控阵雷达任务调度算法", 《科学技术与工程》 *
翟刚毅等: "二维旋转相控阵雷达内嵌式目标模拟器设计与实现", 《雷达与对抗》 *

Also Published As

Publication number Publication date
CN111796268B (en) 2022-05-20

Similar Documents

Publication Publication Date Title
CN106546973B (en) Phased-array radar and its full airspace Target Searching Method
CN108490431A (en) A kind of two-dimentional active phased array target radar based on resource dynamic management-control method
CN103869309B (en) Orientation rotation phased-array radar targeted surveillance and aerological sounding compatibility method and system
JP2576249B2 (en) Phased array radar beam management method and apparatus
CN109581342B (en) Full-period time resource allocation method for rotary phased array radar
CN110018478A (en) The adaptive variable period scan method of aviation management
CN110427255B (en) Comprehensive resource scheduling method for multi-planar array time sequence synchronization
CN104077488A (en) Rotary phased array radar sliding window resource scheduling technique based on sectors
CN109581341B (en) Variable rotation period phased array radar tracking task arrangement method
CN106772251A (en) A kind of positioning using TDOA system multi-beam priority scheduling of resource method
CN104463463A (en) Phased array radar self-adaptive resource scheduling method based on wave parking rhythm and event driving
CN111430917B (en) Control method, device and system of phased array antenna
CN111796268B (en) Generalized time window-based rotating phased array radar tracking beam arranging method
Zhang et al. Joint jamming beam and power scheduling for suppressing netted radar system
Galati et al. Time for a change in phased array radar architectures-part ii: The d-radar
Liu et al. Adaptive scheduling algorithm based on CPI and impact of tasks for multifunction radar
Shi et al. Joint optimization of target assignment and resource allocation for multi-target tracking in phased array radar network
CN109557543A (en) A kind of meteorological detection based on orientation rotation phased-array radar and targeted surveillance method
CN109001690A (en) The radar target detection method that time domain space domain based on feeding network combines
CN113960594A (en) Phased array radar searching method and system
CN116243252B (en) LSTM-based multifunctional radar working mode prediction method
CN112859064A (en) Passive phased array radar self-adaptive radiation source tracking and scheduling method
CN113640788A (en) Target tracking method
CN111813511A (en) Rotary phased array radar resource scheduling method based on multiple interrupts
Qian et al. An antenna beam control method of spaceborne multi-mode imaging SAR based on real-time computing framework

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant