CN111796013B - Zeolite imidazolate framework/metal oxide/molybdenum sulfide composite material - Google Patents
Zeolite imidazolate framework/metal oxide/molybdenum sulfide composite material Download PDFInfo
- Publication number
- CN111796013B CN111796013B CN202010489969.5A CN202010489969A CN111796013B CN 111796013 B CN111796013 B CN 111796013B CN 202010489969 A CN202010489969 A CN 202010489969A CN 111796013 B CN111796013 B CN 111796013B
- Authority
- CN
- China
- Prior art keywords
- molybdenum sulfide
- metal oxide
- composite material
- transition metal
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于纳米材料和电化学传感技术领域,具体涉及一种分级的沸石咪唑酯骨架结构(ZIFs)/金属氧化物/硫化钼复合材料及其制备方法和应用。The invention belongs to the technical field of nanomaterials and electrochemical sensing, in particular to a graded zeolite imidazolate framework structure (ZIFs)/metal oxide/molybdenum sulfide composite material and its preparation method and application.
背景技术Background technique
随着传感技术的快速发展,电化学生物传感器相较于传统大型检测设备,具有灵敏度高、操作简便、成本低等优点,在包括医学诊断等领域内拥有广阔的应用前景。由两种及两种以上纳米材料组合形成具有多级分层结构的三维复合材料,不仅结合了各结构基元的优点,而且不同组分间的协同增强效应也赋予了复合材料新的特性,从而使电化学生物传感器性能得到提升。With the rapid development of sensing technology, electrochemical biosensors have the advantages of high sensitivity, easy operation, and low cost compared with traditional large-scale detection equipment, and have broad application prospects in fields including medical diagnosis. The combination of two or more nanomaterials forms a three-dimensional composite material with a multi-level layered structure, which not only combines the advantages of each structural unit, but also gives the composite material new properties due to the synergistic enhancement effect between different components. Thus, the performance of the electrochemical biosensor is improved.
二维硫化钼(MoS2)薄层材料作为过渡金属硫族化合物的典型代表,具有比表面积大、生物相容性好及带隙可调等优势;基于二维层状硫化钼构建的电化学传感器,其特殊的电化学性能、丰富的边缘催化活性位点及良好的生物相容性,因此在电化学生物传感方面有着巨大的应用潜力。通过在薄层硫化钼材料表面功能化修饰如金属氧化物等材料,避免了层状硫化钼的聚集,有效增加了电催化面积,提高了与目标分析物的直接电子传输能力。然而,单纯在薄层硫化钼材料表面功能化修饰金属氧化物还难以解决电化学生物传感器对待测物质的选择性捕获和高灵敏检测。沸石咪唑酯骨架结构材料(ZIFs)是由锌或钴等过渡金属与咪唑酯配位形成的一类具有沸石拓扑结构的多孔晶体材料。沸石咪唑酯骨架结构材料具有高比表面积、孔隙和孔道结构可控及高的热稳定性和化学稳定性特点,已在生物分子的选择性捕获和富集方面展现了巨大潜力。基于上述三种纳米基元构建复合结构纳米敏感材料,有望提升生物传感界面的信号传递和信号放大效率,从而有效提升传感器的检测能力。Two-dimensional molybdenum sulfide (MoS 2 ) thin-layer materials, as a typical representative of transition metal chalcogenides, have the advantages of large specific surface area, good biocompatibility, and adjustable band gap; electrochemical devices based on two-dimensional layered molybdenum sulfide Sensors have great application potential in electrochemical biosensing due to their special electrochemical properties, abundant edge catalytic active sites, and good biocompatibility. By functionally modifying materials such as metal oxides on the surface of thin-layer molybdenum sulfide materials, the aggregation of layered molybdenum sulfide is avoided, the electrocatalytic area is effectively increased, and the direct electron transport ability with target analytes is improved. However, it is still difficult to solve the selective capture and high-sensitivity detection of analytes in electrochemical biosensors simply by functionalizing metal oxides on the surface of thin-layer molybdenum sulfide materials. Zeolitic imidazolate framework materials (ZIFs) are a class of porous crystalline materials with zeolite topology formed by the coordination of transition metals such as zinc or cobalt and imidazolate. Zeolitic imidazolate framework materials have the characteristics of high specific surface area, controllable pore and pore structure, high thermal and chemical stability, and have shown great potential in the selective capture and enrichment of biomolecules. Based on the above three nano-elements to construct composite nano-sensitive materials, it is expected to improve the signal transmission and signal amplification efficiency of the biosensing interface, thereby effectively improving the detection ability of the sensor.
发明内容Contents of the invention
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种沸石咪唑酯骨架结构/金属氧化物/硫化钼复合材料、其制备及其应用,本发明复合材料以层状硫化钼材料为基底,在其表面生长金属氧化物,再在金属氧化物表面生长沸石咪唑酯骨架结构材料。层状硫化钼具有可调带隙结构和比表面积大、电催化活性高、生物相容性好、易于功能化等诸多的物理化学性质;依靠金属氧化物的支撑作用在二维硫化钼层间形成新的活性空间,为生物小分子提供了运输通道;增加了与待测分子的有效接触面积并加速了电极表面的电子传递和物质传输速率;沸石咪唑酯骨架结构材料对识别抗体或抗原进行选择性固定,实现对待测抗原或抗体的高灵敏、特异性检测。In order to solve the problems of the prior art, the purpose of the present invention is to overcome the deficiencies in the prior art, to provide a zeolite imidazolate framework structure/metal oxide/molybdenum sulfide composite material, its preparation and application, the composite material of the present invention is based on a layer Molybdenum sulfide material is used as the substrate, metal oxides are grown on the surface, and zeolite imidazolate framework materials are grown on the surface of the metal oxides. Layered molybdenum sulfide has many physical and chemical properties such as adjustable band gap structure, large specific surface area, high electrocatalytic activity, good biocompatibility, and easy functionalization; relying on the support of metal oxides, the two-dimensional molybdenum sulfide interlayer Form a new active space and provide a transport channel for small biological molecules; increase the effective contact area with the molecule to be tested and accelerate the electron transfer and material transfer rate on the electrode surface; Selective immobilization to achieve highly sensitive and specific detection of the antigen or antibody to be tested.
为达到上述发明创造目的,本发明采用如下技术方案:In order to achieve the above invention creation purpose, the present invention adopts the following technical solutions:
一种沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料,以层状硫化钼材料为基底,首先在硫化钼材料的表面生长过渡金属氧化物,然后在该过渡金属氧化物表面生长沸石咪唑酯骨架结构材料(ZIFs),形成复合材料结构;所述层状硫化钼、过渡金属氧化物和沸石咪唑酯骨架结构的质量比为:5:5:1~400:20:1。A zeolite imidazolate framework structure/transition metal oxide/molybdenum sulfide composite material, based on a layered molybdenum sulfide material, first grows a transition metal oxide on the surface of the molybdenum sulfide material, and then grows a zeolite on the surface of the transition metal oxide The imidazolate framework material (ZIFs) forms a composite material structure; the mass ratio of the layered molybdenum sulfide, transition metal oxide and zeolite imidazolate framework structure is: 5:5:1˜400:20:1.
上述金属氧化物优选采用氧化锌纳米柱阵列、氧化锌纳米晶、四氧化三钴纳米柱阵列或四氧化三钴纳米晶。The above-mentioned metal oxides are preferably zinc oxide nanocolumn arrays, zinc oxide nanocrystals, tricobalt tetroxide nanocolumn arrays or tricobalt tetroxide nanocrystals.
上述沸石咪唑酯骨架结构材料(ZIFs)优选采用ZIF-8、ZIF-67或ZIF-90。The above-mentioned zeolite imidazolate framework material (ZIFs) is preferably ZIF-8, ZIF-67 or ZIF-90.
一种本发明沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料的制备方法,步骤如下:A kind of preparation method of zeolite imidazolate framework structure/transition metal oxide/molybdenum sulfide composite material of the present invention, the steps are as follows:
a.将层状硫化钼均匀分散在无水乙醇中,得到层状硫化钼浓度为0.1~1mg/mL的分散液;将该分散溶液均匀涂覆在硅片表面,并待其干燥,形成硫化钼膜层;a. Uniformly disperse layered molybdenum sulfide in absolute ethanol to obtain a dispersion solution with a layered molybdenum sulfide concentration of 0.1-1 mg/mL; apply the dispersion solution evenly on the surface of a silicon wafer and wait for it to dry to form a sulfide solution Molybdenum film layer;
b.将浓度为1~20mM的过渡金属盐的无水乙醇溶液涂覆在步骤a所得硅片上结合的硫化钼膜层上,干燥,得到依次结合硫化钼膜层和过渡金属材料膜层的硅片;然后在200~500℃温度条件下,进行煅烧10~50min,取出后硅片后自然冷却,得到结合过渡金属氧化物/硫化钼复合材料的硅片;b. be that concentration is the dehydrated alcohol solution of the transition metal salt of 1~20mM coating on the molybdenum sulfide film layer that is combined on the obtained silicon chip of step a, dry, obtain the molybdenum sulfide film layer and transition metal material film layer that combine successively Silicon wafer; then calcined at 200-500°C for 10-50 minutes, took out the silicon wafer and cooled it naturally to obtain a silicon wafer combined with a transition metal oxide/molybdenum sulfide composite material;
c.配制含金属盐、酰胺、碱源和水的混合溶液,所述金属盐采用金属硝酸盐或金属氯化物,所述酰胺采用尿素或聚醚酰亚胺,所述碱源采用六亚甲基四胺或氟化铵,将步骤b所得硅片置于该混合溶液上方,密封后在60~95℃温度条件下反应2~12小时;c. Prepare a mixed solution containing metal salt, amide, alkali source and water, the metal salt adopts metal nitrate or metal chloride, the amide adopts urea or polyetherimide, and the alkali source adopts hexamethylene tetramine or ammonium fluoride, the silicon chip obtained in step b is placed above the mixed solution, sealed and reacted at a temperature of 60-95°C for 2-12 hours;
取出硅片后分别采用无水乙醇和去离子水洗涤干净,干燥后即得到过渡金属氧化物/硫化钼复合材料;所述溶液中金属盐的摩尔浓度为10~50mM,碱源的摩尔浓度为10~50mM,酰胺的摩尔浓度为1~30mM;所述金属盐、碱源和酰胺的摩尔配比为2:2:1~10:10:1;After taking out the silicon chip, wash it with absolute ethanol and deionized water respectively, and obtain the transition metal oxide/molybdenum sulfide composite material after drying; the molar concentration of the metal salt in the solution is 10-50mM, and the molar concentration of the alkali source is 10-50mM, the molar concentration of amide is 1-30mM; the molar ratio of the metal salt, alkali source and amide is 2:2:1-10:10:1;
d.将沸石咪唑酯骨架结构配体置于密闭容器中,并将在步骤c所得硅片悬挂沸石咪唑酯骨架结构配体溶液的上方,密封后于100~200℃下反应0.2~8h;随后取出样品置于100~200℃真空干燥箱内处理5min~12h,冷却至室温,即得到沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料。d. Place the zeolite imidazolate skeleton structure ligand in an airtight container, and hang the silicon chip obtained in step c above the zeolite imidazolate skeleton structure ligand solution, and react at 100-200° C. for 0.2-8 hours after sealing; then The sample is taken out and placed in a vacuum drying oven at 100-200°C for 5min-12h, and cooled to room temperature to obtain a zeolite imidazolate framework structure/transition metal oxide/molybdenum sulfide composite material.
作为本发明优选的技术方案,在所述步骤d中,配置20~80mM沸石咪唑酯骨架结构配体/N,N-二甲基甲酰胺溶液,将在步骤c所得硅片置于该溶液上方,密封后于40~120℃温度条件下反应0.5~8h;然后取出硅片后冷却至室温,分别采用无水乙醇和去离子水洗涤干净,干燥,即得到沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料。As a preferred technical solution of the present invention, in the step d, configure a 20-80 mM zeolite imidazolate skeleton structure ligand/N,N-dimethylformamide solution, and place the silicon wafer obtained in step c above the solution , sealed and reacted at a temperature of 40-120°C for 0.5-8h; then the silicon chip was taken out and cooled to room temperature, washed with absolute ethanol and deionized water, and dried to obtain the zeolite imidazolate skeleton structure/transition metal oxide Molybdenum/molybdenum sulfide composites.
一种电化学免疫生物传感器,采用本发明沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料,所述传感器是在电化学传感芯片工作电极表面沉积有所述沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料,形成复合电极。An electrochemical immunobiological sensor adopts the zeolite imidazolate framework structure/transition metal oxide/molybdenum sulfide composite material of the present invention, and the sensor is deposited with the zeolite imidazolate framework structure/on the surface of the working electrode of the electrochemical sensing chip. Transition metal oxide/molybdenum sulfide composites to form composite electrodes.
一种本发明电化学免疫生物传感器的制备方法,步骤如下:将所述沸石咪唑酯骨架结构/金属氧化物/硫化钼复合材料分散在无水乙醇和Nafion溶液,即全氟磺酸型聚合物溶液中,体积比V乙醇:VNafion为12:1~2:1,配制成浓度为1~50mg/mL的溶液,超声处理15-45min获得分散均匀油墨,将该油墨沉积于电化学传感芯片工作电极表面,于室温下干燥后,即得到基于沸石咪唑酯骨架结构/金属氧化物/硫化钼复合材料的电化学免疫生物传感器。A preparation method of the electrochemical immune biosensor of the present invention, the steps are as follows: the zeolite imidazolate framework structure/metal oxide/molybdenum sulfide composite material is dispersed in absolute ethanol and Nafion solution, i.e. perfluorosulfonic acid polymer In the solution, the volume ratio of V ethanol : V Nafion is 12:1~2:1, and it is prepared into a solution with a concentration of 1~50mg/mL, and it is ultrasonically treated for 15-45min to obtain a uniformly dispersed ink, and the ink is deposited on the electrochemical sensor After the surface of the working electrode of the chip is dried at room temperature, an electrochemical immunological biosensor based on the zeolite imidazolate framework structure/metal oxide/molybdenum sulfide composite material is obtained.
一种本发明电化学免疫生物传感器的应用,电化学免疫生物传感器在检测抗原或抗体中进行应用。An application of the electrochemical immune biosensor of the present invention, the electrochemical immune biosensor is used in detecting antigens or antibodies.
作为本发明优选的技术方案,将制备得到的电化学传感芯片浸泡在识别抗体或抗原溶液中,并置于4℃下反应8-18小时。将取出的传感芯片用磷酸缓冲溶液冲洗后放入体积分数为10%的封闭缓冲液中(Blocking Buffer),并于37℃恒温孵育40-80min。取出传感芯片后用磷酸缓冲溶液冲洗除去残留的封闭缓冲液,浸泡在待测抗原或抗体溶液中在37℃恒温孵育40-80min后即可进行测试。上述抗体溶液、封闭缓冲溶液及抗原溶液均由磷酸缓冲溶液配制得到;上述的磷酸缓冲溶液pH值为6.8-7.4。As a preferred technical solution of the present invention, the prepared electrochemical sensor chip is soaked in the recognition antibody or antigen solution, and reacted at 4°C for 8-18 hours. The taken out sensor chip was rinsed with phosphate buffer solution, then put into blocking buffer (Blocking Buffer) with a volume fraction of 10%, and incubated at a constant temperature of 37°C for 40-80min. After taking out the sensor chip, wash it with phosphate buffer solution to remove the residual blocking buffer, soak it in the antigen or antibody solution to be tested, and incubate at 37°C for 40-80min at a constant temperature before testing. The above antibody solution, blocking buffer solution and antigen solution are all prepared from phosphate buffer solution; the pH value of the above phosphate buffer solution is 6.8-7.4.
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:
1.本发明分级的沸石咪唑酯骨架结构(ZIFs)/金属氧化物/硫化钼复合材料以层状硫化钼材料为基底,采用水热法在层状硫化钼材料表面生长金属氧化物,再通过气相法或液相法在金属氧化物表面生长沸石咪唑酯骨架结构材料;1. The graded zeolite imidazolate framework structure (ZIFs)/metal oxide/molybdenum sulfide composite material of the present invention is based on layered molybdenum sulfide material, adopts hydrothermal method to grow metal oxide on the layered molybdenum sulfide material surface, and then passes Growth of zeolite imidazolate framework materials on the surface of metal oxides by gas-phase or liquid-phase methods;
2.本发明层状硫化钼具有可调带隙结构和比表面积大、电催化活性高、生物相容性好、易于功能化等诸多的物理化学性质;依靠金属氧化物的支撑作用在二维硫化钼层间形成新的活性空间,为生物小分子提供了运输通道;以层状硫化钼和金属氧化物构成的复合材料提升了与待测分子的有效接触面积并加速了电极表面的电子传递和物质传输速率;进而利用沸石咪唑酯骨架结构材料对抗体或抗原的选择性固定,实现对待测物的高灵敏、特异性检测;本发明具有检测灵敏度高、操作简单、响应时间短、成本较低优点;2. The layered molybdenum sulfide of the present invention has many physical and chemical properties such as adjustable bandgap structure, large specific surface area, high electrocatalytic activity, good biocompatibility, and easy functionalization; relying on the support of metal oxides in two-dimensional A new active space is formed between molybdenum sulfide layers, which provides a transport channel for small biological molecules; the composite material composed of layered molybdenum sulfide and metal oxide increases the effective contact area with the analyte molecule and accelerates the electron transfer on the electrode surface and material transmission rate; and then use zeolite imidazolate framework material to selectively immobilize antibodies or antigens to achieve highly sensitive and specific detection of the analyte; the invention has high detection sensitivity, simple operation, short response time, and low cost. low merit;
3.本发明方法简单易行,成本低,适合推广使用。3. The method of the present invention is simple and easy to implement, low in cost, and suitable for popularization and use.
附图说明Description of drawings
图1为ZIF-90/ZnO/MoS2复合材料的形貌和结构表征结果。其中a为低倍数下ZIF-90/ZnO/MoS2的SEM图;b为高倍数下ZIF-90/ZnO/MoS2的SEM图;c为低倍数下ZIF-90/ZnO/MoS2的TEM图;d为高倍数下ZIF-90/ZnO/MoS2的TEM图。Figure 1 shows the morphology and structure characterization results of ZIF-90/ZnO/MoS 2 composites. Where a is the SEM image of ZIF-90/ZnO/MoS 2 at low magnification; b is the SEM image of ZIF-90/ZnO/MoS 2 at high magnification; c is the TEM image of ZIF-90/ZnO/MoS 2 at low magnification Figure; d is the TEM image of ZIF-90/ZnO/MoS 2 at high magnification.
图2为ZIF-90/ZnO/MoS2复合材料修饰的电化学传感芯片对不同浓度人IgG(免疫球蛋白G,IgG)的检测结果。其中a为浓度范围在10-100μg/mL人IgG的DPV测试曲线;b为浓度范围在0.001-1μg/mL人IgG的DPV测试曲线。Fig. 2 is the detection result of different concentrations of human IgG (immunoglobulin G, IgG) by the electrochemical sensor chip modified by ZIF-90/ZnO/MoS 2 composite material. Wherein a is the DPV test curve of human IgG in the concentration range of 10-100 μg/mL; b is the DPV test curve of human IgG in the concentration range of 0.001-1 μg/mL.
图3为ZIF-90/ZnO/MoS2复合材料修饰的电化学传感芯片对不同浓度CD-63的检测结果。Figure 3 shows the detection results of different concentrations of CD-63 by the electrochemical sensor chip modified by ZIF-90/ZnO/MoS 2 composites.
具体实施方式Detailed ways
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:Below in conjunction with specific implementation example, above-mentioned scheme is described further, and preferred embodiment of the present invention is described in detail as follows:
实施例一:Embodiment one:
在本实施例中,一种沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料,以层状硫化钼材料为基底,首先在硫化钼材料的表面生长过渡金属氧化物,然后在该过渡金属氧化物表面生长沸石咪唑酯骨架结构材料(ZIFs),形成复合材料结构。In this embodiment, a zeolite imidazolate framework structure/transition metal oxide/molybdenum sulfide composite material is based on a layered molybdenum sulfide material. First, a transition metal oxide is grown on the surface of the molybdenum sulfide material, and then the transition Zeolite imidazolate framework materials (ZIFs) were grown on the surface of metal oxides to form a composite structure.
在本实施例中,沸石咪唑酯骨架结构/过渡金属氧化物/硫化钼复合材料的制备方法,步骤如下:In this embodiment, the preparation method of the zeolite imidazolate framework structure/transition metal oxide/molybdenum sulfide composite material, the steps are as follows:
a.称取5mg预先制备好的层状MoS2加入到25mL无水乙醇中,超声处理30min后,得到均匀分散的MoS2溶液,使用移液枪将分散溶液均匀沉积在干净硅片表面,并待其干燥,形成硫化钼膜层;a. Weigh 5 mg of pre-prepared layered MoS 2 and add it to 25 mL of absolute ethanol. After ultrasonic treatment for 30 minutes, a uniformly dispersed MoS 2 solution is obtained. Use a pipette gun to evenly deposit the dispersed solution on the surface of a clean silicon wafer, and After it dries, a molybdenum sulfide film layer is formed;
b.配制浓度为5mM的醋酸锌无水乙醇溶液,使用移液枪将溶液均匀滴涂在硫化钼膜层表面,室温下自然风干后移入350℃管式炉内煅烧20min,取出自然冷却;配制浓度为25mM六水合氯化锌、25mM六亚甲基四胺的200mL水溶液,待溶解后将上述溶液倒入反应釜中,并将煅烧后的硅片置于前驱体溶液上方,密封后于90℃烘箱中反应5小时;反应结束后将硅片取出,用去离子水和乙醇清洗数次,即得到ZnO/MoS2复合材料的硅片;b. Prepare a zinc acetate absolute ethanol solution with a concentration of 5mM, use a pipette gun to evenly drop the solution on the surface of the molybdenum sulfide film layer, dry it naturally at room temperature, then transfer it to a tube furnace at 350°C for calcination for 20min, take it out and cool it naturally; The concentration is 200mL aqueous solution of 25mM zinc chloride hexahydrate and 25mM hexamethylenetetramine. After dissolving, pour the above solution into the reaction kettle, and place the calcined silicon wafer above the precursor solution, and seal it at 90 ℃ oven for 5 hours; after the reaction, the silicon chip was taken out and washed several times with deionized water and ethanol to obtain a silicon chip of ZnO/MoS 2 composite material;
c.将0.5g咪唑-2-甲醛(ICA)放入体积为100mL的广口玻璃瓶中;然后,将负载ZnO/MoS2复合材料的硅片悬挂于瓶中;将玻璃瓶密封后于150℃下反应30min;随后将样品从瓶中转移入150℃真空干燥箱内处理10min,冷却至室温后获得ZIF-90/ZnO/MoS2复合材料。c. 0.5g imidazole- 2 -formaldehyde (ICA) is put into a wide-mouth glass bottle with a volume of 100mL; then, the silicon chip loaded with ZnO/MoS2 composite material is suspended in the bottle; ℃ for 30 minutes; then the sample was transferred from the bottle into a vacuum oven at 150 ℃ for 10 minutes, and cooled to room temperature to obtain the ZIF-90/ZnO/MoS 2 composite material.
本实施例复合材料的形貌和结构表征结果如附图1所示。从附图1(a)可以看出在二维层状硫化钼材料表面均匀生长了一层ZnO纳米线阵列,附图1(b)可以看到ZnO纳米线表面生长了一层粗糙的ZIF-90材料;附图1(c)和(d)的透射电子显微镜表征结果进一步表明在ZnO纳米线的表面均匀包裹着厚度约10nm的ZIF-90材料;上述结果表明,采用本实施例方法可获得具有多层分级结构的ZIF-90/ZnO/MoS2复合材料。The morphology and structural characterization results of the composite material in this example are shown in Figure 1. From Figure 1(a), it can be seen that a layer of ZnO nanowire arrays is uniformly grown on the surface of the two-dimensional layered molybdenum sulfide material, and in Figure 1(b), it can be seen that a layer of rough ZIF- 90 material; the transmission electron microscope characterization result of accompanying drawing 1 (c) and (d) further shows that the ZIF-90 material that thickness is about 10nm is evenly wrapped on the surface of ZnO nanowire; Above-mentioned result shows, adopts the present embodiment method to obtain ZIF - 90/ZnO/MoS2 composites with multilayer hierarchical structure.
将2mg上述制备的ZIF-90/ZnO/MoS2复合材料分散在50μL无水乙醇和12.5μLNafion溶液(全氟磺酸型聚合物溶液)中,超声处理30min获得分散均匀油墨,将该油墨沉积于电化学传感芯片工作电极表面,于室温下干燥后,即得到ZIF-90/ZnO/MoS2复合材料修饰的电化学传感芯片。Disperse 2 mg of the above-prepared ZIF-90/ZnO/MoS 2 composite material in 50 μL of absolute ethanol and 12.5 μL of Nafion solution (perfluorosulfonic acid polymer solution), ultrasonically treat for 30 min to obtain a uniformly dispersed ink, and deposit the ink on After the surface of the working electrode of the electrochemical sensor chip is dried at room temperature, the electrochemical sensor chip modified by the ZIF-90/ZnO/MoS 2 composite material is obtained.
将制备得到的电化学传感芯片浸泡在羊抗人IgG抗体溶液中,并置于4℃下反应12小时。将取出的传感芯片用PBS冲洗后放入体积分数为10%的封闭缓冲液中(BlockingBuffer),并于37℃恒温孵育1小时。取出传感芯片后用PBS冲洗除去残留的封闭缓冲液,放入不同浓度的人IgG溶液中在37℃恒温孵育1小时。移取10μL充分反应后的溶液置于传感器工作电极表面,采用差分脉冲伏安法在0-0.6V电位区间内测试对人IgG的电化学响应性能,结果如附图2所示。附图2(a)和(b)分别是在1ng/mL-1μg/mL以及10-100μg/mL人IgG浓度范围测得的结果。从图中可以看到,该基于ZIF-90/ZnO/MoS2复合材料的电化学免疫传感器对人IgG检测限可以达到1ng/mL。并且随着人IgG浓度的增加,DPV曲线中的电流响应信号逐渐增强。The prepared electrochemical sensor chip was soaked in the goat anti-human IgG antibody solution, and placed at 4°C for 12 hours to react. The taken out sensor chip was rinsed with PBS, put into blocking buffer (BlockingBuffer) with a volume fraction of 10%, and incubated at 37° C. for 1 hour. After taking out the sensor chip, wash it with PBS to remove the residual blocking buffer, put it into different concentrations of human IgG solution and incubate at 37°C for 1 hour.
本实施例沸石咪唑酯骨架结构材料(ZIF-90)/ZnO/硫化钼复合材料的制备及其对不同浓度人IgG(免疫球蛋白G,IgG)的检测,本实施例复合材料的层状硫化钼具有可调带隙结构和比表面积大、电催化活性高、生物相容性好、易于功能化等诸多的物理化学性质;依靠金属氧化物的支撑作用在二维硫化钼层间形成新的活性空间,为生物小分子提供了运输通道;以层状硫化钼和金属氧化物构成的复合材料提升了与待测分子的有效接触面积并加速了电极表面的电子传递和物质传输速率;进而利用沸石咪唑酯骨架结构材料对抗体或抗原的选择性固定,实现对待测物的高灵敏、特异性检测。本发明具有检测灵敏度高、操作简单、响应时间短、成本较低特点。The preparation of the zeolite imidazolate framework material (ZIF-90)/ZnO/molybdenum sulfide composite material in this embodiment and its detection of different concentrations of human IgG (immunoglobulin G, IgG), the layered vulcanization of the composite material in this embodiment Molybdenum has many physical and chemical properties such as adjustable bandgap structure, large specific surface area, high electrocatalytic activity, good biocompatibility, and easy functionalization; relying on the support of metal oxides to form a new two-dimensional molybdenum sulfide layer The active space provides a transport channel for small biological molecules; the composite material composed of layered molybdenum sulfide and metal oxide increases the effective contact area with the analyte molecule and accelerates the electron transfer and material transfer rate on the electrode surface; and then utilizes The selective immobilization of antibodies or antigens by zeolite imidazolate framework materials enables highly sensitive and specific detection of analytes. The invention has the characteristics of high detection sensitivity, simple operation, short response time and low cost.
实施例二:Embodiment two:
本实施例与实施例一基本相同,特别之处在于:This embodiment is basically the same as
在本实施例中,沸石咪唑酯骨架结构材料(ZIF-90)/ZnO/硫化钼复合材料对外泌体相关抗体CD-63(四跨膜转运蛋白)的检测,具体操作步骤如下:In this example, the zeolite imidazolate framework material (ZIF-90)/ZnO/molybdenum sulfide composite material is used for the detection of exosome-associated antibody CD-63 (tetraspanner), and the specific steps are as follows:
ZIF-90/ZnO/MoS2复合材料修饰的电化学传感芯片的制备方法及CD-63检测方法同实施例一。基于ZIF-90/ZnO/MoS2复合材料制作电化学免疫传感器对不同浓度CD-63的检测结果如附图3所示。从图中可以看出,随着CD-63的浓度从0.2μg/mL逐渐增加到2.0μg/mL,ZIF-90/ZnO/MoS2复合材料修饰的电化学传感芯片的差分脉冲伏安响应信号随之增强。上述两个具体实施实例表明,采用本发明方法制备的ZIF-90/ZnO/MoS2复合材料制作成电化学免疫传感芯片,对待测物具有良好的响应结果。The preparation method of the ZIF-90/ZnO/MoS 2 composite modified electrochemical sensor chip and the CD-63 detection method are the same as in Example 1. The detection results of the electrochemical immunosensor based on the ZIF-90/ZnO/MoS 2 composite material for different concentrations of CD-63 are shown in Figure 3. It can be seen from the figure that as the concentration of CD-63 gradually increases from 0.2 μg/mL to 2.0 μg/mL, the differential pulse voltammetry response of the ZIF-90/ZnO/MoS 2 composite modified electrochemical sensor chip The signal increases accordingly. The above two specific implementation examples show that the ZIF-90/ZnO/MoS 2 composite material prepared by the method of the present invention is made into an electrochemical immune sensor chip, which has a good response result to the test object.
综上所述,沸石咪唑酯骨架结构/金属氧化物/硫化钼复合材料、其制备及其应用。该复合材料以层状硫化钼材料为基底,在其表面生长金属氧化物,再在金属氧化物表面生长沸石咪唑酯骨架结构材料。层状硫化钼具有可调带隙结构和比表面积大、电催化活性高、生物相容性好、易于功能化等诸多的物理化学性质;依靠金属氧化物的支撑作用在二维硫化钼层间形成新的活性空间,为生物小分子提供了运输通道;增加了与待测分子的有效接触面积并加速了电极表面的电子传递和物质传输速率;沸石咪唑酯骨架结构材料对识别抗体或抗原进行选择性固定,实现对待测抗原或抗体的高灵敏、特异性检测。In summary, zeolite imidazolate framework structure/metal oxide/molybdenum sulfide composites, their preparation and application. The composite material is based on layered molybdenum sulfide material, metal oxide is grown on the surface, and zeolite imidazolate skeleton structure material is grown on the metal oxide surface. Layered molybdenum sulfide has many physical and chemical properties such as adjustable band gap structure, large specific surface area, high electrocatalytic activity, good biocompatibility, and easy functionalization; relying on the support of metal oxides, the two-dimensional molybdenum sulfide interlayer Form a new active space and provide a transport channel for small biological molecules; increase the effective contact area with the molecule to be tested and accelerate the electron transfer and material transfer rate on the electrode surface; Selective immobilization to achieve highly sensitive and specific detection of the antigen or antibody to be tested.
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明沸石咪唑酯骨架结构/金属氧化物/硫化钼复合材料、其制备及其应用的技术原理和发明构思,都属于本发明的保护范围。The embodiment of the present invention has been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiment, and various changes can also be made according to the purpose of the invention of the present invention. The changes, modifications, substitutions, combinations or simplifications should be equivalent replacement methods, as long as they meet the purpose of the present invention, as long as they do not deviate from the zeolite imidazolate framework structure/metal oxide/molybdenum sulfide composite material of the present invention, its preparation The technical principle and inventive concept of its application all belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010489969.5A CN111796013B (en) | 2020-06-02 | 2020-06-02 | Zeolite imidazolate framework/metal oxide/molybdenum sulfide composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010489969.5A CN111796013B (en) | 2020-06-02 | 2020-06-02 | Zeolite imidazolate framework/metal oxide/molybdenum sulfide composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111796013A CN111796013A (en) | 2020-10-20 |
CN111796013B true CN111796013B (en) | 2022-11-04 |
Family
ID=72806037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010489969.5A Active CN111796013B (en) | 2020-06-02 | 2020-06-02 | Zeolite imidazolate framework/metal oxide/molybdenum sulfide composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111796013B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112378969B (en) * | 2020-11-12 | 2021-07-16 | 上海大学 | An electrochemical sensor based on composite structure nanozyme and its preparation method and application |
CN114441458B (en) * | 2021-05-24 | 2023-06-09 | 中国科学院海洋研究所 | Application of ZIF material in inhibition of mimic enzyme |
CN113917078B (en) * | 2021-09-28 | 2024-05-28 | 南京师范大学 | A method for predicting the bioavailability of nitro-PAHs in sediments based on zeolitic imidazolate framework material composited with hexagonal boron nitride |
CN115753923A (en) * | 2022-06-08 | 2023-03-07 | 山东师范大学 | Photoelectrochemical sensor for detecting rheumatic cell exosome source lncRNA NEAT1 and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106198672A (en) * | 2016-07-05 | 2016-12-07 | 济南大学 | A kind of preparation method of the electrochemical sensor detecting carbamate |
CN106952743A (en) * | 2017-03-07 | 2017-07-14 | 常州大学 | Preparation and application of a core-shell material of tricobalt tetroxide/carbon@molybdenum disulfide |
WO2018197715A1 (en) * | 2017-04-28 | 2018-11-01 | Cambridge Enterprise Limited | Composite metal organic framework materials, processes for their manufacture and uses thereof |
CN109521078A (en) * | 2018-10-30 | 2019-03-26 | 上海大学 | Alloy nanometer crystals/vulcanization molybdenum composite material, its jettisonable electrochemical sensor and its manufacturing method |
-
2020
- 2020-06-02 CN CN202010489969.5A patent/CN111796013B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106198672A (en) * | 2016-07-05 | 2016-12-07 | 济南大学 | A kind of preparation method of the electrochemical sensor detecting carbamate |
CN106952743A (en) * | 2017-03-07 | 2017-07-14 | 常州大学 | Preparation and application of a core-shell material of tricobalt tetroxide/carbon@molybdenum disulfide |
WO2018197715A1 (en) * | 2017-04-28 | 2018-11-01 | Cambridge Enterprise Limited | Composite metal organic framework materials, processes for their manufacture and uses thereof |
CN109521078A (en) * | 2018-10-30 | 2019-03-26 | 上海大学 | Alloy nanometer crystals/vulcanization molybdenum composite material, its jettisonable electrochemical sensor and its manufacturing method |
Non-Patent Citations (2)
Title |
---|
MOFs修饰的二硫化钼纳米片的电催化制氢性能研究;王成利;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20190115(第1期);第5章 * |
Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2;TaoYang等;《Biosensors and Bioelectronics》;20160314;第89卷;第539-543页Experimentalsections和Results and discussion * |
Also Published As
Publication number | Publication date |
---|---|
CN111796013A (en) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111796013B (en) | Zeolite imidazolate framework/metal oxide/molybdenum sulfide composite material | |
CN108020587B (en) | A method for the detection of Staphylococcus aureus in milk with dual signal amplification | |
CN105403696B (en) | A label-free chemiluminescent immunosensor based on nano-mimetic enzymes and its preparation and analysis methods | |
Li et al. | Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor | |
CN106383156B (en) | One kind being based on TiO2It is situated between and sees the zearalenone optical electro-chemistry detection method of crystal | |
CN109932407B (en) | Sandwich type prostate specific antigen photoelectrochemical detection method based on in-situ signal amplification | |
CN105572197B (en) | A kind of preparation method and application of the optical electro-chemistry estradiol sensor based on magnetic Nano light-sensitive material | |
CN105628758A (en) | Preparation method and application for photoelectrochemical parathion sensor based on two-dimensional nanometer light-sensitive material | |
CN111965355B (en) | Cathode photoelectrochemistry immunosensor and preparation method and application thereof | |
CN110220957B (en) | Based on NiFe2O4Dual-mode electrochemiluminescence-temperature immunosensor of nanotube isoluminol full-function probe | |
CN105588860A (en) | Transition metal oxide surface heteroepitaxial metal organic framework shell layer and preparation method and application thereof | |
CN106525933A (en) | Method for producing polypyrrole-coated nickel cobaltate nano wire array graphene electrode and application of graphene electrode for detecting heavy metallic lead ion | |
CN109115855B (en) | Preparation method and application of electrochemical immunosensor for detecting Alzheimer's disease marker | |
CN103941008B (en) | A kind of preparation method detecting the immunosensor of chlopyrifos | |
Zhu et al. | Rapid fabrication of electrode for the detection of alpha fetoprotein based on MnO2 functionalized mesoporous carbon hollow sphere | |
CN114965994A (en) | Preparation method and immunoassay method of unmarked electrochemical immunosensor based on copper-iron bimetallic organic framework nanoenzyme | |
Yang et al. | A novel photoelectrochemical sensor for the detection of α-fetoprotein based on a mesoporous TiO 2–CdS QD composite film | |
CN104649337A (en) | Porous NiO/CeO2 hybrid nanosheet array and its preparation method and application | |
CN105717181A (en) | Preparation method and application of electrochemical malathion biosensor based on bi-metal in-situ composite two-dimensional nanomaterial | |
CN112505120A (en) | Double-electrode photoelectrochemical immunosensor and preparation method and application thereof | |
CN114965642A (en) | Groove type field effect transistor biosensor based on atomic layer deposition semiconductor channel | |
CN110702750A (en) | A PEC aptamer sensor with high specificity and ultra-high detection sensitivity and preparation method thereof | |
CN105675685B (en) | A kind of preparation method and application of the electrochemistry Spanon sensor based on additive Mn two-dimensional nano composite | |
CN112986359B (en) | Based on CuBTC @ MoS 2 -AuNPs modified electrode and CA125 detection method | |
CN206696226U (en) | A kind of graphene three dimensional carbon nanotubes Pd nano particle complex hydrogen peroxide non-enzymatic electrochemical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |