CN111795447A - 一种基于大数据的空气净化机及空气质量分析方法 - Google Patents

一种基于大数据的空气净化机及空气质量分析方法 Download PDF

Info

Publication number
CN111795447A
CN111795447A CN202010690064.4A CN202010690064A CN111795447A CN 111795447 A CN111795447 A CN 111795447A CN 202010690064 A CN202010690064 A CN 202010690064A CN 111795447 A CN111795447 A CN 111795447A
Authority
CN
China
Prior art keywords
air
data
air inlet
heat
big data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010690064.4A
Other languages
English (en)
Inventor
钟剑文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoguan Chengpai New Energy Technology Co ltd
Original Assignee
Shaoguan Chengpai New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoguan Chengpai New Energy Technology Co ltd filed Critical Shaoguan Chengpai New Energy Technology Co ltd
Priority to CN202010690064.4A priority Critical patent/CN111795447A/zh
Publication of CN111795447A publication Critical patent/CN111795447A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/18File system types
    • G06F16/182Distributed file systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种基于大数据的空气净化机及空气质量分析方法,包括空气源回收净化装置和大数据计算中心,空气源回收净化装置包括保温绝热外壳,保温绝热外壳的外侧端连接有进风口和排风口,对应的保温绝热外壳内部分隔成进风通道和排风通道,进风通道的进风口内置安装有离子群净化机构,离子群净化机构的出气口处连接有进风热泵换热器,进风通道的出气口处连接有室内送风机构;排风通道的进风口处安装有抽气泵,排风管道内安装有排风热泵换热器;本发明采用具有热泵换热器的换气机构,并且采用了净离子群进行空气净化,效果好且速度快,同时采用Hadoop云计算平台,结合MR‑BP算法进行空气质量数据分析预测,提高预测精度且降低成本。

Description

一种基于大数据的空气净化机及空气质量分析方法
技术领域
本发明涉及空气净化领域,具体为一种基于大数据的空气净化机及空气质量分析方法。
背景技术
近年来,随着城市化和工业化的不断推进,空气环境质量严重下降、污染程度急剧加深,空气污染已经严重影响了人们的生存环境、危害了人们的身体健康,科学界和学术界都开始研究空气污染治理问题。空气污染就危害而言主要有三种:一是因使用化石燃料排放的二氧化碳等温室效应气体而导致全球变暖;二是由化学制品氟利昂等气体而引起平流层中的臭氧层破坏;三是二氧化硫等酸性气体广为扩散,形成酸雨等。
面对日益严重的空气污染问题,世界各国都迫切需要提高环境监测和环境信息化能力,来为政府相关部门制定环境保护决策提供所需的信息支持。随着科学研究、信息技术、数据存储技术的迅速发展,大数据的应用作为一种新兴的数据管理模式有效地推动了数据智能化管理,增强了数据间的关联性,解决了以往数据存在的冗杂性问题,有效推动了政府的改革。
目前家用空气净化器种类繁多,主要放在卧室使用,大多只采集一、二种气体的浓度值来解算空气污染指数。若放在客厅、厨房和卫生间等其他地方使用,由于缺少该地方主要污染气体检测功能,最终解算出的污染指数会有所下降,自动净化效率也会随之而降。同时,这些净化器对于室内空气质量等级的评判采用的是室外空气质量等级的评判方法,具有片面性。且现有的空气净化机仅具有单一的净化效果,会导致室内空气干燥或者温度过低,不能够智能调节,也不具备智能预测空气变化的能力,对于未来的智能家居应用也存在一定的局限性。
发明内容
为了克服现有技术方案的不足,本发明提供一种基于大数据的空气净化机及空气质量分析方法,能有效的解决背景技术提出的问题。
本发明解决其技术问题所采用的技术方案是:
一种基于大数据的空气净化机及空气质量分析方法,包括空气源回收净化装置和大数据计算中心,空气源回收净化装置包括保温绝热外壳,保温绝热外壳的外侧端连接有进风口和排风口,对应的保温绝热外壳内部分隔成进风通道和排风通道,进风通道的进风口内置安装有离子群净化机构,离子群净化机构的出气口处连接有进风热泵换热器,进风通道的出气口处连接有室内送风机构;排风通道的进风口处安装有用于排出室内空气的抽气泵,排风管道内安装有排风热泵换热器;
离子群净化机构包括用于除去可吸入颗粒物的前置滤网,前置滤网的后端安装有用于除去异味的脱臭滤网,脱臭滤网的后端安装有用于除去甲醛等有机物的有机物吸附层,有机物吸附层的后端连接有净化密封箱,净化密封箱的顶端与底端分别安装有正离子高压产生器和负离子高压产生器;
室内送风机构的进风口处安装有智能控制机构,智能控制机构包括单片机控制器,单片机控制器的数模转换接口处连接有用于检测空气质量的传感器模组,单片机控制器的通信端连接有无线通信收发器,单片机控制器的I/O端口与空气源回收净化装置之间还连接有反馈调节模块;
大数据计算中心包括用于进行区域数据汇总的小区服务器和用于整体数据分析的Hadoop云计算平台,小区服务器与智能控制机构进行无线通信,Hadoop云计算平台与多个小区服务器组成星型拓扑结构;Hadoop云计算平台内置有HDFS分布式文件管理器和MapReduce并行编程器。
进一步地,室内送风机构包括与进风管道出气口直连的电子送风阀门,电子送风阀门的另一侧连接有微型鼓风机,微型鼓风机的出气口处安装有射流送风管。
进一步地,进风热泵换热器与排风热泵换热器均采用板翅式热交换器,包括用于进行散热的板翅式散热片,板翅式散热片之间安装有用于热能交换的热交换机芯。
进一步地,传感器模组包括无线气体传感器和数字温湿度复合传感器,无线气体传感器采用C600型集成芯片,数字温湿度复合传感器采用AM2302型湿敏电容式芯片。
进一步地,反馈调节模块包括用于检测当前电路工作状态的无线电压电流采集器和用于控制输出电压电流大小的功率调节器,无线电压电流采集器用于安装在正离子高压产生器和负离子高压产生器的工作电路上,功率调节器用于连接在正离子高压产生器和负离子高压产生器的控制调节端。
另外,本发明还提供了一种基于Hadoop云计算平台进行大数据空气质量分析预测方法,包括如下步骤:
S101、小区数据汇总,传感器模组采集到的信号经过无线通信收发器传输汇总至小区服务器,小区服务器将各个节点的数据按照可吸入颗粒物百分比、硫氧化物氮氧化物百分比、有机物百分比以及湿度温度变化趋势进行分类汇总;
S102、目标数据预处理,Hadoop云计算平台通过网络爬虫抓取不同小区服务器的数据,将无效数据进行清洗,整合不同小区同类数据,并进行统一格式转换和数据集归约,得到初步数据集;
S103、分布式文件存储,配置Hadoop集群环境,并将S102中得到的初始数据集写入HDFS分布式文件管理器,得到训练数据集;
S104、大数据分析与挖掘,采用MapReduce并行编程器对训练数据集进行统计分类,然后采用基于MR-BPP算法进行计算并预测空气质量发展;
S105、数据解释与反馈,Hadoop云计算平台将得到的数据分析和挖掘结果制成可视化图表进行展示,并生成空气质量预报推送至移动智能设备端。
进一步地,步骤S104中的MR-BP算法主要包括如下步骤:
S201、预测模型初始化,初始化神经网络结构的层数以及各层节点数、初始权值矩阵、网络学习率;
S202、启动Hadoop任务,初始化Hadoop程序入口,获取系统参数,并配置输入文件以及输出文件路径,设置job任务的迭代次数;
S203、数据读取,将原始数据库中map中单个<key,value>形式的数据采用InputFormat()方法进行转换成<key,value>对;
S204、预测模型训练,读取完数据后,基于BP神经网络进行迭代,计算并更新数据直至满足条件;
S205、预测结果输出,当所有学习模式训练完毕并且达到学习次数之后,若此时误差小于初始设定阈值,即达到结束条件,完成训练输出预测结果。
进一步地,步骤204中的迭代计算具体包括如下步骤:
S301、读取BP网络的权值矩阵,接着进行网络正向传播;
S302、判断是否满足本地迭代次数或输出误差,若未满足条件就进行反向传播更新权值矩阵进行下一次循环;
S303、若满足条件就计算权值改变量并输出。
与现有技术相比,本发明的有益效果是:
(1)本发明通过在净空气源回收净化装置中设置热泵换热器,在实现室内外空气交换流通的同时,还通过增加热泵换热器,实现对室内空气温度的调控;同时在净化机构中采用正离子高压产生器和负离子高压产生器产生金粒子群进行杀菌消毒操作,净化效果好速度快,更加方便。
(2)本发明通过设置智能控制机构,利用单片机控制器控制传感器模组进行空气质量数据实时采集,结合反馈调节模块对离子群净化机构的工作状态进行调整,从而改善净化效果;同时利用无线通信收发器将采集到的数据上传至大数据计算中心,实现小区数据汇总;
(3)本发明通过设置数据计算中心,基于Hadoop云计算平台进行整体数据汇总,利用HDFS分布式文件管理器进行数据存储管理,可以将数据分布存储在不同节点上并进行冗余备份,保证数据安全防止数据丢失;利用MapReduce并行编程器进行并行计算,降低编程难度并提高了计算速度,将成本很低、容错性高、可扩展性好、可靠性高;
(4)本发明采集基于MR-BP算法进行大数据处理与分析预测,将BP神经网络的并行化思想与MapReduce并行计算框架相结合,设计了基于MR-BP的空气质量预测模型,充分地发挥了Hadoop大数据处理平台的优势。在大规模样本数据条件下,其大大地缩短基于BP神经网络的空气质量预测模型的训练时间,提高了模型的效率和预测精度。
附图说明
图1为本发明的整体结构示意图;
图2为离子群净化机构结构示意图;
图3为智能控制机构与大数据计算中心结构图;
图4为空气质量分析方法流程图。
图中标号:
1-空气源回收净化装置;2-离子群净化机构;3-室内送风机构;4-智能控制机构;5-大数据计算中心;
101-保温绝热外壳;102-进风口;103-排风口;104-进风通道;105-排风通道;106-进风热泵换热器;107-排风热泵换热器;108-抽气泵;109-板翅式散热片;110-热交换机芯;
201-前置滤网;202-脱臭滤网;203-有机物吸附层;204-净化密封箱;205-正离子高压产生器;206-负离子高压产生器;
301-电子送风阀门;302-微型鼓风机;303-射流送风管;
401-单片机控制器;402-传感器模组;403-无线通信收发器;404-反馈调节模块;405-无线气体传感器;406-数字温湿度复合传感器;407-无线电压电流采集器;408-功率调节器;
501-小区服务器;502-Hadoop云计算平台;503-HDFS分布式文件管理器;504-MapReduce并行编程器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供了一种基于大数据的空气净化机及空气质量分析方法,包括空气源回收净化装置1和大数据计算中心5,空气源回收净化装置1利用空气源进行热能交换并进行净化操作,然后大数据计算中心5将采集到的数据进行汇总分析,并对空气质量进行预测。
空气源回收净化装置1包括保温绝热外壳101,保温绝热外壳101的外侧端连接有进风口102和排风口103,对应的保温绝热外壳101内部分隔成进风通道104和排风通道105,进风通道104的进风口内置安装有离子群净化机构2,离子群净化机构2的出气口处连接有进风热泵换热器106,进风通道104的出气口处连接有室内送风机构3;空气源回收净化装置1通过进风口102将室外空气引入至进风通道104内部,利用离子群净化机构2进行空气净化处理,净化后的空气通过进风热泵换热器106进行热能交换,对空气进行加热或者降温操作,最后通过室内送风机构3传入至室内空间。
如图2所示,离子群净化机构2包括用于除去可吸入颗粒物的前置滤网201,前置滤网201可以过滤空气中的可吸入颗粒物,有效除去灰尘等杂质;前置滤网201的后端安装有用于除去异味的脱臭滤网202,脱臭滤网202采用活性炭纤维制成,因此可以有效除去空气中的异味等;脱臭滤网202的后端安装有用于除去甲醛等有机物的有机物吸附层203,有机物吸附层203的后端连接有净化密封箱204,净化密封箱204用于实现离子灭菌操作。
优选地,净化密封箱204的顶端与底端分别安装有正离子高压产生器205和负离子高压产生器206;正离子高压产生器205和负离子高压产生器206分别产生正离子群和负离子群,用净化器高压放电产生正离子群和负离子群对空气中的霉菌、病毒进行分解从而净化室内空气,净化速度快净化效果好。
排风通道105的进风口处安装有用于排出室内空气的抽气泵108,排风管道105内安装有排风热泵换热器107;抽气泵108将室内空气抽出,通过排风管105排出至排风热泵换热器107,通过排风热泵换热器107进行降温交换。
进一步说明的是,进风热泵换热器106与排风热泵换热器107均采用板翅式热交换器,包括用于进行散热的板翅式散热片109,板翅式散热片109之间安装有用于热能交换的热交换机芯110;板翅式散热片109具有扩展的二次传热表面(翅片),所以传热过程不仅是在一次传热表面(隔板)上进行,而且同时也在二次传热表面上进行。高温侧介质的热量除了有一次表面倒入低温侧介质外,还沿翅片表面高度方向传递部分热量,即沿翅片高度方向,有隔板倒入热量,再将这些热量对流传递给低温侧介质。由于翅片高度大大超过了翅片厚度,因此,沿翅片高度方向的导热过程类似于均质细长导杆的导热。
室内送风机构3包括与进风管道104出气口直连的电子送风阀门301,电子送风阀门301的另一侧连接有微型鼓风机302,微型鼓风机302的出气口处安装有射流送风管303;净化加温后的空气,由电子送风阀门301进行送风量大小的调控,并通过微型鼓风机302将空气压入至射流送风管303,将空气排出室内。
如图3所示,室内送风机构3的进风口处安装有智能控制机构4,智能控制机构4包括单片机控制器401,单片机控制器401的数模转换接口处连接有用于检测空气质量的传感器模组402,单片机控制器401的通信端连接有无线通信收发器403,单片机控制器401的I/O端口与空气源回收净化装置1之间还连接有反馈调节模块404;单片机控制器401通过传感器模组402检测当前空气质量,根据实测情况发送指令至反馈调节模块404,利用反馈调节模块404控制离子群净化机构2的工作状态。
进一步地,传感器模组402包括无线气体传感器405和数字温湿度复合传感器406,无线气体传感器405采用C600型集成芯片,数字温湿度复合传感器406采用AM2302型湿敏电容式芯片,无线气体传感器405可以检测可吸入颗粒物、挥发性有机物、微生物污染物的有害气体,数字温湿度复合传感器406可以实时检测室内空气的温度和湿度。
反馈调节模块404包括用于检测当前电路工作状态的无线电压电流采集器407和用于控制输出电压电流大小的功率调节器408,无线电压电流采集器407用于安装在正离子高压产生器205和负离子高压产生器206的工作电路上,功率调节器408用于连接在正离子高压产生器205和负离子高压产生器206的控制调节端;无线电压电流采集器407通过采集电压电流的大小,以判断当前离子群净化机构2的工作状态,单片机控制器401结合传感器模组402检测到的空气质量状况,判断是否需要加大净化功率还是减小净化功率以节省能源,输出相应的指令至功率调节器408,利用功率调节器408进行功率调整。
大数据计算中心5包括用于进行区域数据汇总的小区服务器501和用于整体数据分析的Hadoop云计算平台502,小区服务器501与智能控制机构4进行无线通信,Hadoop云计算平台502与多个小区服务器501组成星型拓扑结构,小区服务器501用于收集小片区域数据,汇总传输至Hadoop云计算平台,采用星型拓扑结构可以便于检查网络故障,不至于影响其他终端工作性能;Hadoop云计算平台502内置有HDFS分布式文件管理器503和MapReduce并行编程器504;Hadoop云计算平台502利用HDFS分布式文件管理器503进行分布式文件存储管理,再通过MapReduce并行编程器504进行BP计算统计预测分析。
补充说明的是,HDFS是一个利用网络而组成的分布式的文件管理系统,与以往一般的文件系统相比,HDFS的实现采用了复杂的网络编程,因此其过程更加复杂,为了保证文件系统集群的某一个节点出现故障时,其中的数据不会丢失,需要将数据冗余地存储Hadoop集群在的不同数据节点中;MapReduce则是一个并行编程框架,用来进行分布式计算,其功能主要是将任务分配到多个节点,然后执行并行计算;Hadoop平台的优势有:成本很低、容错性高、可扩展性好、可靠性高等。
Hadoop云计算平台502进行大数据空气质量分析预测包括如下步骤:
S101、小区数据汇总,传感器模组采集到的信号经过无线通信收发器传输汇总至小区服务器,小区服务器将各个节点的数据按照可吸入颗粒物百分比、硫氧化物氮氧化物百分比、有机物百分比以及湿度温度变化趋势进行分类汇总;
S102、目标数据预处理,Hadoop云计算平台通过网络爬虫抓取不同小区服务器的数据,将无效数据进行清洗,整合不同小区同类数据,并进行统一格式转换和数据集归约,得到初步数据集;
S103、分布式文件存储,配置Hadoop集群环境,并将S102中得到的初始数据集写入HDFS分布式文件管理器,得到训练数据集;
S104、大数据分析与挖掘,采用MapReduce并行编程器对训练数据集进行统计分类,然后采用基于MR-BPP算法进行计算并预测空气质量发展;
S105、数据解释与反馈,Hadoop云计算平台将得到的数据分析和挖掘结果制成可视化图表进行展示,并生成空气质量预报推送至移动智能设备端。
特别说明的是,MapReduce框架下的BP神经网络并行化是将BP神经网络的并行化思想与MapReduce并行计算框架相结合,充分利用了MapReduce的优点,使得BP神经网络并行化编程实现的难度大大地降低。
步骤S104中的MR-BP算法主要包括如下步骤:
S201、预测模型初始化,初始化神经网络结构的层数以及各层节点数、初始权值矩阵、网络学习率;
S202、启动Hadoop任务,初始化Hadoop程序入口,获取系统参数,并配置输入文件以及输出文件路径,设置job任务的迭代次数;
S203、数据读取,将原始数据库中map中单个<key,value>形式的数据采用InputFormat()方法进行转换成<key,value>对;
S204、预测模型训练,读取完数据后,基于BP神经网络进行迭代,计算并更新数据直至满足条件;
S205、预测结果输出,当所有学习模式训练完毕并且达到学习次数之后,若此时误差小于初始设定阈值,即达到结束条件,完成训练输出预测结果。
步骤204中的迭代计算具体包括如下步骤:
S301、读取BP网络的权值矩阵,接着进行网络正向传播;
S302、判断是否满足本地迭代次数或输出误差,若未满足条件就进行反向传播更新权值矩阵进行下一次循环;
S303、若满足条件就计算权值改变量并输出。
需要注意的是,BP神经网络的输入层节点的数目十分重要,节点数如果选取过多,则会导致网络模型的预测精度达不到要求,节点数如果选取过少,则会导致网络模型的计算量过于庞大,收敛速度过慢,同时影响网路预测精度的提升。因此,输入层节点数应该根据实际应用的需求来确定输入层节点数。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (8)

1.一种基于大数据的空气净化机,包括空气源回收净化装置(1)和大数据计算中心(5),其特征在于:所述空气源回收净化装置(1)包括保温绝热外壳(101),所述保温绝热外壳(101)的外侧端连接有进风口(102)和排风口(103),对应的保温绝热外壳(101)内部分隔成进风通道(104)和排风通道(105),所述进风通道(104)的进风口内置安装有离子群净化机构(2),离子群净化机构(2)的出气口处连接有进风热泵换热器(106),进风通道(104)的出气口处连接有室内送风机构(3);所述排风通道(105)的进风口处安装有用于排出室内空气的抽气泵(108),排风管道(105)内安装有排风热泵换热器(107);
所述离子群净化机构(2)包括用于除去可吸入颗粒物的前置滤网(201),所述前置滤网(201)的后端安装有用于除去异味的脱臭滤网(202),所述脱臭滤网(202)的后端安装有用于除去甲醛等有机物的有机物吸附层(203),所述有机物吸附层(203)的后端连接有净化密封箱(204),所述净化密封箱(204)的顶端与底端分别安装有正离子高压产生器(205)和负离子高压产生器(206);
所述室内送风机构(3)的进风口处安装有智能控制机构(4),所述智能控制机构(4)包括单片机控制器(401),所述单片机控制器(401)的数模转换接口处连接有用于检测空气质量的传感器模组(402),单片机控制器(401)的通信端连接有无线通信收发器(403),单片机控制器(401)的I/O端口与空气源回收净化装置(1)之间还连接有反馈调节模块(404);
所述大数据计算中心(5)包括用于进行区域数据汇总的小区服务器(501)和用于整体数据分析的Hadoop云计算平台(502),小区服务器(501)与智能控制机构(4)进行无线通信,Hadoop云计算平台(502)与多个小区服务器(501)组成星型拓扑结构;所述Hadoop云计算平台(502)内置有HDFS分布式文件管理器(503)和MapReduce并行编程器(504)。
2.根据权利要求1所述的一种基于大数据的空气净化机,其特征在于:所述室内送风机构(3)包括与进风管道(104)出气口直连的电子送风阀门(301),所述电子送风阀门(301)的另一侧连接有微型鼓风机(302),所述微型鼓风机(302)的出气口处安装有射流送风管(303)。
3.根据权利要求1所述的一种基于大数据的空气净化机,其特征在于:所述进风热泵换热器(106)与排风热泵换热器(107)均采用板翅式热交换器,包括用于进行散热的板翅式散热片(109),板翅式散热片(109)之间安装有用于热能交换的热交换机芯(110)。
4.根据权利要求1所述的一种基于大数据的空气净化机,其特征在于:所述传感器模组(402)包括无线气体传感器(405)和数字温湿度复合传感器(406),所述无线气体传感器(405)采用C600型集成芯片,数字温湿度复合传感器(406)采用AM2302型湿敏电容式芯片。
5.根据权利要求1所述的一种基于大数据的空气净化机,其特征在于:所述反馈调节模块(404)包括用于检测当前电路工作状态的无线电压电流采集器(407)和用于控制输出电压电流大小的功率调节器(408),所述无线电压电流采集器(407)用于安装在正离子高压产生器(205)和负离子高压产生器(206)的工作电路上,功率调节器(408)用于连接在正离子高压产生器(205)和负离子高压产生器(206)的控制调节端。
6.一种根据权利要求1-5任一项所述空气净化机的空气质量分析方法,其特征在于:所述Hadoop云计算平台(502)进行大数据空气质量分析预测包括如下步骤:
S101、小区数据汇总,传感器模组采集到的信号经过无线通信收发器传输汇总至小区服务器,小区服务器将各个节点的数据按照可吸入颗粒物百分比、硫氧化物氮氧化物百分比、有机物百分比以及湿度温度变化趋势进行分类汇总;
S102、目标数据预处理,Hadoop云计算平台通过网络爬虫抓取不同小区服务器的数据,将无效数据进行清洗,整合不同小区同类数据,并进行统一格式转换和数据集归约,得到初步数据集;
S103、分布式文件存储,配置Hadoop集群环境,并将S102中得到的初始数据集写入HDFS分布式文件管理器,得到训练数据集;
S104、大数据分析与挖掘,采用MapReduce并行编程器对训练数据集进行统计分类,然后采用基于MR-BPP算法进行计算并预测空气质量发展;
S105、数据解释与反馈,Hadoop云计算平台将得到的数据分析和挖掘结果制成可视化图表进行展示,并生成空气质量预报推送至移动智能设备端。
7.根据权利要求6所述的一种空气质量分析方法,其特征在于:所述步骤S104中的MR-BP算法主要包括如下步骤:
S201、预测模型初始化,初始化神经网络结构的层数以及各层节点数、初始权值矩阵、网络学习率;
S202、启动Hadoop任务,初始化Hadoop程序入口,获取系统参数,并配置输入文件以及输出文件路径,设置job任务的迭代次数;
S203、数据读取,将原始数据库中map中单个<key,value>形式的数据采用InputFormat()方法进行转换成<key,value>对;
S204、预测模型训练,读取完数据后,基于BP神经网络进行迭代,计算并更新数据直至满足条件;
S205、预测结果输出,当所有学习模式训练完毕并且达到学习次数之后,若此时误差小于初始设定阈值,即达到结束条件,完成训练输出预测结果。
8.根据权利要求7所述的一种空气质量分析方法,其特征在于:所述步骤204中的迭代计算具体包括如下步骤:
S301、读取BP网络的权值矩阵,接着进行网络正向传播;
S302、判断是否满足本地迭代次数或输出误差,若未满足条件就进行反向传播更新权值矩阵进行下一次循环;
S303、若满足条件就计算权值改变量并输出。
CN202010690064.4A 2020-07-17 2020-07-17 一种基于大数据的空气净化机及空气质量分析方法 Withdrawn CN111795447A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010690064.4A CN111795447A (zh) 2020-07-17 2020-07-17 一种基于大数据的空气净化机及空气质量分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010690064.4A CN111795447A (zh) 2020-07-17 2020-07-17 一种基于大数据的空气净化机及空气质量分析方法

Publications (1)

Publication Number Publication Date
CN111795447A true CN111795447A (zh) 2020-10-20

Family

ID=72807578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010690064.4A Withdrawn CN111795447A (zh) 2020-07-17 2020-07-17 一种基于大数据的空气净化机及空气质量分析方法

Country Status (1)

Country Link
CN (1) CN111795447A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112443923A (zh) * 2020-11-30 2021-03-05 泰州鸿材科技有限公司 一种室内外双向循环智能空气净化器
CN113091223A (zh) * 2021-03-05 2021-07-09 绍兴智明草科技有限公司 基于放置位置进行机器学习的物联网空气净化方法及系统
CN114251816A (zh) * 2021-12-24 2022-03-29 珠海格力电器股份有限公司 净离子群除菌方法、空调及计算机可读存储介质
CN116362522A (zh) * 2023-06-01 2023-06-30 广东鑫钻节能科技股份有限公司 基于多点分布模型的数字能源氮气站数据处理方法及系统
CN116617830A (zh) * 2023-06-25 2023-08-22 北京格瑞拓动力设备有限公司 车辆用空气干燥净化装置的智能预测处理系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112443923A (zh) * 2020-11-30 2021-03-05 泰州鸿材科技有限公司 一种室内外双向循环智能空气净化器
CN113091223A (zh) * 2021-03-05 2021-07-09 绍兴智明草科技有限公司 基于放置位置进行机器学习的物联网空气净化方法及系统
CN114251816A (zh) * 2021-12-24 2022-03-29 珠海格力电器股份有限公司 净离子群除菌方法、空调及计算机可读存储介质
CN114251816B (zh) * 2021-12-24 2022-12-13 珠海格力电器股份有限公司 净离子群除菌方法、空调及计算机可读存储介质
CN116362522A (zh) * 2023-06-01 2023-06-30 广东鑫钻节能科技股份有限公司 基于多点分布模型的数字能源氮气站数据处理方法及系统
CN116362522B (zh) * 2023-06-01 2023-08-11 广东鑫钻节能科技股份有限公司 基于多点分布模型的数字能源氮气站数据处理方法及系统
CN116617830A (zh) * 2023-06-25 2023-08-22 北京格瑞拓动力设备有限公司 车辆用空气干燥净化装置的智能预测处理系统
CN116617830B (zh) * 2023-06-25 2023-11-07 北京格瑞拓动力设备有限公司 车辆用空气干燥净化装置的智能预测处理系统

Similar Documents

Publication Publication Date Title
CN111795447A (zh) 一种基于大数据的空气净化机及空气质量分析方法
CN106196309B (zh) 一种集空气处理、能量回收、增氧多功能的新风一体机
Qi et al. Performance investigation on polymeric electrolyte membrane-based electrochemical air dehumidification system
Sudhakar et al. Modelling of a solar desiccant cooling system using a TRNSYS-MATLAB co-simulator: A review
Angrisani et al. Experimental validation of constant efficiency models for the subsystems of an unconventional desiccant-based Air Handling Unit and investigation of its performance
CN105933932A (zh) 复杂环境下无线传感器网络的实时故障诊断方法及系统
Ding et al. New fault diagnostic strategies for refrigerant charge fault in a VRF system using hybrid machine learning method
Goswami et al. Device to device communication in 5G network using device-centric resource allocation algorithm
Zhang et al. Smart DC: an AI and digital twin-based energy-saving solution for data centers
Guan et al. Modification of analytical solutions of coupled heat and mass transfer processes in liquid desiccant dehumidifier for deep dehumidification
Lazirkha The impact of artificial intelligence in smart city air purifier systems
Shen et al. Global performance analysis of a solar-driven indoor CO2/H2O capture system for air quality enhancement and cooling energy saving
Zhang et al. Response surface modeling and optimization scheme of an internally cooled liquid desiccant air conditioning system
Ditta et al. Experimental investigation of a hybrid configuration of solar thermal collectors and desiccant indirect evaporative cooling system
CN111780320A (zh) 一种基于大数据的室内空气通风系统及数据处理方法
CN112432231A (zh) 一种基于有限传感器的智能化通风监控系统及控制方法
Shen et al. Multi-objective optimization of a CO2/H2O capture-based ventilation and air conditioning system
Ge et al. Review of solar-powered desiccant cooling systems
Xia et al. Soft measuring method of dioxin emission concentration for MSWI process based on RF and GBDT
Hayashi et al. Industrial ventilation and air conditioning
Reddy et al. TRNSYS simulation for solar-assisted liquid desiccant evaporative cooling
Xiang et al. Reducing carbon dioxide emissions through energy-saving renovation of existing buildings
Jani Performance assessment of solar powered hybrid solid desiccant and dehumidification integrated thermally cooling system using TRNSYS
CN201940143U (zh) 有机溶剂净化装置
Zhang et al. Desiccant wheel air-conditioning system driven by gas engine cogeneration of heat and power: simulation and analysis by Dymola

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20201020