CN111788567A - A data processing device and a data processing method - Google Patents

A data processing device and a data processing method Download PDF

Info

Publication number
CN111788567A
CN111788567A CN201880090383.2A CN201880090383A CN111788567A CN 111788567 A CN111788567 A CN 111788567A CN 201880090383 A CN201880090383 A CN 201880090383A CN 111788567 A CN111788567 A CN 111788567A
Authority
CN
China
Prior art keywords
parameter
calculation
neural network
data
determination module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880090383.2A
Other languages
Chinese (zh)
Other versions
CN111788567B (en
Inventor
许若圣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN111788567A publication Critical patent/CN111788567A/en
Application granted granted Critical
Publication of CN111788567B publication Critical patent/CN111788567B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Image Analysis (AREA)

Abstract

The embodiment of the application discloses data processing equipment, which is used for realizing parallel processing of data and reducing data processing time delay by arranging a parameter determining module and a neural network computing module coupled with the parameter determining module which are mutually independent. The method in the embodiment of the application comprises the following steps: a data processing apparatus, the data processing apparatus comprising: a parameter determination module and a neural network computation module coupled to the parameter determination module; the parameter determining module is used for performing parameter calculation on the first data to obtain a first parameter set for calculating the first neural network; the neural network calculation module is used for performing the first neural network calculation on the first data by using the first parameter set to obtain a calculation result; wherein the parameter calculation of the parameter determination module is independent of the first neural network calculation of the neural network calculation module.

Description

PCT国内申请,说明书已公开。PCT domestic application, the description has been published.

Claims (12)

  1. A data processing apparatus, characterized by comprising: a parameter determination module and a neural network computation module coupled to the parameter determination module;
    the parameter determining module is used for performing parameter calculation on the first data to obtain a first parameter set for calculating the first neural network;
    the neural network calculation module is used for performing the first neural network calculation on the first data by using the first parameter set to obtain a calculation result; wherein,
    the parameter calculation of the parameter determination module is independent of the first neural network calculation of the neural network calculation module.
  2. The parameter determination module of claim 1, wherein the parameter determination module is specifically configured to perform the parameter calculation on the first data using a second neural network to obtain the first parameter set.
  3. The parameter determination module according to claim 1 or 2, wherein the parameter determination module is specifically configured to:
    performing parameter calculation on the first data to obtain a second parameter set;
    and processing the second parameter set and a third parameter set to obtain the first parameter set, wherein the third parameter set is a historical parameter set calculated by the parameter determination module.
  4. The parameter determination module according to any of claims 1 to 3, wherein the performing a parameter calculation on the first data comprises: and carrying out matrix operation on the first data and a preset matrix.
  5. The parameter determination module of any one of claims 1 to 4, wherein the parameter determination module is operable to perform the calculation of the parameter on second data that is temporally earlier than the first data when the neural network calculation module is in the state of the first neural network calculation.
  6. The parameter determination module according to any of claims 1 to 5, wherein the first set of parameters comprises: a quantization parameter or an adjustment amount of the quantization parameter or a parameter associated with the quantization parameter;
    the first neural network computation is a quantized neural network computation.
  7. A method of data processing, the method comprising:
    performing parameter calculation on the first data through a parameter determination module to obtain a first parameter set for calculating the first neural network;
    performing, by a neural network calculation module, the first neural network calculation on the first data by using the first parameter set to obtain a calculation result; wherein,
    the parameter calculation of the parameter determination module is independent of the first neural network calculation of the neural network calculation module.
  8. The method of claim 7, wherein the performing a parameter calculation on the first data comprises:
    and performing parameter calculation on the first data by utilizing a second neural network.
  9. The method of claim 7 or 8, wherein said performing said parameter calculation on said first data to obtain said first set of parameters comprises:
    performing parameter calculation on the first data to obtain a second parameter set;
    and processing the second parameter set and a third parameter set to obtain the first parameter set, wherein the third parameter set is a historical parameter set calculated by the parameter determination module.
  10. The method of any of claims 7 to 9, wherein the performing a parameter calculation on the first data comprises:
    and carrying out matrix operation on the first data and the preset matrix.
  11. The method according to any one of claims 7 to 10, further comprising:
    when the neural network calculation module is in a state of the first neural network calculation, the parameter determination module calculates parameters of second data, and the second data is earlier than the first data in a time domain.
  12. The method according to any of claims 7 to 11, wherein the first set of parameters comprises: a quantization parameter or an adjustment amount of the quantization parameter or a parameter associated with the quantization parameter;
    the first neural network computation is a quantized neural network computation.
CN201880090383.2A 2018-08-27 2018-08-27 A data processing device and a data processing method Active CN111788567B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102515 WO2020041934A1 (en) 2018-08-27 2018-08-27 Data processing device and data processing method

Publications (2)

Publication Number Publication Date
CN111788567A true CN111788567A (en) 2020-10-16
CN111788567B CN111788567B (en) 2024-04-26

Family

ID=69643432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880090383.2A Active CN111788567B (en) 2018-08-27 2018-08-27 A data processing device and a data processing method

Country Status (2)

Country Link
CN (1) CN111788567B (en)
WO (1) WO2020041934A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800591A (en) * 2021-01-08 2021-05-14 广西玉柴机器股份有限公司 Method for predicting engine performance parameter modifier and related device
CN113570034A (en) * 2021-06-18 2021-10-29 北京百度网讯科技有限公司 Processing device, neural network processing method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170308789A1 (en) * 2014-09-12 2017-10-26 Microsoft Technology Licensing, Llc Computing system for training neural networks
CN107451653A (en) * 2017-07-05 2017-12-08 深圳市自行科技有限公司 Computational methods, device and the readable storage medium storing program for executing of deep neural network
CN108090565A (en) * 2018-01-16 2018-05-29 电子科技大学 Accelerated method is trained in a kind of convolutional neural networks parallelization
WO2018098230A1 (en) * 2016-11-22 2018-05-31 Massachusetts Institute Of Technology Systems and methods for training neural networks
CN108334945A (en) * 2018-01-30 2018-07-27 中国科学院自动化研究所 The acceleration of deep neural network and compression method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104899641B (en) * 2015-05-25 2018-07-13 杭州朗和科技有限公司 Deep neural network learning method, processor and deep neural network learning system
CN106951395B (en) * 2017-02-13 2018-08-17 上海客鹭信息技术有限公司 Parallel convolution operations method and device towards compression convolutional neural networks
CN107122705B (en) * 2017-03-17 2020-05-19 中国科学院自动化研究所 Face key point detection method based on three-dimensional face model
CN107171717B (en) * 2017-05-31 2019-09-24 武汉光迅科技股份有限公司 Restore the method and system of ideal signal in a kind of signal from distortion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170308789A1 (en) * 2014-09-12 2017-10-26 Microsoft Technology Licensing, Llc Computing system for training neural networks
WO2018098230A1 (en) * 2016-11-22 2018-05-31 Massachusetts Institute Of Technology Systems and methods for training neural networks
CN107451653A (en) * 2017-07-05 2017-12-08 深圳市自行科技有限公司 Computational methods, device and the readable storage medium storing program for executing of deep neural network
CN108090565A (en) * 2018-01-16 2018-05-29 电子科技大学 Accelerated method is trained in a kind of convolutional neural networks parallelization
CN108334945A (en) * 2018-01-30 2018-07-27 中国科学院自动化研究所 The acceleration of deep neural network and compression method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡骏飞 等: "基于二值化卷积神经网络的手势分类方法研究", 湖南工业大学学报, no. 01, pages 75 - 80 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800591A (en) * 2021-01-08 2021-05-14 广西玉柴机器股份有限公司 Method for predicting engine performance parameter modifier and related device
CN112800591B (en) * 2021-01-08 2023-03-21 广西玉柴机器股份有限公司 Method for predicting engine performance parameter modifier and related device
CN113570034A (en) * 2021-06-18 2021-10-29 北京百度网讯科技有限公司 Processing device, neural network processing method and device

Also Published As

Publication number Publication date
WO2020041934A1 (en) 2020-03-05
CN111788567B (en) 2024-04-26

Similar Documents

Publication Publication Date Title
EP4379613A3 (en) Fidelity estimation for quantum computing systems
JP2021505993A5 (en)
BR112019000541A2 (en) superpixel methods for convolutional neural networks
KR20180084289A (en) Compressed neural network system using sparse parameter and design method thereof
JP2017520824A5 (en)
CN114503120A (en) Simulation method and device of integrated energy system and computer readable storage medium
CN112513830A (en) Back-source method and related device in content distribution network
CN111788567A (en) A data processing device and a data processing method
US9036816B1 (en) Frequency domain acoustic echo cancellation using filters and variable step-size updates
CN110140326A (en) The method and apparatus that the performance data of equipment is sampled
PH12020550404A1 (en) Method and Device for Proxy between Different Architectures
CN110741671A (en) Cell measurement method, terminal equipment and network equipment
MX2015017833A (en) Apparatus and method for improved concealment of the adaptive codebook in acelp-like concealment employing improved pitch lag estimation.
CN112534817A (en) Method and apparatus for predicting video image component, and computer storage medium
CN113196765A (en) Image prediction method, encoder, decoder, and storage medium
PH12020550471A1 (en) Plant operation assistance device and operation assistance method
CN110710298A (en) Method, equipment and computer storage medium for clearing HARQ cache
WO2021197562A1 (en) Efficient initialization of quantized neural networks
CN112384950A (en) Point cloud encoding and decoding method and device
CN110785945A (en) Method and related device for reporting channel state information
CN112020723A (en) Training method and device for classification neural network for semantic segmentation, and electronic equipment
CN111819550A (en) A data processing method and network device
JP2015216585A (en) Traffic amount upper limit prediction apparatus, method and program
JP2008219291A5 (en)
CN115705486A (en) Method and device for training quantitative model, electronic equipment and readable storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant