CN111788567A - A data processing device and a data processing method - Google Patents
A data processing device and a data processing method Download PDFInfo
- Publication number
- CN111788567A CN111788567A CN201880090383.2A CN201880090383A CN111788567A CN 111788567 A CN111788567 A CN 111788567A CN 201880090383 A CN201880090383 A CN 201880090383A CN 111788567 A CN111788567 A CN 111788567A
- Authority
- CN
- China
- Prior art keywords
- parameter
- calculation
- neural network
- data
- determination module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Image Analysis (AREA)
Abstract
The embodiment of the application discloses data processing equipment, which is used for realizing parallel processing of data and reducing data processing time delay by arranging a parameter determining module and a neural network computing module coupled with the parameter determining module which are mutually independent. The method in the embodiment of the application comprises the following steps: a data processing apparatus, the data processing apparatus comprising: a parameter determination module and a neural network computation module coupled to the parameter determination module; the parameter determining module is used for performing parameter calculation on the first data to obtain a first parameter set for calculating the first neural network; the neural network calculation module is used for performing the first neural network calculation on the first data by using the first parameter set to obtain a calculation result; wherein the parameter calculation of the parameter determination module is independent of the first neural network calculation of the neural network calculation module.
Description
PCT国内申请,说明书已公开。PCT domestic application, the description has been published.
Claims (12)
- A data processing apparatus, characterized by comprising: a parameter determination module and a neural network computation module coupled to the parameter determination module;the parameter determining module is used for performing parameter calculation on the first data to obtain a first parameter set for calculating the first neural network;the neural network calculation module is used for performing the first neural network calculation on the first data by using the first parameter set to obtain a calculation result; wherein,the parameter calculation of the parameter determination module is independent of the first neural network calculation of the neural network calculation module.
- The parameter determination module of claim 1, wherein the parameter determination module is specifically configured to perform the parameter calculation on the first data using a second neural network to obtain the first parameter set.
- The parameter determination module according to claim 1 or 2, wherein the parameter determination module is specifically configured to:performing parameter calculation on the first data to obtain a second parameter set;and processing the second parameter set and a third parameter set to obtain the first parameter set, wherein the third parameter set is a historical parameter set calculated by the parameter determination module.
- The parameter determination module according to any of claims 1 to 3, wherein the performing a parameter calculation on the first data comprises: and carrying out matrix operation on the first data and a preset matrix.
- The parameter determination module of any one of claims 1 to 4, wherein the parameter determination module is operable to perform the calculation of the parameter on second data that is temporally earlier than the first data when the neural network calculation module is in the state of the first neural network calculation.
- The parameter determination module according to any of claims 1 to 5, wherein the first set of parameters comprises: a quantization parameter or an adjustment amount of the quantization parameter or a parameter associated with the quantization parameter;the first neural network computation is a quantized neural network computation.
- A method of data processing, the method comprising:performing parameter calculation on the first data through a parameter determination module to obtain a first parameter set for calculating the first neural network;performing, by a neural network calculation module, the first neural network calculation on the first data by using the first parameter set to obtain a calculation result; wherein,the parameter calculation of the parameter determination module is independent of the first neural network calculation of the neural network calculation module.
- The method of claim 7, wherein the performing a parameter calculation on the first data comprises:and performing parameter calculation on the first data by utilizing a second neural network.
- The method of claim 7 or 8, wherein said performing said parameter calculation on said first data to obtain said first set of parameters comprises:performing parameter calculation on the first data to obtain a second parameter set;and processing the second parameter set and a third parameter set to obtain the first parameter set, wherein the third parameter set is a historical parameter set calculated by the parameter determination module.
- The method of any of claims 7 to 9, wherein the performing a parameter calculation on the first data comprises:and carrying out matrix operation on the first data and the preset matrix.
- The method according to any one of claims 7 to 10, further comprising:when the neural network calculation module is in a state of the first neural network calculation, the parameter determination module calculates parameters of second data, and the second data is earlier than the first data in a time domain.
- The method according to any of claims 7 to 11, wherein the first set of parameters comprises: a quantization parameter or an adjustment amount of the quantization parameter or a parameter associated with the quantization parameter;the first neural network computation is a quantized neural network computation.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/102515 WO2020041934A1 (en) | 2018-08-27 | 2018-08-27 | Data processing device and data processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111788567A true CN111788567A (en) | 2020-10-16 |
CN111788567B CN111788567B (en) | 2024-04-26 |
Family
ID=69643432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880090383.2A Active CN111788567B (en) | 2018-08-27 | 2018-08-27 | A data processing device and a data processing method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111788567B (en) |
WO (1) | WO2020041934A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112800591A (en) * | 2021-01-08 | 2021-05-14 | 广西玉柴机器股份有限公司 | Method for predicting engine performance parameter modifier and related device |
CN113570034A (en) * | 2021-06-18 | 2021-10-29 | 北京百度网讯科技有限公司 | Processing device, neural network processing method and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170308789A1 (en) * | 2014-09-12 | 2017-10-26 | Microsoft Technology Licensing, Llc | Computing system for training neural networks |
CN107451653A (en) * | 2017-07-05 | 2017-12-08 | 深圳市自行科技有限公司 | Computational methods, device and the readable storage medium storing program for executing of deep neural network |
CN108090565A (en) * | 2018-01-16 | 2018-05-29 | 电子科技大学 | Accelerated method is trained in a kind of convolutional neural networks parallelization |
WO2018098230A1 (en) * | 2016-11-22 | 2018-05-31 | Massachusetts Institute Of Technology | Systems and methods for training neural networks |
CN108334945A (en) * | 2018-01-30 | 2018-07-27 | 中国科学院自动化研究所 | The acceleration of deep neural network and compression method and device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104899641B (en) * | 2015-05-25 | 2018-07-13 | 杭州朗和科技有限公司 | Deep neural network learning method, processor and deep neural network learning system |
CN106951395B (en) * | 2017-02-13 | 2018-08-17 | 上海客鹭信息技术有限公司 | Parallel convolution operations method and device towards compression convolutional neural networks |
CN107122705B (en) * | 2017-03-17 | 2020-05-19 | 中国科学院自动化研究所 | Face key point detection method based on three-dimensional face model |
CN107171717B (en) * | 2017-05-31 | 2019-09-24 | 武汉光迅科技股份有限公司 | Restore the method and system of ideal signal in a kind of signal from distortion |
-
2018
- 2018-08-27 WO PCT/CN2018/102515 patent/WO2020041934A1/en active Application Filing
- 2018-08-27 CN CN201880090383.2A patent/CN111788567B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170308789A1 (en) * | 2014-09-12 | 2017-10-26 | Microsoft Technology Licensing, Llc | Computing system for training neural networks |
WO2018098230A1 (en) * | 2016-11-22 | 2018-05-31 | Massachusetts Institute Of Technology | Systems and methods for training neural networks |
CN107451653A (en) * | 2017-07-05 | 2017-12-08 | 深圳市自行科技有限公司 | Computational methods, device and the readable storage medium storing program for executing of deep neural network |
CN108090565A (en) * | 2018-01-16 | 2018-05-29 | 电子科技大学 | Accelerated method is trained in a kind of convolutional neural networks parallelization |
CN108334945A (en) * | 2018-01-30 | 2018-07-27 | 中国科学院自动化研究所 | The acceleration of deep neural network and compression method and device |
Non-Patent Citations (1)
Title |
---|
胡骏飞 等: "基于二值化卷积神经网络的手势分类方法研究", 湖南工业大学学报, no. 01, pages 75 - 80 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112800591A (en) * | 2021-01-08 | 2021-05-14 | 广西玉柴机器股份有限公司 | Method for predicting engine performance parameter modifier and related device |
CN112800591B (en) * | 2021-01-08 | 2023-03-21 | 广西玉柴机器股份有限公司 | Method for predicting engine performance parameter modifier and related device |
CN113570034A (en) * | 2021-06-18 | 2021-10-29 | 北京百度网讯科技有限公司 | Processing device, neural network processing method and device |
Also Published As
Publication number | Publication date |
---|---|
WO2020041934A1 (en) | 2020-03-05 |
CN111788567B (en) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4379613A3 (en) | Fidelity estimation for quantum computing systems | |
JP2021505993A5 (en) | ||
BR112019000541A2 (en) | superpixel methods for convolutional neural networks | |
KR20180084289A (en) | Compressed neural network system using sparse parameter and design method thereof | |
JP2017520824A5 (en) | ||
CN114503120A (en) | Simulation method and device of integrated energy system and computer readable storage medium | |
CN112513830A (en) | Back-source method and related device in content distribution network | |
CN111788567A (en) | A data processing device and a data processing method | |
US9036816B1 (en) | Frequency domain acoustic echo cancellation using filters and variable step-size updates | |
CN110140326A (en) | The method and apparatus that the performance data of equipment is sampled | |
PH12020550404A1 (en) | Method and Device for Proxy between Different Architectures | |
CN110741671A (en) | Cell measurement method, terminal equipment and network equipment | |
MX2015017833A (en) | Apparatus and method for improved concealment of the adaptive codebook in acelp-like concealment employing improved pitch lag estimation. | |
CN112534817A (en) | Method and apparatus for predicting video image component, and computer storage medium | |
CN113196765A (en) | Image prediction method, encoder, decoder, and storage medium | |
PH12020550471A1 (en) | Plant operation assistance device and operation assistance method | |
CN110710298A (en) | Method, equipment and computer storage medium for clearing HARQ cache | |
WO2021197562A1 (en) | Efficient initialization of quantized neural networks | |
CN112384950A (en) | Point cloud encoding and decoding method and device | |
CN110785945A (en) | Method and related device for reporting channel state information | |
CN112020723A (en) | Training method and device for classification neural network for semantic segmentation, and electronic equipment | |
CN111819550A (en) | A data processing method and network device | |
JP2015216585A (en) | Traffic amount upper limit prediction apparatus, method and program | |
JP2008219291A5 (en) | ||
CN115705486A (en) | Method and device for training quantitative model, electronic equipment and readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |