CN111785944B - Method for preparing porous silicon/carbon/nanometal composite anode material by cutting silicon waste by plasma activation - Google Patents
Method for preparing porous silicon/carbon/nanometal composite anode material by cutting silicon waste by plasma activation Download PDFInfo
- Publication number
- CN111785944B CN111785944B CN202010699399.2A CN202010699399A CN111785944B CN 111785944 B CN111785944 B CN 111785944B CN 202010699399 A CN202010699399 A CN 202010699399A CN 111785944 B CN111785944 B CN 111785944B
- Authority
- CN
- China
- Prior art keywords
- silicon
- carbon
- nano
- waste
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 139
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 128
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 119
- 239000002131 composite material Substances 0.000 title claims abstract description 104
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 98
- 239000010703 silicon Substances 0.000 title claims abstract description 98
- 239000002699 waste material Substances 0.000 title claims abstract description 87
- 229910021426 porous silicon Inorganic materials 0.000 title claims abstract description 70
- 238000005520 cutting process Methods 0.000 title claims abstract description 40
- 238000000678 plasma activation Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000010405 anode material Substances 0.000 title claims abstract description 21
- 239000002923 metal particle Substances 0.000 claims abstract description 36
- 239000002905 metal composite material Substances 0.000 claims abstract description 34
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 26
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 17
- 239000010432 diamond Substances 0.000 claims abstract description 17
- 238000011282 treatment Methods 0.000 claims abstract description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 76
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 59
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 56
- 239000011812 mixed powder Substances 0.000 claims description 51
- 239000007789 gas Substances 0.000 claims description 50
- 239000011863 silicon-based powder Substances 0.000 claims description 41
- 229910052786 argon Inorganic materials 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 18
- 239000007773 negative electrode material Substances 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 12
- 238000013329 compounding Methods 0.000 claims description 11
- 239000012159 carrier gas Substances 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 230000001681 protective effect Effects 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 239000002082 metal nanoparticle Substances 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- -1 polyethylene Polymers 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 101710134784 Agnoprotein Proteins 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 4
- 150000001868 cobalt Chemical class 0.000 claims description 4
- 150000001879 copper Chemical class 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000002105 nanoparticle Substances 0.000 claims description 4
- 150000002815 nickel Chemical class 0.000 claims description 4
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical group [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 4
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims description 2
- 229930091371 Fructose Natural products 0.000 claims description 2
- 239000005715 Fructose Substances 0.000 claims description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 claims description 2
- 241000080590 Niso Species 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 239000010426 asphalt Substances 0.000 claims description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 239000011294 coal tar pitch Substances 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 claims 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052744 lithium Inorganic materials 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 11
- 239000012535 impurity Substances 0.000 abstract description 10
- 239000000843 powder Substances 0.000 abstract description 10
- 230000008859 change Effects 0.000 abstract description 7
- 238000009830 intercalation Methods 0.000 abstract description 6
- 239000007772 electrode material Substances 0.000 abstract description 5
- 230000002687 intercalation Effects 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 230000005518 electrochemistry Effects 0.000 abstract description 2
- 238000007709 nanocrystallization Methods 0.000 abstract 1
- 238000009833 condensation Methods 0.000 description 18
- 230000005494 condensation Effects 0.000 description 18
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 14
- 238000002309 gasification Methods 0.000 description 10
- 238000001953 recrystallisation Methods 0.000 description 10
- 239000002114 nanocomposite Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 238000009831 deintercalation Methods 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 239000011149 active material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- UIDWHMKSOZZDAV-UHFFFAOYSA-N lithium tin Chemical compound [Li].[Sn] UIDWHMKSOZZDAV-UHFFFAOYSA-N 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Silicon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,属于新能源材料和电化学技术领域。The invention relates to a method for preparing a porous silicon/carbon/nano-metal composite negative electrode material by cutting silicon waste through plasma activation, and belongs to the technical fields of new energy materials and electrochemistry.
背景技术Background technique
在锂离子电池结构中,负极材料非常重要的组成部分,直接决定了锂离子电池的好坏以及应用。至今,锂离子电池负极材料主要有碳材料、锂合金(锂硅合金,锂锡合金等)、过渡金属氧化物(TiO2、SnO2等)、氮化物。由于石墨材料具有良好的循环稳定性、优异的导电性而且其层状结构具有良好的嵌锂空间,在脱嵌锂过程中体积变化在可以接受的范围内,石墨负极材料在锂电池工业中广泛应用。但是,随着电子技术的快速发展以及电动汽车的迅速普及,市场对高比容量锂离子电池的需求越来越强烈。然而,现已商业化的石墨负极材料理论放电比容量仅为372mAh/g,且投入生产的石墨负极材料的实际容量也已经与此十分接近,难以满足动力型锂离子电池在电动汽车领域和电子工业领域对高能量储能器材的需求。因此,开发高放电比容量的锂离子电池负极材料已亟待解决的问题。In the lithium-ion battery structure, the anode material is a very important component, which directly determines the quality and application of the lithium-ion battery. So far, lithium-ion battery anode materials mainly include carbon materials, lithium alloys (lithium-silicon alloys, lithium-tin alloys, etc.), transition metal oxides (TiO 2 , SnO 2 , etc.), and nitrides. Because graphite materials have good cycle stability, excellent electrical conductivity, and their layered structure has a good space for intercalation of lithium, the volume change in the process of intercalation and deintercalation of lithium is within an acceptable range. Graphite negative electrode materials are widely used in the lithium battery industry. application. However, with the rapid development of electronic technology and the rapid popularization of electric vehicles, the market demand for high specific capacity lithium-ion batteries is becoming stronger and stronger. However, the theoretical discharge specific capacity of commercialized graphite anode materials is only 372mAh/g, and the actual capacity of graphite anode materials put into production is already very close to this, which is difficult to meet the requirements of power lithium-ion batteries in the field of electric vehicles and electronics The demand for high-energy energy storage devices in the industrial field. Therefore, the development of lithium-ion battery anode materials with high discharge specific capacity is an urgent problem to be solved.
Si负极材料具有较高的理论比容量,最高可达4200mAh/g,同时兼有低电压平台、与电解液反应活性低、在地壳中储量丰富以及价格低廉等优点,是一种非常具有前景的锂电池负极材料,但是Si负极也存在着致命缺陷即充放电过程中的巨大体积变化与本征电导率偏低的问题。体积膨胀是任何锂离子电极材料在脱锂和嵌锂过程中都要面对的问题,然而对于Si负极这一问题尤为严重。在完全嵌锂的状态下,Si负极的体积膨胀可达300%,这不仅会造成Si负极产生裂痕甚至破碎,更会破坏负极极片的结构,造成电池容量的不可逆损失,同时产生安全隐患。另外,硅的本征半导体性质也是一个不容忽视的问题。由于Si本征电导率很低,严重限制了电池的倍率性能,直接影响到它的实际应用价值。Si anode material has a high theoretical specific capacity, up to 4200mAh/g, and at the same time has the advantages of low voltage platform, low reactivity with electrolyte, abundant reserves in the earth's crust, and low price. It is a very promising Lithium battery anode material, but Si anode also has fatal defects, namely the huge volume change and low intrinsic conductivity during charging and discharging. Volume expansion is a problem that any Li-ion electrode material must face during the process of delithiation and lithium intercalation, but this problem is particularly serious for Si anodes. In the state of fully intercalating lithium, the volume expansion of the Si negative electrode can reach 300%, which will not only cause cracks or even breakage of the Si negative electrode, but also destroy the structure of the negative electrode sheet, resulting in irreversible loss of battery capacity and safety hazards. In addition, the intrinsic semiconductor nature of silicon is also a problem that cannot be ignored. Due to the low intrinsic conductivity of Si, the rate performance of the battery is severely limited, which directly affects its practical application value.
近年来,国内外绝大多数生产企业在硅片生产过程中,广泛采用金刚石线切割工艺加工硅片。太阳能硅片在线切割过程中,由于线切割刀具与硅片之间的碰撞和摩擦,除了产生的破碎硅颗粒以外,刀具也会存在部分破碎磨损,以及切割过程的润滑液、冷却液也将混入切割体系中,形成切割硅废料,会浪费约40%的高纯硅,仅以2019年度为例,要实现132GW硅片的切割,就将产生高达30万吨的切割废料。但是对于废料中的高纯硅粉有效回收,按照目前的浮选、旋流分离等回收方法很难实现,而且硅在切割过程中被严重污染,无法直接用于光伏和电子行业。In recent years, most manufacturers at home and abroad have widely used diamond wire cutting technology to process silicon wafers in the production process of silicon wafers. During the online cutting of solar silicon wafers, due to the collision and friction between the wire cutting tool and the silicon wafer, in addition to the broken silicon particles produced, the tool will also be partially broken and worn, and the lubricating fluid and cooling fluid during the cutting process will also be mixed In the cutting system, the formation of cutting silicon waste will waste about 40% of high-purity silicon. Taking 2019 alone as an example, to realize the cutting of 132GW silicon wafers, up to 300,000 tons of cutting waste will be generated. However, the effective recovery of high-purity silicon powder in waste materials is difficult to achieve according to the current recovery methods such as flotation and cyclone separation, and silicon is seriously polluted during the cutting process, so it cannot be directly used in the photovoltaic and electronic industries.
发明内容Contents of the invention
本发明针对现有技术锂电硅负极成本高昂、硅材料循环过程中巨大的体积变化以及本征电导率低,光伏行业金刚线切割硅废料难以回收的问题,提供一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,即将金刚线切割硅废料与碳源粉末混匀并经等离子活化处理,硅和碳气化冷凝再结晶得到纳米硅/碳复合材料,等离子活化处理可除去硅废料中的杂质且实现硅和碳的纳米化,将硅/碳复合材料进行纳米金属粒子复合制备多孔硅/碳/纳米金属复合材料。本发明采用等离子活化复合-纳米金属粒子复合相结合处理的方法将切割硅废料制备成锂离子电池的高性能负极材料即多孔硅/碳/纳米金属复合负极,可缩短锂离子和电子的传输距离,提高电极材料的整体导电性和结构的完整性,有效地解决脱嵌锂过程中巨大的体积变化和倍率性能低的问题。The present invention aims at the problems of high cost of lithium battery silicon negative electrode in the prior art, huge volume change during the cycle of silicon material, low intrinsic conductivity, and difficult recycling of silicon waste cut by diamond wire in the photovoltaic industry, and provides a method for preparing porous silicon waste by plasma activation cutting The method of silicon/carbon/nano-metal composite negative electrode material is to mix the diamond wire cut silicon waste with carbon source powder and undergo plasma activation treatment, silicon and carbon gasification, condensation and recrystallization to obtain nano-silicon/carbon composite material, plasma activation treatment can The impurity in the silicon waste is removed and the nanometerization of silicon and carbon is realized, and the silicon/carbon composite material is compounded with nano-metal particles to prepare a porous silicon/carbon/nano-metal composite material. The present invention adopts the combined treatment method of plasma activation composite-nano-metal particle composite phase to prepare cut silicon waste into a high-performance negative electrode material for lithium-ion batteries, that is, porous silicon/carbon/nano-metal composite negative electrode, which can shorten the transmission distance of lithium ions and electrons , improve the overall conductivity and structural integrity of the electrode material, and effectively solve the problems of huge volume change and low rate performance during the lithium-deintercalation process.
等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:A method for preparing a porous silicon/carbon/nano-metal composite negative electrode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)金刚线切割硅废料经破碎、研磨、真空干燥得到废硅粉;(1) Diamond wire cutting silicon waste is crushed, ground, and vacuum-dried to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源混合均匀并真空干燥得到硅碳混合粉;(2) Mixing waste silicon powder and carbon source in step (1) evenly and vacuum drying to obtain silicon-carbon mixed powder;
(3)将氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);(3) Pass argon gas into the plasma furnace to get rid of the air in the furnace body, and use argon gas as protective gas and carrier gas, pass step (2) silicon-carbon mixed powder into the plasma furnace for plasma activation treatment, silicon Carbon mixed powder is gasified, condensed and recrystallized to obtain nano-silicon/carbon composite material (PSi/C nano-composite material);
(4)将步骤(3)纳米硅/碳复合材料置于HF-金属盐-醇类溶液体系中进行金属粒子纳米颗粒复合,采用去离子水洗涤,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-M复合材料)。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-metal salt-alcohol solution system for compounding metal particles and nanoparticles, wash with deionized water, and separate solid-liquid to obtain nano-metal particle composite silicon/carbon Composite material, nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain porous silicon/carbon/nano-metal composite material (PSi/C/Nano-M composite material).
所述步骤(2)硅碳混合粉中废硅粉的质量分数为3~100%。废硅粉与碳源混合方法为人工混合、机械搅拌、球磨混合或高能球磨混合;The mass fraction of the waste silicon powder in the silicon-carbon mixed powder in the step (2) is 3-100%. The mixing method of waste silicon powder and carbon source is manual mixing, mechanical stirring, ball milling or high energy ball milling;
所述步骤(2)碳源为葡萄糖、果糖、蔗糖、木糖、山梨糖、柠檬酸、淀粉、聚乙烯、聚丙烯、纤维素、石墨、石墨烯、碳纳米管、芳香烃、芳香族脂类、石油沥青或煤沥青中的一种或多种。The carbon source in the step (2) is glucose, fructose, sucrose, xylose, sorbose, citric acid, starch, polyethylene, polypropylene, cellulose, graphite, graphene, carbon nanotubes, aromatic hydrocarbons, aromatic lipids One or more of petroleum asphalt or coal tar pitch.
所述步骤(3)等离子活化处理的功率为10~150KW、氩气压力为0.10~0.70Mpa,硅碳混合粉的进料速率为1~50g/min。The power of the plasma activation treatment in the step (3) is 10-150KW, the argon pressure is 0.10-0.70Mpa, and the feed rate of the silicon-carbon mixed powder is 1-50g/min.
硅碳混合粉气化冷凝再结晶使碳复合在硅表面得到纳米硅/碳复合材料,纳米硅/碳复合材料结构为石墨烯包覆的纳米硅结构和/或碳纳米管复合的纳米硅结构,纳米硅/碳复合材料的粒径可控,粒径为10~150nm;Gasification, condensation and recrystallization of silicon-carbon mixed powder makes carbon composite on the silicon surface to obtain nano-silicon/carbon composite material. , the particle size of the nano-silicon/carbon composite material is controllable, and the particle size is 10-150nm;
所述步骤(4)中HF-金属盐-醇类溶液体系中HF浓度为0.1~15mol/L、金属盐浓度为0.005~10mol/L、醇类浓度为0.1~20mol/L;In the step (4), the HF concentration in the HF-metal salt-alcohol solution system is 0.1-15 mol/L, the metal salt concentration is 0.005-10 mol/L, and the alcohol concentration is 0.1-20 mol/L;
进一步的,所述金属盐为银盐、铜盐、钴盐、镍盐、铝盐、钛盐中的一种或多种,醇类为甲醇、乙醇、丙醇、丁醇、乙二醇、丙二醇、丙烯醇、乙烯醇中的一种或多种。Further, the metal salt is one or more of silver salt, copper salt, cobalt salt, nickel salt, aluminum salt, titanium salt, and the alcohols are methanol, ethanol, propanol, butanol, ethylene glycol, One or more of propylene glycol, propylene alcohol, and vinyl alcohol.
优选的,所述银盐为AgNO3、Ag2SO4或Ag2CO3,铜盐为Cu(NO3)2、CuSO4或CuCO3,镍盐为Ni(NO3)2、NiSO4或NiCO3,钴盐为Co(NO3)2,铝盐为Al(NO3)3。Preferably, the silver salt is AgNO 3 , Ag 2 SO 4 or Ag 2 CO 3 , the copper salt is Cu(NO 3 ) 2 , CuSO 4 or CuCO 3 , the nickel salt is Ni(NO 3 ) 2 , NiSO 4 or NiCO 3 , cobalt salt is Co(NO 3 ) 2 , aluminum salt is Al(NO 3 ) 3 .
所述HF-金属盐-醇类溶液体系与纳米硅/碳复合材料的液固比mL:g为(1~10):1。The liquid-solid ratio mL:g of the HF-metal salt-alcohol solution system to the nano-silicon/carbon composite material is (1-10):1.
所述金属粒子纳米颗粒复合温度为20~80℃,时间为0.5~6h。The compounding temperature of the metal particles and nanoparticles is 20-80° C., and the time is 0.5-6 hours.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明多孔硅/碳/纳米金属复合材料,其纳米尺寸和多孔的结构可以有效地脱嵌锂过程中的巨大体积变化,同时缩短了锂离子和电子的传输距离,金属粒子与多孔硅复合后,可以有效的克服硅材料电导率低的问题,提高电极材料的整体导电率,碳的引入,可以提高材料整体结构的稳定性,也可再次增强材料的整体电导率;(1) The porous silicon/carbon/nano-metal composite material of the present invention, its nanometer size and porous structure can effectively deintercalate the huge volume change in the lithium process, shorten the transmission distance of lithium ions and electrons simultaneously, metal particles and porous After silicon compounding, the problem of low conductivity of silicon materials can be effectively overcome, and the overall conductivity of the electrode material can be improved. The introduction of carbon can improve the stability of the overall structure of the material, and can also enhance the overall conductivity of the material again;
(2)本发明通过等离子活化工艺将废硅粉末制备成为纳米级以解决硅本征导电性差和脱嵌锂过程中的巨大体积膨胀问题,碳和金属离子有效的改善了硅本征电导率低的问题,多孔硅/碳/纳米金属复合材料的纳米级可保证电极材料在充放电循环中的结构完整性,从而提高电极的循环稳定性,纳米尺寸效应能够有效加速活性物质的相转变、减小活性物质在嵌/脱锂过程中的绝对体积效应和锂离子在材料中的扩散距离;(2) The present invention prepares waste silicon powder into nanoscale through plasma activation process to solve the problem of poor intrinsic conductivity of silicon and huge volume expansion in the process of lithium deintercalation, carbon and metal ions effectively improve the low intrinsic conductivity of silicon The nanoscale of the porous silicon/carbon/nanometal composite can ensure the structural integrity of the electrode material during the charge-discharge cycle, thereby improving the cycle stability of the electrode, and the nanoscale effect can effectively accelerate the phase transition of the active material, reduce the The absolute volume effect of small active materials in the intercalation/delithiation process and the diffusion distance of lithium ions in the material;
(3)本发明以光伏线切割硅废料为原料制备多孔硅/碳/纳米金属复合负极,其工艺简单,适合工业化生产,极大地节省了原料成本,提高了资源利用率,实现变废为宝。(3) In the present invention, porous silicon/carbon/nano-metal composite anodes are prepared from photovoltaic wire-cut silicon waste as raw materials. The process is simple, suitable for industrial production, greatly saving raw material costs, improving resource utilization, and realizing turning waste into treasure. .
附图说明Description of drawings
图1为实例1中原始金刚线切割硅废料的扫描电镜(SEM)图;Fig. 1 is the scanning electron microscope (SEM) figure of original diamond wire cutting silicon scrap in example 1;
图2为实例1中pSi/C/Nano-Ag复合材料的扫描电镜(SEM)图;Fig. 2 is the scanning electron microscope (SEM) figure of pSi/C/Nano-Ag composite material among the example 1;
图3为实例1中原始硅废料与多孔硅/碳/纳米银复合材料组装成半电池后再0.5C的倍率下的循环性能曲线。Fig. 3 is a cycle performance curve at a rate of 0.5C after the original silicon waste and the porous silicon/carbon/nano-silver composite material are assembled into a half-cell in Example 1.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。The present invention will be described in further detail below in conjunction with specific embodiments, but the protection scope of the present invention is not limited to the content described.
实施例1:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Example 1: A method for preparing porous silicon/carbon/nano-metal composite anode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥4h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 4 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥24h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为50%;(2) Mix the waste silicon powder and carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 24 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 50 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流110A、电压140V、氩气压力为0.2MPa、硅碳混合粉的进料速率为1g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the plasma furnace current is 110A, the voltage is 140V, the argon pressure is 0.2MPa, and the silicon-carbon mixed powder The feed rate is 1g/min, and the organic impurities in the waste silicon powder will be directly taken out by the argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-AgNO3-乙醇溶液体系中并在温度为80℃进行金属粒子纳米颗粒复合4h,其中HF-AgNO3-乙醇溶液体系中HF浓度为0.5mol/L、AgNO3浓度为0.1mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米银复合材料(PSi/C/Nano-Ag复合材料);(4) Place the nano-silicon/carbon composite material in step (3) in the HF-AgNO 3 -ethanol solution system and carry out the compounding of metal particles and nanoparticles at a temperature of 80°C for 4 hours, wherein the HF-AgNO 3 -ethanol solution system contains HF The concentration is 0.5mol/L, the concentration of AgNO 3 is 0.1mol/L, and the concentration of ethanol is 0.5mol/L; ultrasonic rinsing with deionized water until the washing liquid is neutral, and solid-liquid separation to obtain nano-metal particle composite silicon/carbon composite material , the nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain a porous silicon/carbon/nano-silver composite material (PSi/C/Nano-Ag composite material);
原始金刚线切割硅废料的扫描电镜(SEM)图见图1,从图1可知,原始金刚线切割硅废料的颗粒大小不均且差异巨大,若直接应用于锂离子电池负极,在放电过程中,负极会在脱嵌锂过程中产生巨大的体积变化,导致容量快速衰减,负极损坏而使得负极的锂离子电池在循环过程中迅速失效;The scanning electron microscope (SEM) image of the original diamond wire-cut silicon waste is shown in Figure 1. From Figure 1, it can be seen that the particle size of the original diamond wire-cut silicon waste is uneven and the difference is huge. If it is directly applied to the negative electrode of a lithium-ion battery, it will , the negative electrode will produce a huge volume change in the process of deintercalating lithium, resulting in rapid capacity decay, and the negative electrode is damaged, causing the negative lithium-ion battery to fail rapidly during the cycle;
pSi/C/Nano-Ag复合材料的扫描电镜(SEM)图见图2,从图2可知,纳米银颗粒均匀分布在多孔硅颗粒的表面,多孔硅/碳/纳米金属复合负极材料由多孔的纳米球体堆积而成的多孔结构,并且球体内部和球体之间均存在大量多孔结构;使得锂离子在负极材料中的扩散速度大幅增加,同时球体内的多孔结构为充放电过程中脱嵌锂引起的体积膨胀预留了大量空间,极大的缓解了体积膨胀;The scanning electron microscope (SEM) figure of pSi/C/Nano-Ag composite material is shown in Fig. 2, as can be seen from Fig. 2, nano-silver particles are evenly distributed on the surface of porous silicon particles, and the porous silicon/carbon/nano-metal composite anode material is composed of porous The porous structure formed by the accumulation of nano-spheres, and there are a large number of porous structures inside and between the spheres; the diffusion rate of lithium ions in the negative electrode material is greatly increased, and the porous structure in the spheres is caused by the deintercalation of lithium during charge and discharge. The volume expansion reserves a lot of space, which greatly eases the volume expansion;
原始硅废料与多孔硅/碳/纳米银复合材料组装成半电池后再0.5C的倍率下的循环性能曲线见图3,原始硅废料负极的初始容量为2970mAh/g,但是经过20个循环以后,其容量已经不足500mAh/g,容量衰减极快,同时初始库伦效率仅有58%;与多孔硅/碳/纳米银复合负极的初始容量为2788mAh/g,仅略低于原始硅废料负极,在经过50次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1250mAh/g,由于多孔硅/碳/纳米银复合负极中纳米银离子可大幅改善锂离子的传输。The cycle performance curve of the original silicon waste and porous silicon/carbon/nano-silver composite material assembled into a half-cell at a rate of 0.5C is shown in Figure 3. The initial capacity of the original silicon waste negative electrode is 2970mAh/g, but after 20 cycles , its capacity is already less than 500mAh/g, the capacity decays extremely fast, and the initial coulombic efficiency is only 58%; the initial capacity of the porous silicon/carbon/nano-silver composite negative electrode is 2788mAh/g, which is only slightly lower than the original silicon waste negative electrode, After 50 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite negative electrode material is basically stable at 1250mAh/g, because the nano-silver ions in the porous silicon/carbon/nano-silver composite negative electrode can greatly improve the transmission of lithium ions .
实施例2:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Embodiment 2: A method for preparing porous silicon/carbon/nano-metal composite negative electrode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥4h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 4 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥18h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为60%;(2) Mix the waste silicon powder and carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 18 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 60 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流120A、电压130V、氩气压力为0.15MPa、硅碳混合粉的进料速率为1.5g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the plasma furnace current is 120A, the voltage is 130V, the argon pressure is 0.15MPa, and the silicon-carbon mixed powder The feed rate is 1.5g/min, and the organic impurities in the waste silicon powder will be directly taken out by the argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-Cu(NO3)2-乙醇溶液体系中并在温度为40℃进行金属粒子纳米颗粒复合6h,其中HF-Cu(NO3)2-乙醇溶液体系中HF浓度为0.5mol/L、Cu(NO3)2浓度为0.2mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-Cu复合材料);将该复合材料制备成为硅负极半电池,在经过50次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1200mAh/g。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-Cu(NO 3 ) 2 -ethanol solution system and carry out metal particle nanoparticle compounding at a temperature of 40°C for 6 hours, wherein HF-Cu(NO 3 ) 2 -The concentration of HF in the ethanol solution system is 0.5mol/L, the concentration of Cu(NO 3 ) 2 is 0.2mol/L, and the concentration of ethanol is 0.5mol/L; use deionized water to ultrasonically rinse until the washing liquid is neutral, solid The nano-metal particle composite silicon/carbon composite material is obtained by liquid separation, and the nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain a porous silicon/carbon/nano-metal composite material (PSi/C/Nano-Cu composite material); The composite material was prepared as a silicon negative electrode half-cell, and after 50 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite negative electrode material was basically stable at 1200mAh/g.
实施例3:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Embodiment 3: A method for preparing porous silicon/carbon/nano-metal composite anode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥3h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 3 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥24h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为60%;(2) Mix the waste silicon powder and carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 24 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 60 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流120A、电压130V、氩气压力为0.15MPa、硅碳混合粉的进料速率为2.0g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the plasma furnace current is 120A, the voltage is 130V, the argon pressure is 0.15MPa, and the silicon-carbon mixed powder The feed rate is 2.0g/min, and the organic impurities in the waste silicon powder will be directly taken out by argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-Ni(NO3)2-乙醇溶液体系中并在温度为80℃进行金属粒子纳米颗粒复合2h,其中HF-Ni(NO3)2-乙醇溶液体系中HF浓度为0.5mol/L、Ni(NO3)2浓度为0.2mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-Ni复合材料);将该复合材料制备成为硅负极半电池,在经过60次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1100mAh/g。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-Ni(NO 3 ) 2 -ethanol solution system and carry out metal particle nanoparticle compounding at a temperature of 80°C for 2 hours, wherein HF-Ni(NO 3 ) 2 -The concentration of HF in the ethanol solution system is 0.5mol/L, the concentration of Ni(NO 3 ) 2 is 0.2mol/L, and the concentration of ethanol is 0.5mol/L; use deionized water for ultrasonic rinsing until the washing liquid is neutral, solid The nano-metal particle composite silicon/carbon composite material is obtained by liquid separation, and the nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain a porous silicon/carbon/nano-metal composite material (PSi/C/Nano-Ni composite material); The composite material was prepared as a silicon negative electrode half-cell, and after 60 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite negative electrode material was basically stable at 1100mAh/g.
实施例4:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Embodiment 4: A method for preparing porous silicon/carbon/nano-metal composite negative electrode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥5h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 5 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥16h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为80%;(2) Mix the waste silicon powder and carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 16 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 80 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流120A、电压130V、氩气压力为0.15MPa、硅碳混合粉的进料速率为2.0g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the plasma furnace current is 120A, the voltage is 130V, the argon pressure is 0.15MPa, and the silicon-carbon mixed powder The feed rate is 2.0g/min, and the organic impurities in the waste silicon powder will be directly taken out by argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-Co(NO3)2-乙醇溶液体系中并在温度为60℃进行金属粒子纳米颗粒复合3h,其中HF-Co(NO3)2-乙醇溶液体系中HF浓度为0.5mol/L、Co(NO3)2浓度为0.2mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-Co复合材料);将该复合材料制备成为硅负极半电池,在经过50次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1180mAh/g。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-Co(NO 3 ) 2 -ethanol solution system and carry out the compounding of metal particles and nanoparticles at a temperature of 60°C for 3 hours, wherein HF-Co(NO 3 ) 2 - the concentration of HF in the ethanol solution system is 0.5mol/L, the concentration of Co(NO 3 ) 2 is 0.2mol/L, and the concentration of ethanol is 0.5mol/L; use deionized water for ultrasonic rinsing until the washing liquid is neutral, solid The nano-metal particle composite silicon/carbon composite material is obtained by liquid separation, and the nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain a porous silicon/carbon/nano-metal composite material (PSi/C/Nano-Co composite material); The composite material was prepared as a silicon negative electrode half-cell, and after 50 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite negative electrode material was basically stable at 1180mAh/g.
实施例5:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Example 5: A method for preparing porous silicon/carbon/nano-metal composite anode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥6h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 6 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥12h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为90%;(2) Mix the waste silicon powder and carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 12 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 90 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流110A、电压140V、氩气压力为0.15MPa、硅碳混合粉的进料速率为2.0g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the current of plasma furnace is 110A, the voltage is 140V, the pressure of argon gas is 0.15MPa, and the silicon-carbon mixed powder The feed rate is 2.0g/min, and the organic impurities in the waste silicon powder will be directly taken out by argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-Al(NO3)3-乙醇溶液体系中并在温度为60℃进行金属粒子纳米颗粒复合3h,其中HF-Al(NO3)3-乙醇溶液体系中HF浓度为0.5mol/L、Al(NO3)3浓度为0.15mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-Al复合材料);将该复合材料制备成为硅负极半电池,在经过40次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1150mAh/g。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-Al(NO 3 ) 3 -ethanol solution system and carry out metal particle nanoparticle compounding at a temperature of 60°C for 3 hours, wherein HF-Al(NO 3 ) 3 -The concentration of HF in the ethanol solution system is 0.5mol/L, the concentration of Al(NO 3 ) 3 is 0.15mol/L, and the concentration of ethanol is 0.5mol/L; use deionized water for ultrasonic rinsing until the washing liquid is neutral, solid The nano-metal particle composite silicon/carbon composite material is obtained by liquid separation, and the nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain a porous silicon/carbon/nano-metal composite material (PSi/C/Nano-Al composite material); The composite material was prepared as a silicon negative electrode half-cell, and after 40 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite negative electrode material was basically stable at 1150mAh/g.
实施例6:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Embodiment 6: A method for preparing porous silicon/carbon/nano-metal composite negative electrode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥4h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 4 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥24h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为90%;(2) Mix the waste silicon powder and the carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 24 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 90 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流110A、电压140V、氩气压力为0.15MPa、硅碳混合粉的进料速率为2.0g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the current of plasma furnace is 110A, the voltage is 140V, the pressure of argon gas is 0.15MPa, and the silicon-carbon mixed powder The feed rate is 2.0g/min, and the organic impurities in the waste silicon powder will be directly taken out by argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-AgNO3-Cu(NO3)2-乙醇溶液体系中并在温度为80℃进行金属粒子纳米颗粒复合4h,其中HF-AgNO3-Cu(NO3)2-乙醇溶液体系中HF浓度为0.5mol/L、AgNO3浓度为0.10mol/L、Cu(NO3)2浓度为0.05mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-Ag@Cu复合材料);将该复合材料制备成为硅负极半电池,在经过50次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1100mAh/g。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-AgNO 3 -Cu(NO 3 ) 2 -ethanol solution system and carry out the compounding of metal particles and nanoparticles at a temperature of 80°C for 4 hours, wherein the HF-AgNO In the 3 -Cu(NO 3 ) 2 -ethanol solution system, the concentration of HF is 0.5mol/L, the concentration of AgNO 3 is 0.10mol/L, the concentration of Cu(NO 3 ) 2 is 0.05mol/L, and the concentration of ethanol is 0.5mol/L ; Ultrasonic rinsing with deionized water until the washing liquid is neutral, solid-liquid separation to obtain nano-metal particle composite silicon/carbon composite material, nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain porous silicon/carbon/nano Metal composite material (PSi/C/Nano-Ag@Cu composite material); the composite material is prepared as a silicon negative electrode half-cell, and after 50 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite negative electrode material is basically stable at 1100mAh/g.
实施例7:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Example 7: A method for preparing porous silicon/carbon/nano-metal composite anode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥4h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 4 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥24h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为80%;(2) Mix the waste silicon powder and the carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 24 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 80 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流110A、电压140V、氩气压力为0.15MPa、硅碳混合粉的进料速率为2.0g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the current of plasma furnace is 110A, the voltage is 140V, the pressure of argon gas is 0.15MPa, and the silicon-carbon mixed powder The feed rate is 2.0g/min, and the organic impurities in the waste silicon powder will be directly taken out by argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-AgNO3-Co(NO3)2-乙醇溶液体系中并在温度为80℃进行金属粒子纳米颗粒复合4h,其中HF-AgNO3-Co(NO3)2-乙醇溶液体系中HF浓度为0.5mol/L、AgNO3浓度为0.10mol/L、Co(NO3)2浓度为0.10mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-Ag@Co复合材料);将该复合材料制备成为硅负极半电池,在经过40次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1150mAh/g。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-AgNO 3 -Co(NO 3 ) 2 -ethanol solution system and carry out the compounding of metal particles and nanoparticles at a temperature of 80°C for 4 hours, wherein the HF-AgNO In the 3 -Co(NO 3 ) 2 -ethanol solution system, the concentration of HF is 0.5mol/L, the concentration of AgNO 3 is 0.10mol/L, the concentration of Co(NO 3 ) 2 is 0.10mol/L, and the concentration of ethanol is 0.5mol/L ; Ultrasonic rinsing with deionized water until the washing liquid is neutral, solid-liquid separation to obtain nano-metal particle composite silicon/carbon composite material, nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain porous silicon/carbon/nano Metal composite material (PSi/C/Nano-Ag@Co composite material); the composite material is prepared as a silicon negative electrode half-cell, and after 40 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite negative electrode material is basically stable at 1150mAh/g.
实施例8:一种等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法,具体步骤如下:Example 8: A method for preparing porous silicon/carbon/nano-metal composite anode material by cutting silicon waste through plasma activation, the specific steps are as follows:
(1)光伏的金刚线切割硅废料经破碎、研磨、真空干燥4h得到废硅粉;(1) The diamond wire cutting silicon waste of photovoltaics is crushed, ground, and vacuum dried for 4 hours to obtain waste silicon powder;
(2)将步骤(1)废硅粉与碳源在高能球磨机中球磨混匀,过300目筛,真空干燥24h得到硅碳混合粉,其中硅碳混合粉中废硅粉的质量分数为70%;(2) Mix the waste silicon powder and the carbon source in step (1) in a high-energy ball mill, pass through a 300-mesh sieve, and vacuum-dry for 24 hours to obtain a silicon-carbon mixed powder, wherein the mass fraction of the waste silicon powder in the silicon-carbon mixed powder is 70 %;
(3)将纯氩气通入等离子体炉中排除炉体内的空气,并以氩气作为保护气和载气,将步骤(2)硅碳混合粉通过进粉装置通入等离子体炉中进行等离子活化处理,硅碳混合粉气化冷凝再结晶得到纳米硅/碳复合材料(PSi/C纳米复合材料);其中等离子炉电流110A、电压140V、氩气压力为0.15MPa、硅碳混合粉的进料速率为2.0g/min,废硅粉中的有机杂质由于冷凝温度相对硅碳极低会以气体形式直接被氩气带出实现硅的净化;(3) Pass pure argon gas into the plasma furnace to remove the air in the furnace body, and use argon gas as the protective gas and carrier gas, and pass the silicon-carbon mixed powder in step (2) into the plasma furnace through the powder feeding device. Plasma activation treatment, gasification, condensation and recrystallization of silicon-carbon mixed powder to obtain nano-silicon/carbon composite material (PSi/C nano-composite material); among them, the current of plasma furnace is 110A, the voltage is 140V, the pressure of argon gas is 0.15MPa, and the silicon-carbon mixed powder The feed rate is 2.0g/min, and the organic impurities in the waste silicon powder will be directly taken out by argon gas in the form of gas to purify silicon due to the extremely low condensation temperature compared with silicon carbon;
(4)将步骤(3)纳米硅/碳复合材料置于HF-Co(NO3)2-Cu(NO3)2-Ni(NO3)2-乙醇溶液体系中并在温度为80℃进行金属粒子纳米颗粒复合4h,其中HF-Co(NO3)2-Cu(NO3)2-Ni(NO3)2-乙醇溶液体系中HF浓度为0.5mol/L、Co(NO3)2浓度为0.06mol/L、Cu(NO3)2浓度为0.10mol/L、Ni(NO3)2浓度为0.04mol/L、乙醇浓度为0.5mol/L;采用去离子水超声漂洗至洗涤液为中性,固液分离得到纳米金属粒子复合硅/碳复合材料,纳米金属粒子复合硅/碳复合材料经真空干燥处理并研磨得到多孔硅/碳/纳米金属复合材料(PSi/C/Nano-Co@Cu@Ni复合材料);将该复合材料制备成为硅负极半电池,在经过60次充放电循环之后,多孔硅/碳/纳米银复合负极材料的容量基本上稳定在1200mAh/g。(4) Place the nano-silicon/carbon composite material in step (3) in the HF-Co(NO 3 ) 2 -Cu(NO 3 ) 2 -Ni(NO 3 ) 2 -ethanol solution system at a temperature of 80°C Metal particles and nanoparticles were composited for 4 hours, in which the concentration of HF in the HF-Co(NO 3 ) 2 -Cu(NO 3 ) 2 -Ni(NO 3 ) 2 -ethanol solution system was 0.5mol/L, and the concentration of Co(NO 3 ) 2 0.06mol/L, Cu(NO 3 ) 2 concentration 0.10mol/L, Ni(NO 3 ) 2 concentration 0.04mol/L, ethanol concentration 0.5mol/L; use deionized water to ultrasonically rinse until the washing liquid is Neutral, solid-liquid separation to obtain nano-metal particle composite silicon/carbon composite material, nano-metal particle composite silicon/carbon composite material is vacuum-dried and ground to obtain porous silicon/carbon/nano-metal composite material (PSi/C/Nano-Co @Cu@Ni composite material); the composite material was prepared as a silicon anode half-cell, and after 60 charge-discharge cycles, the capacity of the porous silicon/carbon/nano-silver composite anode material was basically stable at 1200mAh/g.
以上是对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。The above is a detailed description of the specific implementation of the present invention, but the present invention is not limited to the above-mentioned implementation, within the scope of knowledge of those of ordinary skill in the art, various modifications can be made without departing from the spirit of the present invention Variety.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010699399.2A CN111785944B (en) | 2020-07-20 | 2020-07-20 | Method for preparing porous silicon/carbon/nanometal composite anode material by cutting silicon waste by plasma activation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010699399.2A CN111785944B (en) | 2020-07-20 | 2020-07-20 | Method for preparing porous silicon/carbon/nanometal composite anode material by cutting silicon waste by plasma activation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111785944A CN111785944A (en) | 2020-10-16 |
CN111785944B true CN111785944B (en) | 2023-04-28 |
Family
ID=72764338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010699399.2A Active CN111785944B (en) | 2020-07-20 | 2020-07-20 | Method for preparing porous silicon/carbon/nanometal composite anode material by cutting silicon waste by plasma activation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111785944B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112259719B (en) * | 2020-10-22 | 2022-09-16 | 昆明理工大学 | Comprehensive recovery method of waste photovoltaic module and preparation method of silicon-carbon negative electrode material |
CN112467067B (en) * | 2020-12-02 | 2021-10-29 | 郑州中科新兴产业技术研究院 | Three-dimensional porous silicon-carbon material prepared by purifying photovoltaic silicon mud and preparation method thereof |
CN117374232A (en) * | 2022-06-29 | 2024-01-09 | 溧阳天目先导电池材料科技有限公司 | Multi-layer composite material prepared at ultrahigh temperature and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101390198A (en) * | 2006-01-23 | 2009-03-18 | 奈克松有限公司 | Method of etching a silicon-based material |
KR101396846B1 (en) * | 2013-07-09 | 2014-05-19 | 한국에너지기술연구원 | Method of manufacturing anode materials for lithium secondary battery using waste silicon |
CN108793169A (en) * | 2017-03-27 | 2018-11-13 | 储晞 | A kind of square law device and system recycling Buddha's warrior attendant wire cutting silicon material by-product silicon mud |
CN110289408A (en) * | 2019-06-26 | 2019-09-27 | 东北大学 | Nano-silicon and silicon/carbon composite materials based on cutting silicon waste and their preparation methods and applications |
CN110350181A (en) * | 2019-07-16 | 2019-10-18 | 昆明理工大学 | A kind of preparation method of lithium ion cell nano porous silicon negative electrode material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403491A (en) * | 2011-11-30 | 2012-04-04 | 奇瑞汽车股份有限公司 | Lithium ion battery silicon-carbon composite negative electrode material and preparation method thereof, and lithium ion battery |
CN108899521A (en) * | 2018-07-09 | 2018-11-27 | 西北大学 | Utilize waste silicon powder and the compound method for preparing ion cathode material lithium of carbon |
CN109904407A (en) * | 2019-01-02 | 2019-06-18 | 昆明理工大学 | A method for preparing lithium ion battery negative electrode material by cutting silicon waste with diamond wire |
-
2020
- 2020-07-20 CN CN202010699399.2A patent/CN111785944B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101390198A (en) * | 2006-01-23 | 2009-03-18 | 奈克松有限公司 | Method of etching a silicon-based material |
KR101396846B1 (en) * | 2013-07-09 | 2014-05-19 | 한국에너지기술연구원 | Method of manufacturing anode materials for lithium secondary battery using waste silicon |
CN108793169A (en) * | 2017-03-27 | 2018-11-13 | 储晞 | A kind of square law device and system recycling Buddha's warrior attendant wire cutting silicon material by-product silicon mud |
CN110289408A (en) * | 2019-06-26 | 2019-09-27 | 东北大学 | Nano-silicon and silicon/carbon composite materials based on cutting silicon waste and their preparation methods and applications |
CN110350181A (en) * | 2019-07-16 | 2019-10-18 | 昆明理工大学 | A kind of preparation method of lithium ion cell nano porous silicon negative electrode material |
Also Published As
Publication number | Publication date |
---|---|
CN111785944A (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110767877B (en) | Lithium ion battery silicon monoxide negative electrode material and preparation method and application thereof | |
WO2020140602A1 (en) | Porous silicon material and preparation method therefor, negative battery material, and electrochemical battery | |
Wei et al. | Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries | |
CN105826527B (en) | A kind of porous silicon-carbon composite and its preparation method and application | |
Ma et al. | Simple preparation of Si/N-doped carbon anodes from photovoltaic industry waste for lithium-ion batteries | |
CN107275578B (en) | A method for making potassium ion battery negative electrode using nitrogen-doped porous carbon material | |
CN111785944B (en) | Method for preparing porous silicon/carbon/nanometal composite anode material by cutting silicon waste by plasma activation | |
CN107732172B (en) | Lithium ion battery cathode material and preparation method thereof | |
CN109346688B (en) | Yolk-shell structure negative electrode material, preparation method thereof and lithium ion battery | |
CN110350181A (en) | A kind of preparation method of lithium ion cell nano porous silicon negative electrode material | |
CN111799460B (en) | A method for preparing boron-doped nano-metal/porous silicon-carbon composite negative electrode based on cutting silicon waste | |
CN107170968A (en) | A kind of positive electrode material of secondary Mg battery and preparation method thereof | |
CN110335998A (en) | A kind of lithium-ion battery porous silicon-carbon nanosheet composite negative electrode material and preparation method thereof | |
CN106711419A (en) | Core-shell NiO/C porous composite lithium ion battery negative electrode material | |
EP4273966A1 (en) | Silicon-doped graphene composite material, preparation method for same, and applications thereof | |
CN105609749A (en) | Silicon nanowire and application thereof | |
CN110148730A (en) | High-first-efficiency long-life silicon-based negative electrode material and preparation method and application thereof | |
CN111252757A (en) | Method for preparing graphene from waste lithium-ion power battery | |
CN105226244A (en) | Three-dimensional porous silicon-nano silver composite material and preparation thereof and the application as lithium ion battery negative material | |
CN113428865B (en) | Pomegranate-like silicon-based negative electrode material and preparation method thereof | |
CN106997946A (en) | Copper silicon composite, preparation method and the application in lithium ion battery | |
CN108963237A (en) | A kind of preparation method of anode material of lithium-ion battery | |
CN108736006A (en) | A method of preparing silico-carbo composite material | |
CN108183220A (en) | A kind of lithium battery tertiary composite negative pole material and preparation method thereof | |
CN106531966A (en) | Preparation method for nanometer Cu@CuO material and application of nanometer Cu@CuO material to lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |