CN111783794A - 一种基于深度可分离卷积残差块和改进nms的多尺度目标检测方法 - Google Patents

一种基于深度可分离卷积残差块和改进nms的多尺度目标检测方法 Download PDF

Info

Publication number
CN111783794A
CN111783794A CN202010512200.0A CN202010512200A CN111783794A CN 111783794 A CN111783794 A CN 111783794A CN 202010512200 A CN202010512200 A CN 202010512200A CN 111783794 A CN111783794 A CN 111783794A
Authority
CN
China
Prior art keywords
prediction
residual block
nms
training
depth separable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010512200.0A
Other languages
English (en)
Other versions
CN111783794B (zh
Inventor
张子蓬
周博文
王淑青
王晨曦
兰天泽
庆逸辉
刘逸凡
张鹏飞
黄剑锋
顿伟超
王年涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN202010512200.0A priority Critical patent/CN111783794B/zh
Publication of CN111783794A publication Critical patent/CN111783794A/zh
Application granted granted Critical
Publication of CN111783794B publication Critical patent/CN111783794B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法,结合深度可分离卷积神经网络特征提取的能力、SSD(Single Shot Detection)模型多尺度检测算法对不同大小目标的适应能力以及改进NMS(改进非极大值抑制NonMaximumSuppression,NMS)对遮挡物体的高检测性能来解决现有检测方法速度过慢、精度不高的问题。

Description

一种基于深度可分离卷积残差块和改进NMS的多尺度目标检 测方法
技术领域
本发明属于图像处理领域,涉及一种基于深度学习的目标检测方法,尤其涉及一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法。
背景技术
目标检测技术是计算机视觉领域中一项关键的技术,其主要目的是对图片中的物体进行定位并准确输出其所在位置。目前,常用的方法有基于手工特征的方法和基于深度学习的方法,其中基于深度学习的方法是通过卷积神经网络来从大量图片数据中学习到不同物体所具有的特征,并与标注数据进行拟合回归来达到检测所需物体的目的。虽然这种基于深度学习的方法已经取得了不小的成效,但是在图像背景复杂和目标被遮挡等的情况下,很难得到较好的检测效果,而且卷积神经网络的使用让模型复杂度有所提升,进而带来了计算成本的增加,导致算法应用在计算力较低的设备上时出现计算速度慢等问题。因此,需要对基于深度学习的检测方法做进一步改进,来满足实际应用中的各种需求。
发明内容
为了解决上述技术问题,本发明提出了一种基于深度可分离卷积和多尺度特征提取的图像目标检测方法,结合深度可分离卷积神经网络特征提取的能力、SSD(Single ShotDetection)模型多尺度检测算法对不同大小目标的适应能力以及改进NMS(改进非极大值抑制NonMaximumSuppression,NMS)对遮挡物体的高检测性能来解决现有检测方法速度过慢、精度不高的问题。本发明所采用的技术方案是:一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法,包括如下步骤,
步骤1,获取若干图片,作为原始图像数据,对原始图像数据中的检测目标进行边框和类别的标注;
步骤2,对于步骤1中的原始图像数据进行数据增强操作,将新生成的图片与步骤1中采集到的图片一起作为训练图片;
步骤3,利用特征提取网络提取训练图片的特征图,将步骤2中的训练图片分批进行特征提取;其中特征提取网络包含依次连接的卷积层、深度可分离残差块(1)、深度可分离残差块(2)、深度可分离残差块(3)、深度可分离残差块(4)、深度可分离残差块(5)、深度可分离残差块(6),所述深度可分离残差块(1)—(6)均由深度卷积、点卷积和残差网络组成;
步骤4,将步骤3得到的特征图送入多尺度检测网络中,在不同大小的特征图上生成不同尺度、不同宽高比的预测框来拟合图片中的待测目标;
步骤5,对步骤4生成的预测框采用NMS进行多余预测框剔除,得到待测目标的唯一标识框;
步骤6,重复步骤3~5对由特征提取网络、多尺度检测网络以及NMS组成的整个模型进行迭代训练;
步骤7,当所有的训练图片均已通过整个模型,输出此时的检测准确率;
步骤8,对比每次输出的准确率,如果准确率持续上升,则继续训练;如果准确率保持不变或有下降趋势,则停止训练,并保存最终整个模型。
进一步的,步骤2中采用水平镜像、随机裁剪、随机亮度和对比度增强的数据增强操作来产生更多训练图片。
进一步的,其中水平镜像表示将图片的左右部分以图像垂直中轴线为中心进行镜像对换;随机裁剪表示将原图像裁剪成多张包含待检测目标的不同大小图片;随机亮度是调节图像亮度以削弱光照不均匀所带来的影响,图片亮度Li通过颜色空间R、G、B的均值来表示,Li越大代表亮度越高,其变换过程的表达式如下:
Figure BDA0002528731080000021
Figure BDA0002528731080000022
其中,bri代表变换后的亮度,k为亮度变化系数,通过设置不同的k值完成对Li的调节,k小于1表示亮度减弱,k大于1表示亮度增强,因此将各颜色通道的值同比例增减即可改变图像的亮度。
进一步的,步骤4中先对NMS进行改进,然后利用改进的NMS进行多余预测框剔除,具体实现方式如下:
首先将得到的预测框的置信度从高到低排序,令B为步骤4生成的预测框集合,S为每个预测框对应的置信度分数,选出最高置信度和其对应的预测框,然后遍历其余的预测框,将遍历到的预测框置信度使用以下公式进行重置,重置公式如下:
Figure BDA0002528731080000023
其中,预测框置信度得分si,M为当前得分最高的预测框,bi为遍历到的预测框,D为所有M的集合,IoU(M,bi)的计算过程为:
Figure BDA0002528731080000031
其中,A(M)代表得分最高的预测框的面积,A(bi)代表遍历到的预测框的面积,∩代表取交集操作,∪代表取并集操作;
当重置后的得分si大于阈值Nt时,将此时遍历到的预测框从集合B中删除,同时将其置信度分数也从S集合中删除,直到所有的预测框均被扫描过时结束。
进一步的,步骤5中的多尺度检测网络采用SSD模型,包括1层8*8卷积层,1层4*4卷积层,1层2*2卷积层,1层1*1卷积层。
与现有技术相比,本发明方法的优点在于:
(1)采用深度可分离卷积作为整个模型的特征提取层,克服了传统卷积参数量冗余、计算速度慢的问题。
(2)使用SSD模型的多尺度检测网络对不同尺度的特征图分别进行检测,提高了对小目标的检测准确率。
(3)对冗余矩形框使用改进NMS算法,使得对同类重叠目标的误检率下降。
本发明方法可广泛应用于交通视频监控、室内安防、计算机视觉等领域,具有较广的应用前景和较大的经济价值。
附图说明
图1是本发明实施例的流程图。
图2是本发明实施例中的深度可分离卷积残差块结构图。
图3是本发明实施例中的检测网络结构图。
图4是本发明实施例中的改进NMS原理图。
图5是本发明实施例中的检测结果图像,(a)和(b)为不同图像的检测结果。
具体实施方式
为了方便本领域技术人员理解和实施本发明,下面通过实施例,并结合附图对本发明作进一步的具体说明,应当理解的是此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
如图1所示为本发明的算法流程图,具体包括以下步骤:
步骤1,获取若干图片,作为原始图像数据,对训练样本中的检测目标进行边框和类别的标注;
本实施例以智能车装甲板图片样本为例,选取包含智能车装甲板的图片2500张,然后使用labelImg标注软件对其进行边框和类别标注,作为原始图像数据。
步骤2,对于步骤1中的原始图像数据进行数据增强操作,具体操作方式为采用水平镜像、随机裁剪和随机亮度来产生更多训练图片,增加泛化能力,将新生成的训练图片与步骤1中采集到的图片一起作为训练图片。
其中水平镜像表示将图片的左右部分以图像垂直中轴线为中心进行镜像对换;随机裁剪表示将原图像裁剪成多张包含待测装甲板目标的不同大小图片;随机亮度是调节图像亮度以削弱光照不均匀所带来的影响,图片亮度Li可以通过颜色空间R、G、B的均值来表示,Li越大代表亮度越高,其变换过程的表达式如下:
Figure BDA0002528731080000041
Figure BDA0002528731080000042
其中,bri代表变换后的亮度,k为亮度变化系数,通过设置不同的k值完成对Li的调节,k小于1表示亮度减弱,k大于1表示亮度增强,因此将各颜色通道的值同比例增减即可改变图像的亮度。
步骤3:将步骤2中的训练图片分批特征提取网络进行特征提取,得到训练图片的特征图。其中特征提取网络包含依次连接的深度卷积层、点卷积层、深度可分离残差块(1)、深度可分离残差块(2)、深度可分离残差块(3)、深度可分离残差块(4)、深度可分离残差块(5)、深度可分离残差块(6),所述深度可分离残差块(1)—(6)均由深度卷积、点卷积和残差网络组成;
其中所构建的特征提取网络详情见下表1所示。
表1特征提取层参数表
Figure BDA0002528731080000043
Figure BDA0002528731080000051
其中所述深度可分离卷积残差块(1)—(6)均包含多个卷积层和残差网络,一个深度可分离卷积残差块的结构示意图如图2所示。
步骤4:将步骤3得到的特征图送入SSD模型中的多尺度检测网络中,在不同大小的特征图上生成不同尺度、不同宽高比的矩形框来拟合图片中的待测目标。
该步骤可理解为:提取完特征后,再利用SSD模型的检测网络对图片中的目标进行多尺度检测,该步骤的示意图详见图3,本实例的检测网络包括一层8*8卷积层,一层4*4卷积层,一层2*2卷积层,一层1*1卷积层。
步骤5,对步骤4生成的矩形框采用改进NMS方法,进行多余预测框剔除,得到待测目标的唯一标识框;
改进NMS的实现流程请见图4,首先将得到的预测框的置信度从高到低排序,该图中B为步骤4生成的预测框集合,S为每个预测框对应的置信度分数,选出当前最高置信度和其对应的预测框,然后遍历其余的预测框,将遍历到的预测框置信度使用以下公式进行重置,重置公式如下:
Figure BDA0002528731080000052
其中,si'为重置之后的预测框置信度,预测框置信度得分si,M为当前得分最高的预测框,bi为遍历到的预测框,σ为重置函数的一个可调节参数,本实施例中σ取0.4,D为所有M的集合,IoU(M,bi)的计算过程为:
Figure BDA0002528731080000053
其中,A(M)代表得分最高的预测框的面积,A(bi)代表遍历到的预测框的面积,∩代表取交集操作,∪代表取并集操作。
该重置函数使得置信度得分si衰减,且当M与bi的重叠面积越大,si衰减越厉害。当重置后的得分si大于阈值Nt时,将此时遍历到的预测框从集合B中删除,同时将其置信度分数也从S集合中删除,重复扫描B集合中剩余预测框直到所有的预测框均被扫描过时结束。
步骤6,重复步骤3~5对整个模型(特征提取网络、多尺度检测网络以及NMS)进行迭代训练,设置迭代次数,对整个模型进行迭代学习。
步骤7,当训练图片中所有图片均已通过整个模型,输出此时的检测准确率。
步骤8,对比每次输出的准确率,如果准确率持续上升,则继续训练;如果准确率保持不变或有下降趋势,则停止训练,并保存整个模型。
本实施例保存的检测模型配合opencv开源计算机视觉库可进行可视化识别新的图片,请见图5,在不同环境下用所保存的模型对智能车上装甲板进行识别并定位输出其包围矩形框,在矩形框的左上角输出其识别置信度。
本发明主要应用于图像目标识别与定位,单独使用目前检测效果较好的目标检测算法无法处理参数冗余、检测速度过慢和重叠物体识别率低等问题,而本发明中的特征提取网络拥有较少的计算参数以及对移动端低算力设备的良好适应性,故本发明结合深度可分离卷积残差块和SSD模型中的多尺度检测网络以及改进NMS算法来快速高效处理图像目标检测问题。本发明也可以用来检测其他大样本数据集如VOC,COCO数据集等。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
本文中所描述的具体实施仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (5)

1.一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法,其特征在于,包括如下步骤:
步骤1,获取若干图片,作为原始图像数据,对原始图像数据中的检测目标进行边框和类别的标注;
步骤2,对于步骤1中的原始图像数据进行数据增强操作,将新生成的图片与步骤1中采集到的图片一起作为训练图片;
步骤3,利用特征提取网络提取训练图片的特征图,将步骤2中的训练图片分批进行特征提取;其中特征提取网络包含依次连接的卷积层、深度可分离残差块(1)、深度可分离残差块(2)、深度可分离残差块(3)、深度可分离残差块(4)、深度可分离残差块(5)、深度可分离残差块(6),所述深度可分离残差块(1)—(6)均由深度卷积、点卷积和残差网络组成;
步骤4,将步骤3得到的特征图送入多尺度检测网络中,在不同大小的特征图上生成不同尺度、不同宽高比的预测框来拟合图片中的待测目标;
步骤5,对步骤4生成的预测框,采用非极大值抑制NMS进行多余预测框剔除,得到待测目标的唯一标识框;
步骤6,重复步骤3~5对由特征提取网络、多尺度检测网络以及NMS组成的整个模型进行迭代训练;
步骤7,当所有的训练图片均已通过整个模型,输出此时的检测准确率;
步骤8,对比每次输出的准确率,如果准确率持续上升,则继续训练;如果准确率保持不变或有下降趋势,则停止训练,并保存最终输出的整个模型。
2.如权利要求1所述的一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法,其特征在于:步骤2中采用水平镜像、随机裁剪、随机亮度和对比度增强的数据增强操作来产生更多训练图片。
3.如权利要求2所述的一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法,其特征在于:其中水平镜像表示将图片的左右部分以图像垂直中轴线为中心进行镜像对换;随机裁剪表示将原图像裁剪成多张包含待检测目标的不同大小图片;随机亮度是调节图像亮度以削弱光照不均匀所带来的影响,图片亮度Li通过颜色空间R、G、B的均值来表示,Li越大代表亮度越高,其变换过程的表达式如下:
Figure FDA0002528731070000021
Figure FDA0002528731070000022
其中,bri代表变换后的亮度,k为亮度变化系数,通过设置不同的k值完成对Li的调节,k小于1表示亮度减弱,k大于1表示亮度增强,因此将各颜色通道的值同比例增减即可改变图像的亮度。
4.如权利要求1所述的一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法,其特征在于:步骤4中先对NMS进行改进,然后利用改进的NMS进行多余预测框剔除,具体实现方式如下:
首先将得到的预测框的置信度从高到低排序,令B为步骤4生成的预测框集合,S为每个预测框对应的置信度分数,选出当前最高置信度和其对应的预测框,然后遍历其余的预测框,将遍历到的预测框置信度使用以下公式进行重置,重置公式如下:
Figure FDA0002528731070000023
其中,si'为重置之后的预测框置信度,预测框置信度得分si,M为当前得分最高的预测框,bi为遍历到的预测框,D为所有M的集合,IoU(M,bi)的计算过程为:
Figure FDA0002528731070000024
其中,A(M)代表得分最高的预测框的面积,A(bi)代表遍历到的预测框的面积,∩代表取交集操作,∪代表取并集操作;
当重置后的得分si大于阈值Nt时,将此时遍历到的预测框从集合B中删除,同时将其置信度分数也从S集合中删除,直到所有的预测框均被扫描过时结束。
5.如权利要求1所述的一种基于深度可分离卷积残差块和改进NMS的多尺度目标检测方法,其特征在于:步骤5中的多尺度检测网络采用SSD模型,包括1层8*8卷积层,1层4*4卷积层,1层2*2卷积层,1层1*1卷积层。
CN202010512200.0A 2020-06-08 2020-06-08 一种基于深度可分离卷积残差块和改进nms的多尺度目标检测方法 Active CN111783794B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010512200.0A CN111783794B (zh) 2020-06-08 2020-06-08 一种基于深度可分离卷积残差块和改进nms的多尺度目标检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010512200.0A CN111783794B (zh) 2020-06-08 2020-06-08 一种基于深度可分离卷积残差块和改进nms的多尺度目标检测方法

Publications (2)

Publication Number Publication Date
CN111783794A true CN111783794A (zh) 2020-10-16
CN111783794B CN111783794B (zh) 2023-08-22

Family

ID=72753747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010512200.0A Active CN111783794B (zh) 2020-06-08 2020-06-08 一种基于深度可分离卷积残差块和改进nms的多尺度目标检测方法

Country Status (1)

Country Link
CN (1) CN111783794B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165369B1 (en) * 2013-03-14 2015-10-20 Hrl Laboratories, Llc Multi-object detection and recognition using exclusive non-maximum suppression (eNMS) and classification in cluttered scenes
US20180165551A1 (en) * 2016-12-08 2018-06-14 Intel Corporation Technologies for improved object detection accuracy with multi-scale representation and training
CN109272060A (zh) * 2018-09-06 2019-01-25 湖北工业大学 一种基于改进的darknet神经网络进行目标检测的方法和系统
CN109816012A (zh) * 2019-01-22 2019-05-28 南京邮电大学 一种融合上下文信息的多尺度目标检测方法
US20190188537A1 (en) * 2017-12-14 2019-06-20 Robert Bosch Gmbh Effective building block design for deep convolutional neural networks using search
CN110009706A (zh) * 2019-03-06 2019-07-12 上海电力学院 一种基于深层神经网络和迁移学习的数字岩心重构方法
CN110287806A (zh) * 2019-05-30 2019-09-27 华南师范大学 一种基于改进ssd网络的交通标志识别方法
CN110532859A (zh) * 2019-07-18 2019-12-03 西安电子科技大学 基于深度进化剪枝卷积网的遥感图像目标检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9165369B1 (en) * 2013-03-14 2015-10-20 Hrl Laboratories, Llc Multi-object detection and recognition using exclusive non-maximum suppression (eNMS) and classification in cluttered scenes
US20180165551A1 (en) * 2016-12-08 2018-06-14 Intel Corporation Technologies for improved object detection accuracy with multi-scale representation and training
US20190188537A1 (en) * 2017-12-14 2019-06-20 Robert Bosch Gmbh Effective building block design for deep convolutional neural networks using search
CN109272060A (zh) * 2018-09-06 2019-01-25 湖北工业大学 一种基于改进的darknet神经网络进行目标检测的方法和系统
CN109816012A (zh) * 2019-01-22 2019-05-28 南京邮电大学 一种融合上下文信息的多尺度目标检测方法
CN110009706A (zh) * 2019-03-06 2019-07-12 上海电力学院 一种基于深层神经网络和迁移学习的数字岩心重构方法
CN110287806A (zh) * 2019-05-30 2019-09-27 华南师范大学 一种基于改进ssd网络的交通标志识别方法
CN110532859A (zh) * 2019-07-18 2019-12-03 西安电子科技大学 基于深度进化剪枝卷积网的遥感图像目标检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨晋生;杨雁南;李天骄;: "基于深度可分离卷积的交通标志识别算法", 液晶与显示, no. 12, pages 1 - 3 *

Also Published As

Publication number Publication date
CN111783794B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN110059694B (zh) 电力行业复杂场景下的文字数据的智能识别方法
CN108562589B (zh) 一种对磁路材料表面缺陷进行检测的方法
CN108009515B (zh) 一种基于fcn的无人机航拍图像的输电线定位识别方法
CN109583483B (zh) 一种基于卷积神经网络的目标检测方法和系统
CN109360179B (zh) 一种图像融合方法、装置及可读存储介质
CN113592839B (zh) 基于改进Faster RCNN的配网线路典型缺陷诊断方法及系统
CN110599453A (zh) 一种基于图像融合的面板缺陷检测方法、装置及设备终端
CN110929635A (zh) 基于信任机制下面部交并比的假脸视频检测方法及系统
WO2024021461A1 (zh) 缺陷检测方法及装置、设备、存储介质
CN115829995A (zh) 基于像素级的多尺度特征融合的布匹瑕疵检测方法及系统
CN112861785A (zh) 一种基于实例分割和图像修复的带遮挡行人重识别方法
CN116597270A (zh) 基于注意力机制集成学习网络的道路损毁目标检测方法
CN110751667A (zh) 基于人类视觉系统的复杂背景下红外弱小目标检测方法
CN112884866B (zh) 一种黑白视频的上色方法、装置、设备及存储介质
CN112750113B (zh) 基于深度学习和直线检测的玻璃瓶缺陷检测方法及装置
CN114155551A (zh) 基于YOLOv3改进的复杂环境下的行人检测方法及装置
CN113887649A (zh) 一种基于深层特征和浅层特征融合的目标检测方法
CN115861922B (zh) 一种稀疏烟火检测方法、装置、计算机设备及存储介质
CN115797314B (zh) 零件表面缺陷检测方法、系统、设备及存储介质
CN115294392B (zh) 基于生成网络模型的可见光遥感图像云去除方法及系统
CN111062388A (zh) 基于深度学习的广告文字的识别方法、系统、介质及设备
CN115937492A (zh) 一种基于特征识别的变电设备红外图像识别方法
CN111783794A (zh) 一种基于深度可分离卷积残差块和改进nms的多尺度目标检测方法
CN114581769A (zh) 一种基于无监督聚类的在建房屋识别方法
CN114639013A (zh) 基于改进Orient RCNN模型的遥感图像飞机目标检测识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant