CN111769598B - 一种光伏发电系统 - Google Patents

一种光伏发电系统 Download PDF

Info

Publication number
CN111769598B
CN111769598B CN202010650377.7A CN202010650377A CN111769598B CN 111769598 B CN111769598 B CN 111769598B CN 202010650377 A CN202010650377 A CN 202010650377A CN 111769598 B CN111769598 B CN 111769598B
Authority
CN
China
Prior art keywords
current
phase
output
power
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010650377.7A
Other languages
English (en)
Other versions
CN111769598A (zh
Inventor
蔡善忠
时悦
陈国伟
刘陈
李贻友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Electric Power Equipment Co ltd
Original Assignee
Hubei Electric Power Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Electric Power Equipment Co ltd filed Critical Hubei Electric Power Equipment Co ltd
Priority to CN202010650377.7A priority Critical patent/CN111769598B/zh
Publication of CN111769598A publication Critical patent/CN111769598A/zh
Application granted granted Critical
Publication of CN111769598B publication Critical patent/CN111769598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

本发明提供了一种光伏发电系统,包括光伏电池、MPPT太阳能控制器、单向DC/DC变换单元、双向DC/DC变换单元、蓄电池组和逆变单元;光伏电池的输出端分别与MPPT太阳能控制器的输入端和单向DC/DC变换单元的输入端电性连接;单向DC/DC变换单元的输出端和双向DC/DC变换单元的第一端均与直流母线电性连接,双向DC/DC变换单元的第二端与蓄电池组电性连接;MPPT太阳能控制器还与蓄电池组电性连接;MPPT太阳能控制器追踪光伏电池的最大输出功率,选择性的将最大输出功率对应的光伏电池的输出电压导入单向DC/DC变换单元的输入端;MPPT太阳能控制器还调节蓄电池组的输出功率。

Description

一种光伏发电系统
技术领域
本发明涉及光伏电池并网发电设备技术领域,尤其涉及一种光伏发电系统。
背景技术
环境污染加速了人类对可再生能源利用的研究,在所有可再生能源中资源量最大、分布最广泛且清洁无污染的即是太阳能。光伏发电系统被视为未来智能电网的最重要一环,可以有效地实现电网侧电力能量的转移,通过储能装置实现能量的削峰填谷。太阳能具有不确定性和随机性,这个问题也成为了光伏发电所面对的最主要的问题,使得光伏发电的输出不停的波动,如果不能有效的解决输出波动问题,那么便无法对这部分电能有效地利用,降低太阳能的利用率,另外,直流电逆变为三相交流电时,需要与交流电网并网侧的参数相吻合,才能更好的满足交流负载的实际功率需求。
发明内容
有鉴于此,本发明提出了一种能对光伏电池的输出功能进行跟踪、根据交流电网并网侧的实时输出并对应的调节逆变部分的光伏发电系统。
本发明提供了一种光伏发电系统,包括光伏电池、MPPT太阳能控制器、单向DC/DC变换单元、双向DC/DC变换单元、蓄电池组和逆变单元;光伏电池的输出端分别与MPPT太阳能控制器的输入端和单向DC/DC变换单元的输入端电性连接;单向DC/DC变换单元的输出端和双向DC/DC变换单元的第一端均与直流母线电性连接,双向DC/DC变换单元的第二端与蓄电池组电性连接;逆变单元的输入端与直流母线电性连接,逆变单元的输出端连接在交流电网上;MPPT太阳能控制器还与蓄电池组电性连接;
所述MPPT太阳能控制器追踪光伏电池的最大输出功率,选择性的将最大输出功率对应的光伏电池的输出电压导入单向DC/DC变换单元的输入端;MPPT太阳能控制器还调节蓄电池组的输出功率;
所述单向DC/DC变换单元将导入的光伏电池的输出电压进行升压;
双向DC/DC变换单元选择性的将蓄电池组与单向DC/DC变换单元输出端或者逆变单元的输入端电性连接;
逆变单元通过将输入的直流电压进行逆变,使逆变后的三相交流电压的相位与交流电网当前相位保持相同。
在以上技术方案的基础上,优选的,所述双向DC/DC变换单元选择性的将蓄电池组与单向DC/DC变换单元输出端或者逆变单元的输入端电性连接,是当光伏电池的输出功率超过给定的交流电网并网功率时,单向DC/DC变换单元的输出端一方面与逆变单元的输入端电性连接,另一方面通过双向DC/DC变换单元向蓄电池组充电;当光伏电池的输出功率小于给定的交流电网并网功率时,蓄电池组通过双向DC/DC变换单元与逆变单元的输入端电性连接,蓄电池组放电。
进一步优选的,所述单向DC/DC变换单元包括充电电容C2、电阻R3、电感L1、开关管Q1和二极管D1,光伏电池的正极与开关管Q1的漏极电性连接,开关管Q1的源极与二极管D1的负极电性连接,二极管D1的正极与电容C2的一端和电阻R3的一端连接;光伏电池的负极分别与电感L1的另一端、电容C2的另一端和电阻R3的另一端连接;光伏电池的输出端还与MPPT太阳能控制器的输入端电性连接,MPPT太阳能控制器的输出端与开关管Q1的栅极电性连接;MPPT太阳能控制器的输出端在光伏电池的最大输出功率时输出高电平,开启开关管Q1。
更进一步优选的,所述双向DC/DC变换单元包括开关管Q2、开关管Q3、电感L2和电容C4;开关管Q2的漏极与直流母线电性连接,开关管Q2的源极分别与电感L2的一端和开关管Q3的漏极连接;电感L2的另一端分别与电容C4的一端和蓄电池组的正极电性连接;开关管Q3的源极与电容C4的另一端和蓄电池组的负极连接;开关管Q2和开关管Q3上分别反向连接有二极管D2和二极管D3。
再进一步优选的,所述MPPT太阳能控制器调节蓄电池组的输出功率采用双闭环控制方法:外环采用功率控制环,令Upv为光伏电池的最大输出电压,Ipv为光伏电池的最大输出电流,两者的乘积Ppv为光伏电池最大输出功率;光伏电池实际输出功率经低通滤波后得到的值为并网功率给定值
Figure GDA0003206144570000031
可以得到蓄电池组的工作参考功率
Figure GDA0003206144570000032
蓄电池组的实际工作功率Pb与工作参考功率
Figure GDA0003206144570000033
比较所得的误差为e1,该误差e1经由PI调节后得到蓄电池组的功率控制环的参考电流
Figure GDA0003206144570000034
内环是电流控制环,通过对蓄电池组的实际工作电流Ib来跟踪外环功率控制环所给定的参考电流值
Figure GDA0003206144570000035
将两个电流的差值
Figure GDA0003206144570000036
进行PI调节和限幅后输入PMW发生器,PMW发生器输出三路PMW波形PMW1、PMW2和PMW3,分别对应输出到开关管Q1、Q2和Q3的栅极,分别控制开关管Q1、Q2和Q3的开启和关断。
进一步优选的,所述逆变单元包括三相两电平并网逆变器、SVPMW发生器和锁相环单元,三相两电平并网逆变器的输入端与直流母线连接,三相两电平并网逆变器的输出端与交流电网连接;三相两电平并网逆变器的输出端的还与锁相环单元的输入端电性连接;锁相环单元通过相电压采样电路和相电流采样电路获取三相两电平并网逆变器的输出端的相电压、相电流和当前交流电网的相位角,将相电流通过空间坐标变换得到有功电流分量和无功电流分量,将有功电流分量和无功电流分量与根据MPPT太阳能控制器输出的峰值电压进行复合和闭环调节,作为SVPMW发生器的输入信号,SVPMW发生器输出的波形作为三相两电平并网逆变器的控制信号,波形的占空比为三相两电平并网逆变器的开启或者关断信号。
更进一步优选的,所述三相两电平并网逆变器包括三相桥式逆变电路,其上桥臂包括开关器件VT1、VT2和VT3,下桥臂包括开关器件VT2、VT4和VT6,开关器件VT1与VT4、VT2与VT5和VT3与VT6共同构成三相输出,每一相的两个开关器件交替导通;开关器件VT1—VT6为IGBT。
再进一步优选的,所述相电压采样电路包括输入电阻R4、电压变压器T1、第一运放A1和第二运放A2,输入电阻R4的一端与电压变压器T1的原边的一端电性连接,输入电阻R4的另一端与电容C7的一端和采样电压输入端连接,电容C7的另一端与电压变压器T1的原边的另一端连接后接地;电压变压器T1副边的分别与第一运放A1的反相输入端和同相输入端电性连接,第一运放A1的反相输入端与输出端之间还连接有电阻R6,第一运放A1的输出端分别与升压电阻R8的一端和第二运放A2的同相输入端连接,升压电阻R8的另一端与+3.3V电源电性连接,第二运放A2的反相输入端与其输出端连接,第二运放A2的输出端与两个串联的二极管D4和D5的公共端电性连接后与AD转换设备连接;二极管D4的负极与+3.3V电源电性连接,二极管D5的正极接地。
再进一步优选的,所述相电流采样电路包括电流变压器T2、二极管D6、D7、第三运放A3和第四运放A4,电流变压器T2的原边与相电流的输入端电性连接,电流变压器T2的副边分别与第三运放A3的两个输入端连接,二极管D6和D7反向连接在第三运放A3的两个输入端之间;第三运放A3的反相输入端与输出端之间连接有电容C9和电阻R10;第三运放A3的输出端与第四运放A4的同相输入端和升压电阻R12的一端连接,升压电阻R12的另一端与+3.3V电源电性连接;第四运放A4的输出端与两个串联的二极管D8和D9的公共端电性连接后与AD转换设备连接;二极管D8的负极与+3.3V电源电性连接,二极管D9的正极接地。
本发明提供的一种光伏发电系统,相对于现有技术,具有以下有益效果:
(1)本发明通过将光伏电池和交流电网组合成复合系统,并加入蓄电池组作为中间调节部分;光伏电池起发电的作用,加入MPPT太阳能控制器及相应的控制手段得到最大输出功率,通过单向DC/DC变换单元得到一个稳定电压,再通过逆变单元完成逆变并网与交流电网相连,对负载进行供电;
(2)MPPT太阳能控制器可以跟踪光伏电池的输出功率,并在输出功率峰值时将其输出;
(3)单向DC/DC变换单元实现光伏电池输出电压的升压和稳压功能,使得汇入直流母线的直流电压保持稳定;
(4)双向DC/DC变换单元具有双向隔离功能,蓄电池组充电和放电时的电路会进行切换且互不冲突;
(5)MPPT太阳能控制器调采用双闭环控制方法,对蓄电池组的输出功率进行控制;如果光伏系统输出功率大于负载需求,直接将电能传输至逆变单元进行输出,超出部分为蓄电池组充电;如果光伏系统输出功率无法满足负载需求,蓄电池组会将储存的电能释放;如果蓄电池组的电能不能满足负载需要,会由交流电网进行供电,可满足负载供电的使用需求,还能输出相应的有功功率和无功功率;
(6)逆变单元通过检测交流电网并网一侧电压和电流的大小和相位,通过变换后生产有功电流分量和无功电流分量,进而输出控制信号控制三相两电平并网逆变器的开启和关断,使得输出与当前交流电网的信号同相位。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种光伏发电系统的系统框图;
图2为本发明一种光伏发电系统的光伏电池、MPPT太阳能控制器和单向DC/DC变换单元的接线图;
图3为本发明一种光伏发电系统的双向DC/DC变换单元的接线图;
图4为本发明一种光伏发电系统的MPPT太阳能控制器调节蓄电池组的输出功率的控制系统结构图;
图5为本发明一种光伏发电系统的逆变单元的系统结构图;
图6为本发明一种光伏发电系统的逆变单元的三相两电平并网逆变器的接线图;
图7为本发明一种光伏发电系统的逆变单元的相电压采样电路的接线;
图8为本发明一种光伏发电系统的逆变单元的相电流采样电路接线图。
具体实施方式
下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
如图1所示,图中展示了一种光伏发电系统,包括光伏电池、MPPT太阳能控制器、单向DC/DC变换单元、双向DC/DC变换单元、蓄电池组和逆变单元;光伏电池的输出端分别与MPPT太阳能控制器的输入端和单向DC/DC变换单元的输入端电性连接;单向DC/DC变换单元的输出端和双向DC/DC变换单元的第一端均与直流母线电性连接,双向DC/DC变换单元的第二端与蓄电池组电性连接;逆变单元的输入端与直流母线电性连接,逆变单元的输出端连接在交流电网上;MPPT太阳能控制器还与蓄电池组电性连接;
其中:MPPT太阳能控制器追踪光伏电池的最大输出功率,选择性的将最大输出功率对应的光伏电池的输出电压导入单向DC/DC变换单元的输入端;MPPT太阳能控制器还调节蓄电池组的输出功率;
所述单向DC/DC变换单元将导入的光伏电池的输出电压进行升压;
双向DC/DC变换单元选择性的将蓄电池组与单向DC/DC变换单元输出端或者逆变单元的输入端电性连接;
逆变单元通过将输入的直流电压进行逆变,使逆变后的三相交流电压的相位与交流电网当前相位保持相同。
具体的,如图1结合图2所示,双向DC/DC变换单元选择性的将蓄电池组与单向DC/DC变换单元输出端或者逆变单元的输入端电性连接,是当光伏电池的输出功率超过给定的交流电网并网功率时,单向DC/DC变换单元的输出端一方面与逆变单元的输入端电性连接,另一方面通过双向DC/DC变换单元向蓄电池组充电;当光伏电池的输出功率小于给定的交流电网并网功率时,蓄电池组通过双向DC/DC变换单元与逆变单元的输入端电性连接,蓄电池组放电。
如图2所示,单向DC/DC变换单元包括充电电容C2、电阻R3、电感L1、开关管Q1和二极管D1,光伏电池的正极与开关管Q1的漏极电性连接,开关管Q1的源极与二极管D1的负极电性连接,二极管D1的正极与电容C2的一端和电阻R3的一端连接;光伏电池的负极分别与电感L1的另一端、电容C2的另一端和电阻R3的另一端连接;光伏电池的输出端还与MPPT太阳能控制器的输入端电性连接,MPPT太阳能控制器的输出端与开关管Q1的栅极电性连接;MPPT太阳能控制器的输出端在光伏电池的最大输出功率时输出高电平,开启开关管Q1。电容C1和电阻R1和R2可起到前级滤波功能。Ud即为单向DC/DC变换升压后的输出电压,约为400VDC。当开关管Q1导通后,光伏电池的输出电压全部施加在电感L1上,二极管D1截止,电阻R3由充电电容C2供电。
MPPT太阳能控制器对光伏电池的最高输出功率跟随说明如下:光伏电池可等效为三个主要部件:光生电流源Iph、二极管VD和并联电阻RSH和Rs,光生电流由环境光照强度和光电池的有效面积决定;Id为暗电流,无光照时流过二极管VD的PN结的电流;负载为RL,输出电流为IL。令Iph=ISC;Id=I0[exp(qUd/AkT)-1];可得:
IL=ISC-I0{exp[q(UL+ILRS)/AkT-1]}-(UL+ILRS)/RSH
其中ISC为光伏电池短路电流;I0为反向饱和电流;q为电子电荷,1.6×10-19C;k为玻尔兹曼常数,1.38×10-23J/K;T为环境温度,单位摄氏度;对应的输出功率为P=U0IL,U0为此时光伏电池输出电压。
环境一定时,光伏电池的功率特性曲线是一个单峰值函数,只存在一个最大值点,采用定步长扰动观察法对最大功率峰值进行追踪时,在距离峰值点较远时,能快速逼近峰值点。但是在逼近峰值点时,功率波动比较大,定步长逼近方式不够灵活和准确;通过引入变步长因子N,
U0(n+1)=U0(n)±N×ΔU0;P(n+1)=P(n)±N×ΔP;
ΔU0和ΔP是P-U曲线上相邻工作点的输出电压和输出功率之差。U0(n)和P(n)为上一工作点的光伏电池输出电压和输出功率;U0(n+1)和P(n+1)为当前工作点的光伏电池输出电压和输出功率。变步长因子N的符号由ΔU0×ΔP决定。
如图3所示,双向DC/DC变换单元包括开关管Q2、开关管Q3、电感L2和电容C4;开关管Q2的漏极与直流母线电性连接,开关管Q2的源极分别与电感L2的一端和开关管Q3的漏极连接;电感L2的另一端分别与电容C4的一端和蓄电池组的正极电性连接;开关管Q3的源极与电容C4的另一端和蓄电池组的负极连接;开关管Q2和开关管Q3上分别反向连接有二极管D2和二极管D3。二极管D2和二极管D3起到续流作用。图示的双向DC/DC变换单元是非隔离型双向变换器,采用半桥结构,蓄电池组充电时,开关管Q3关断,开关管Q2、二极管D3、电感L2和电容C4构成充电电路;蓄电池组放电时,开关管Q2关断,开关管Q3、二极管D2、电感L2和电容C4构成放电电路。
如图4所示,MPPT太阳能控制器调节蓄电池组的输出功率采用双闭环控制方法:外环采用功率控制环,令Upv为光伏电池的最高输出电压,Ipv为光伏电池的最高输出电流,两者的乘积Ppv为光伏电池最大输出功率;光伏电池实际输出功率经低通滤波后得到的值为并网功率给定值
Figure GDA0003206144570000081
可以得到蓄电池组的工作参考功率
Figure GDA0003206144570000082
蓄电池组的实际工作功率Pb与工作参考功率
Figure GDA0003206144570000083
比较所得的误差为e1,该误差e1经由PI调节后得到蓄电池组的功率控制环的参考电流
Figure GDA0003206144570000084
内环是电流控制环,通过对蓄电池组的实际工作电流Ib来跟踪外环功率控制环所给定的参考电流值
Figure GDA0003206144570000085
将两个电流的差值
Figure GDA0003206144570000086
输出进行PI调节和限幅后输入PMW发生器,PMW发生器输出三路PMW波形PMW1、PMW2和PMW3,分别对应输出到开关管Q1、Q2和Q3的栅极,分别控制开关管Q1、Q2和Q3的开启和关断,以便实现功率控制策略。如果光伏系统输出功率满足负载需求,直接将电能传输至逆变单元进行输出;如果光伏系统输出功率无法满足负载需求,蓄电池组会将储存的电能释放;如果蓄电池组的电能不能满足负载需要,会由交流电网进行供电,可满足负载供电的使用需求,还能输出相应的有功功率和无功功率。
如图5所示,逆变单元包括三相两电平并网逆变器、SVPMW发生器和锁相环单元;三相两电平并网逆变器的输入端与直流母线连接,三相两电平并网逆变器的输出端与交流电网连接;三相两电平并网逆变器的输出端还与锁相环单元的输入端电性连接;锁相环单元通过相电压采样电路和相电流采样电路获取三相两电平并网逆变器的输出端的相电压、相电流和当前交流电网的相位角,将相电流通过空间坐标变换得到有功电流分量和无功电流分量,将有功电流分量和无功电流分量与根据MPPT太阳能控制器输出的峰值电压进行复合和闭环调节,作为SVPMW发生器的输入信号,SVPMW发生器输出的波形作为三相两电平并网逆变器的控制信号,波形的占空比为三相两电平并网逆变器的开启或者关断信号。
锁相环单元为图中PLL部分,可获取当前交流电网的相位θ并进行锁定,便于后续空间坐标变换;光伏电池为图中PV部分,SVPMW发生器为图中SVPMW部分。三相两电平并网逆变器的输出端的相电压为ea、eb和ec;相电流为ia、ib和ic;相电压和相电流经过空间坐标变换得到输出电流的有功分量iq和无功分量id;输出电压的有功分量eq和无功分量ed
Figure GDA0003206144570000091
为电流有功分量轴的给定值,
Figure GDA0003206144570000092
为电流无功分量轴的给定值;ipv和upv是光伏电池输出的电流和电压;MPPT太阳能控制器根据ipv和upv进行PI调节得到
Figure GDA0003206144570000093
通过将
Figure GDA0003206144570000094
与iq的差值进行PI调节和重复控制并与eq和id复合,得到SVPMW发生器的一路输入;通过将
Figure GDA0003206144570000095
与id的差值进行PI调节和重复控制并与ed和iq复合,得到SVPMW发生器的另一路输入;SVPMW发生器根据上述两路输入和交流电网的相位θ,输出PMW波形驱动三相两电平并网逆变器输出交流信号。
如图6所示,三相两电平并网逆变器包括三相桥式逆变电路,其上桥臂包括开关器件VT1、VT2和VT3,下桥臂包括开关器件VT2、VT4和VT6,开关器件VT1与VT4、VT2与VT5和VT3与VT6共同构成三相输出,每一相的两个开关器件交替导通;开关器件VT1—VT6均采用IGBT。SVPMW发生器的输出需要隔离和放大以满足IGBT的驱动需求,这是本领域的常规方法,在此不再赘述。
如图7所示,相电压采样电路包括输入电阻R4、电压变压器T1、第一运放A1和第二运放A2,输入电阻R4的一端与电压变压器T1的原边的一端电性连接,输入电阻R4的另一端与电容C7的一端和采样电压输入端连接,电容C7的另一端与电压变压器T1的原边的另一端连接后接地;电压变压器T1副边的分别与第一运放A1的反相输入端和同相输入端电性连接,第一运放A1的反相输入端与输出端之间还连接有电阻R6,第一运放A1的输出端分别与升压电阻R8的一端和第二运放A2的同相输入端连接,升压电阻R8的另一端与+3.3V电源电性连接,第二运放A2的反相输入端与其输出端连接,第二运放A2的输出端与两个串联的二极管D4和D5的公共端电性连接后与AD转换设备连接,以便进一步处理;二极管D4的负极与+3.3V电源电性连接,二极管D5的正极接地。该采样电路由四部分组成,第一运放A1部分构成电压跟随器,电阻R5和电容C8抑制干扰;电阻R7和电阻R8进行电压提升,使过零信号变换为单极性信号;第二运放A2同样进行电压跟随;二极管D4和D5构成了限幅保护。
如图8所示,相电流采样电路包括电流变压器T2、二极管D6、D7、第三运放A3和第四运放A4,电流变压器T2的原边与相电流的输入端电性连接,电流变压器T2的副边分别与第三运放A3的两个输入端连接,二极管D6和D7反向连接在第三运放A3的两个输入端之间;第三运放A3的反相输入端与输出端之间连接有电容C9和电阻R10;第三运放A3的输出端与第四运放A4的同相输入端和升压电阻R12的一端连接,升压电阻R12的另一端与+3.3V电源电性连接;第四运放A4的输出端与两个串联的二极管D8和D9的公共端电性连接后与AD转换设备连接,以便进一步处理;二极管D8的负极与+3.3V电源电性连接,二极管D9的正极接地。第三运放A3和结合二极管D6、D7进行输入限幅,电阻R11和R12进行电压抬升;二极管D8和D9构成限幅保护。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种光伏发电系统,其特征在于:包括光伏电池、MPPT太阳能控制器、单向DC/DC变换单元、双向DC/DC变换单元、蓄电池组和逆变单元;光伏电池的输出端分别与MPPT太阳能控制器的输入端和单向DC/DC变换单元的输入端电性连接;单向DC/DC变换单元的输出端和双向DC/DC变换单元的第一端均与直流母线电性连接,双向DC/DC变换单元的第二端与蓄电池组电性连接;逆变单元的输入端与直流母线电性连接,逆变单元的输出端连接在交流电网上;MPPT太阳能控制器还与蓄电池组电性连接;
所述MPPT太阳能控制器追踪光伏电池的最大输出功率,将最大输出功率对应的光伏电池的输出电压导入单向DC/DC变换单元的输入端;MPPT太阳能控制器还调节蓄电池组的输出功率;
所述单向DC/DC变换单元将导入的光伏电池的输出电压进行升压;
双向DC/DC变换单元选择性的将蓄电池组与单向DC/DC变换单元输出端或者逆变单元的输入端电性连接;
逆变单元通过将输入的直流电压进行逆变,使逆变后的三相交流电压的相位与交流电网当前相位保持相同;
所述双向DC/DC变换单元选择性的将蓄电池组与单向DC/DC变换单元输出端或者逆变单元的输入端电性连接,是当光伏电池的输出功率超过给定的交流电网并网功率时,单向DC/DC变换单元的输出端一方面与逆变单元的输入端电性连接,另一方面通过双向DC/DC变换单元向蓄电池组充电;当光伏电池的输出功率小于给定的交流电网并网功率时,蓄电池组通过双向DC/DC变换单元与逆变单元的输入端电性连接,蓄电池组放电;
所述单向DC/DC变换单元包括充电电容C2、电阻R3、电感L1、开关管Q1和二极管D1,光伏电池的正极与开关管Q1的漏极电性连接,开关管Q1的源极与二极管D1的负极、电感L1的一端电性连接,二极管D1的正极与电容C2的一端和电阻R3的一端连接;光伏电池的负极分别与电感L1的另一端、电容C2的另一端和电阻R3的另一端连接;光伏电池的输出端还与MPPT太阳能控制器的输入端电性连接,MPPT太阳能控制器的输出端与开关管Q1的栅极电性连接;MPPT太阳能控制器的输出端在光伏电池的最大输出功率时输出高电平,开启开关管Q1;
所述双向DC/DC变换单元包括开关管Q2、开关管Q3、电感L2和电容C4,开关管Q2的漏极与直流母线电性连接,开关管Q2的源极分别与电感L2的一端和开关管Q3的漏极连接,电感L2的另一端分别与电容C4的一端和蓄电池组的正极电性连接,开关管Q3的源极与电容C4的另一端和蓄电池组的负极连接,开关管Q2和开关管Q3上分别反向连接有二极管D2和二极管D3;
所述MPPT太阳能控制器调节蓄电池组的输出功率采用双闭环控制方法:外环采用功率控制环,令Upv为光伏电池的最大输出电压,Ipv为光伏电池的最大输出电流,两者的乘积Ppv为光伏电池最大输出功率;光伏电池实际输出功率经低通滤波后得到的值为并网功率给定值
Figure FDA0003206144560000021
可以得到蓄电池组的工作参考功率
Figure FDA0003206144560000022
蓄电池组的实际工作功率Pb与工作参考功率
Figure FDA0003206144560000023
比较所得的误差为e1,该误差e1经由PI调节后得到蓄电池组的功率控制环的参考电流
Figure FDA0003206144560000024
内环是电流控制环,通过对蓄电池组的实际工作电流Ib来跟踪外环功率控制环所给定的参考电流值
Figure FDA0003206144560000025
将两个电流的差值
Figure FDA0003206144560000026
进行PI调节和限幅后输入PMW发生器,PMW发生器输出三路PMW波形PMW1、PMW2和PMW3,分别对应输出到开关管Q1、Q2和Q3的栅极,分别控制开关管Q1、Q2和Q3的开启和关断。
2.如权利要求1所述的一种光伏发电系统,其特征在于:所述逆变单元包括三相两电平并网逆变器、SVPMW发生器和锁相环单元,三相两电平并网逆变器的输入端与直流母线连接,三相两电平并网逆变器的输出端与交流电网连接;三相两电平并网逆变器的输出端还与锁相环单元的输入端电性连接,锁相环单元通过相电压采样电路和相电流采样电路获取三相两电平并网逆变器的输出端的相电压、相电流和当前交流电网的相位角,将相电流通过空间坐标变换得到有功电流分量和无功电流分量,将有功电流分量和无功电流分量与根据MPPT太阳能控制器输出的峰值电压进行复合和闭环调节,作为SVPMW发生器的输入信号,SVPMW发生器输出的波形作为三相两电平并网逆变器的控制信号。
3.如权利要求2所述的一种光伏发电系统,其特征在于:所述三相两电平并网逆变器包括三相桥式逆变电路,其上桥臂包括开关器件VT1、VT2和VT3,下桥臂包括开关器件VT2、VT4和VT6,开关器件VT1与VT4、VT2与VT5和VT3与VT6共同构成三相输出,每一相的两个开关器件交替导通;开关器件VT1—VT6为IGBT。
4.如权利要求2所述的一种光伏发电系统,其特征在于:所述相电压采样电路包括输入电阻R4、电压变压器T1、第一运放A1和第二运放A2,输入电阻R4的一端与电压变压器T1的原边的一端电性连接,输入电阻R4的另一端与电容C7的一端和采样电压输入端连接,电容C7的另一端与电压变压器T1的原边的另一端连接后接地;电压变压器T1副边的分别与第一运放A1的反相输入端和同相输入端电性连接,第一运放A1的反相输入端与输出端之间还连接有电阻R6,第一运放A1的输出端分别与升压电阻R8的一端和第二运放A2的同相输入端连接,升压电阻R8的另一端与+3.3V电源电性连接,第二运放A2的反相输入端与其输出端连接,第二运放A2的输出端与两个串联的二极管D4和D5的公共端电性连接后与AD转换设备连接;二极管D4的负极与+3.3V电源电性连接,二极管D5的正极接地。
5.如权利要求2所述的一种光伏发电系统,其特征在于:所述相电流采样电路包括电流变压器T2、二极管D6、D7、第三运放A3和第四运放A4,电流变压器T2的原边与相电流的输入端电性连接,电流变压器T2的副边分别与第三运放A3的两个输入端连接,二极管D6和D7反向连接在第三运放A3的两个输入端之间;第三运放A3的反相输入端与输出端之间连接有电容C9和电阻R10;第三运放A3的输出端与第四运放A4的同相输入端和升压电阻R12的一端连接,升压电阻R12的另一端与+3.3V电源电性连接;第四运放A4的输出端与两个串联的二极管D8和D9的公共端电性连接后与AD转换设备连接;二极管D8的负极与+3.3V电源电性连接,二极管D9的正极接地。
CN202010650377.7A 2020-07-08 2020-07-08 一种光伏发电系统 Active CN111769598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010650377.7A CN111769598B (zh) 2020-07-08 2020-07-08 一种光伏发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010650377.7A CN111769598B (zh) 2020-07-08 2020-07-08 一种光伏发电系统

Publications (2)

Publication Number Publication Date
CN111769598A CN111769598A (zh) 2020-10-13
CN111769598B true CN111769598B (zh) 2021-11-19

Family

ID=72725803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010650377.7A Active CN111769598B (zh) 2020-07-08 2020-07-08 一种光伏发电系统

Country Status (1)

Country Link
CN (1) CN111769598B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110123A (zh) * 2021-03-11 2021-07-13 国网江苏省电力有限公司南通供电分公司 一种基于电压控制的太阳能发电控制系统
CN114142587B (zh) * 2021-10-19 2023-09-26 广西师范大学 一种田园综合体发电系统装置及控制方法
CN114006388B (zh) 2021-12-30 2022-04-19 万帮数字能源股份有限公司 并网发电系统及其并网功率波动抑制装置和方法
CN116054688A (zh) * 2023-02-21 2023-05-02 惠州华智新能源科技有限公司 一种双向dc-dc的光伏发电储能系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202798011U (zh) * 2012-07-20 2013-03-13 比亚迪股份有限公司 家庭能源系统
CN104242337B (zh) * 2014-08-14 2017-05-31 广东易事特电源股份有限公司 光伏微网系统的实时协调控制方法
CN206658734U (zh) * 2017-03-28 2017-11-24 新疆农垦科学院 一套大田滴灌光伏提水系统
AU2018269774B2 (en) * 2017-05-15 2022-01-06 Dynapower Company Llc Energy storage system for photovoltaic energy and method of storing photovoltaic energy
CN109120008B (zh) * 2018-09-05 2022-05-03 东北大学 一种应用于风光储能的能源路由器装置储能优化方法

Also Published As

Publication number Publication date
CN111769598A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
CN111769598B (zh) 一种光伏发电系统
Sahoo et al. Review and comparative study of single-stage inverters for a PV system
Siwakoti et al. A novel flying capacitor transformerless inverter for single-phase grid connected solar photovoltaic system
Nag et al. Current-fed switched inverter based hybrid topology for DC nanogrid application
Subramanyam et al. Integration of PV and battery system to the grid with power quality improvement features using bidirectional AC-DC converter
CN203660592U (zh) 光伏移动电源
Chamarthi et al. A novel single-stage buck-boost transformerless inverter for 1-ϕ grid-connected solar PV systems
Meshram et al. The steady state analysis of Z-source inverter based solar power generation system
CN113489363B (zh) 一种双向h6光伏并网变换器及其调制方法
Nair et al. Reconfigurable Solar Converter for PV battery application
Liu et al. Pulse width amplitude modulation based single-phase quasi-Z-source photovoltaic inverter with energy storage battery
Archana et al. Multi-input inverter for hybrid wind-photovoltaic standalone system
Sampaio et al. Integrated zeta inverter applied in a single-phase grid-connected photovoltaic system
Kan et al. Second harmonic current reduction for two-stage single-phase photovoltaic grid-connected inverter based on boost three-level converter
Razi et al. A novel single-stage PWM microinverter topology using two-power switches
Singh et al. Modeling and power flow control of a single phase photovoltaic/grid interconnected modified Z-source topology based inverter/charger for electric vehicle charging infrastructure
Narendra et al. An Experimental Validation of single-phase AC power Generation from PV using H-bridge Inverter
Abd Rahim et al. Design and implementation of a stand-alone microinverter with push-pull DC/DC power converter
Doss et al. PV fed asymmetrical switched diode multi level inverter with minimum number of power electronic components
Behera et al. Three-phase shunt connected Photovoltaic generator for harmonic and reactive power compensation with battery energy storage device
Chaudhary et al. A bridgeless isolated zeta converter for battery charging aided with solar photovoltaic system
Shokri et al. Active and reactive power control of grid-connected PV power systems based on HGNISS DC-DC converter and SMDPC strategy
Dhokare et al. Fuzzy Based Switched Boost Inverter for Solar PV Application
Bhattacharya 3-level Z-source inverter based PV system with bidirectional buck-boost BESS
Sivadasan et al. A switched boost landsman converter with ANFIS based MPPT for grid connected wind energy system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant