CN111769103B - 一种多色Micro LED发光模组制备方法 - Google Patents

一种多色Micro LED发光模组制备方法 Download PDF

Info

Publication number
CN111769103B
CN111769103B CN202010601783.4A CN202010601783A CN111769103B CN 111769103 B CN111769103 B CN 111769103B CN 202010601783 A CN202010601783 A CN 202010601783A CN 111769103 B CN111769103 B CN 111769103B
Authority
CN
China
Prior art keywords
micro led
substrate
led light
light emitting
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010601783.4A
Other languages
English (en)
Other versions
CN111769103A (zh
Inventor
王立
吴小明
刘虎
李璠
赵婕
田婷芳
饶郑刚
莫春兰
江风益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202010601783.4A priority Critical patent/CN111769103B/zh
Publication of CN111769103A publication Critical patent/CN111769103A/zh
Application granted granted Critical
Publication of CN111769103B publication Critical patent/CN111769103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • H01L21/67781Batch transfer of wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

本发明公开了一种多色Micro LED模组制备方法,包括:S1在不同发光颜色的硅基InxGayAl1‑x‑yN(0≤x≤1,0≤y≤1)外延片上定义发光像素单元阵列,刻蚀除去每个像素单元中部分InxGayAl1‑x‑yN外延层直至暴露衬底,使留在衬底上的外延层面积不超过转移次数分之一,并将每个像素区域剩余的发光层制成Micro LED发光单元;S2将第一种颜色的Micro LED发光单元阵列一次性键合到驱动电路基板,并去除硅衬底,以实现Micro LED发光单元阵列从外延基板到驱动电路的整体转移;S3重复S2,将其他颜色的Micro LED发光单元阵列转移到驱动电路基板。本发明基于目前现有的外延生长、刻蚀、分选和组合键合技术,在发光结构之间形成金属连接层,将不同颜色发光结构连接在一起,实现多色Micro LED的制备,具有结构稳定、易于操作等特点。

Description

一种多色Micro LED发光模组制备方法
技术领域
本发明属于发光二极管技术领域,具体涉及一种多色Micro LED发光模组制备方法。
背景技术
Micro LED的像素单元在100微米(P0.1)以下,并被高密度地集成在一个芯片上。微缩化使得Micro LED具有更高的发光亮度、分辨率与色彩饱和度,以及更快的显示响应速度,预期能够应用于亮度要求更高的增强显示(AR)微型投影装置、策划用平视显示器(HUD)投影应用,以及可穿戴/可植入器件、虚拟现实(VR)、光通讯/光互联、空间成像等多个领域。
传统的LED在封装环节,主要采用真空吸取的方式进行转移。但由于真空管在物理极限下只能做到大约80微米,而Micro LED的尺寸基本小于50微米,所以真空吸附的方式在Micro LED时代不再适用。如何提升转移良率到99.9999%,且每颗芯片的精准度必须控制在正负2微米以内,成为Micro LED器件制备中的难点。目前实现巨量转移的有精准抓取(Fine Pick/Place)的技术:“静电力”、“凡德瓦力”和“磁力”抓取;选择性释放(SelectiveRelease)、自组装(Self-Assembly)及转印(Roll Printing)技术。以上技术都需要特殊的设备或弹性印模材料,导致制造成本过高。
发明内容
针对现有技术中的不足与难题,本发明旨在提供一种多色Micro LED发光模组制备方法,基于目前现有的外延生长、刻蚀、分选和键合技术及其组合,在发光结构之间形成金属连接层,将不同颜色发光单元按周期排列多次键合转移到驱动基板,实现多色MicroLED模组的制备。
本发明通过以下技术方案予以实现:
一种多色Micro LED发光模组制备方法,包括以下步骤:
S1在不同发光颜色的硅基InxGayAl1-x-yN(0≤x≤1,0≤y≤1)外延片上定义发光像素单元阵列,根据需要转移的次数,刻蚀除去每个像素单元中部分区域InxGayAl1-x-yN外延层直至暴露衬底,使留在衬底上的外延层面积不超过转移次数分之一,并将每个像素区域剩余的发光层制成Micro LED发光单元阵列;
S2将第一种颜色的Micro LED发光单元阵列通过键合金属一次性键合到驱动基板,并去除硅衬底,以实现Micro LED发光单元阵列从外延基板到驱动基板的整体转移;
S3重复步骤S2,将其他颜色Micro LED发光单元阵列转移到驱动基板,以使驱动基板上每个像素区域包含多种发光颜色的发光单元。
在步骤S1的硅基InxGayAl1-x-yN外延片中,单颗发光单元尺寸为≤50μm,从而获得多颗Micro LED发光单元阵列的晶片,其中包含的Micro LED发光单元阵列的个数不少于10×10个;
进一步优选地,从步骤S1获得的Micro LED发光单元阵列,发光波长差值在5nm以内;
进一步优选地,在步骤S2中硅衬底的去除方法为湿法或干法化学刻蚀;
进一步优选地,在步骤S2中硅衬底的去除方法包括两个步骤:机械打磨减薄其厚度至100μm以内,(2)化学刻蚀方法彻底去除硅衬底;
在步骤S2中,从步骤S1获得的Micro LED发光单元阵列进行单色多颗发光单元转移,包括与驱动基板的精确对准、键合和硅衬底去除;
进一步优选地,在步骤S2中驱动基板上的键合金属由金、锡、铜、银和铟中的一种或多种金属制成;
进一步优选地,在步骤S3中其他颜色转移,Micro LED发光单元阵列的转移对准驱动基板触点后可直接连接,但在键合连接之前,需要提前对待转移的含有Micro LED发光单元阵列的晶片进行处理,对其非发光单元区域局部或全部进行衬底刻蚀,以保证键合过程不破坏第一次已经键合的发光单元;
进一步优选地,在步骤S3中对待转移的Micro LED发光单元阵列晶片中的硅衬底非发光单元区域局部或全部进行的衬底刻蚀,其刻蚀深度不低于1μm,而产生刻蚀沟壑。
与现有技术相比,本发明有益效果包括:
(1)本发明提供的多色Micro LED发光模组制备方法,基于目前现有的外延生长、刻蚀、分选和键合技术及其组合,经多次单色多颗周期阵列的Micro LED发光单元晶片转移、键合和硅衬底去除实现多色Micro LED发光模组制备,具有结构稳定,易于操作等特点。
(2)本发明的方法不需要使用激光剥离等复杂的衬底去除技术,而是使用干法或湿法化学刻蚀去除硅衬底,可以在多次键合和衬底去除工艺中保护发光单元不被损伤,从而高效率地重复实现多种颜色Micro LED发光单元阵列的整体转移。
附图说明
图1为本发明的多色Micro LED发光模组制备方法流程图。
图2为本发明在实施过程中制备的Micro LED发光单元阵列的示意图,其以三色为例,至少三分之二面积的外延层被刻蚀去除至暴露硅衬底。
图3为本发明在多色转移过程中硅衬底局部/全部刻蚀示意图,其中图3a以两色、局部刻蚀为例;图3b以三色、全部刻蚀为例。
图示说明:1-驱动基板,2-键合金属,3-MicroLED发光单元阵列,4-刻蚀沟壑,5-硅衬底。
具体实施方式
下面结合附图,对本发明作进一步地说明。
本发明所述的一种多色Micro LED发光模组,包括具有驱动电路的驱动基板1、连接驱动基板于发光单元的键合金属2、采用半导体加工工艺在衬底生长的外延片上集成制造的发光二极管的Micro LED发光单元阵列3(如图2所示),在方案实施过程中为保证键合过程不破坏第一次已经键合的发光单元,对硅衬底5进行局部(如图3a所示)或全部(如图3b所示)衬底刻蚀,进而而产生刻蚀沟壑4。其制备方法步骤如图1所示。
实施例1
一种红、蓝两色InxGayAl1-x-yN(0≤x≤1,0≤y≤1)Micro LED发光模组的制备方法,包括以下步骤:
(1)将这两种外延片周期性地刻蚀除去每个像素单元中部分InxGayAl1-x-yN外延层面积直至暴露衬底,使留在衬底上的外延层面积不超过二分之一,并将每个像素区域剩余的发光层制成周期阵列的Micro LED发光单元3,单颗发光单元尺寸为50μm×50μm,发光波长差值最大值为5nm;
(2)将获得的红色发光单元阵列10颗×10颗,一次性键合到驱动基板1,精度对准误差为2μm,其中键合金属2为金、锡合金,厚度2μm,键合后先采用机械打磨减薄硅彻底至100μm,后采用HF和HNO3混合酸进行湿法浸蚀完全去除硅衬底;
在转移蓝色Micro LED发光单元之前,对蓝色发光晶片外延层被刻蚀去除的区域,采用SF6干法刻蚀技术,进行局部的硅衬底5进一步刻蚀,刻蚀硅衬底深度为1μm,形成刻蚀沟壑4,如图3a所示;
(3)重复上述对准、键合和去除衬底步骤,将蓝色的Micro LED发光单元阵列转移到驱动基板,以使驱动基板上每个像素区域包两种发光颜色的发光单元。
实施例2
一种红、蓝、绿三色InxGayAl1-x-yN(0≤x≤1,0≤y≤1)Micro LED发光模组的制备方法,包括以下步骤:
(1)将这三种外延片刻蚀除去每个像素单元中部分InxGayAl1-x-yN外延层面积直至暴露衬底,使留在衬底上的外延层面积不超过三分之一,并将每个像素区域剩余的发光层制成周期阵列的Micro LED3-发光单元,单颗发光单元尺寸为40μm×40μm,发光波长差值最大值为2nm;
(2)将获得的红色发光单元阵列100颗×100颗,一次性键合到驱动基板1,精度对准误差为1μm,其中键合金属2为金,厚度2μm,键合后先采用机械打磨减薄硅彻底至80μm,后采用SF6干法刻蚀完全去除硅衬底;
在转移蓝、绿色Micro LED发光单元之前,分别对蓝色和绿色发光晶片硅衬底5非发光单元区域采用干法SF6进行全部刻蚀,刻蚀硅衬底深度为5μm,形成刻蚀沟壑4,如图3b所示;
(3)然后重复上述对准、键合和去除衬底步骤,分别将蓝、绿色的Micro LED发光单元阵列转移到驱动基板,以使驱动基板上每个像素区域包三种发光颜色的发光单元。
实施例3
一种红、黄两色InxGayAl1-x-yN(0≤x≤1,0≤y≤1)Micro LED发光模组的制备方法,包括以下步骤:
(1)将这两种外延片刻蚀除去每个像素单元中部分InxGayAl1-x-yN外延层面积直至暴露衬底,使留在衬底上的外延层面积不超过二分之一,并将每个像素区域剩余的发光层制成周期阵列的Micro LED发光单元阵列3,单颗发光单元尺寸为30μm×30μm,发光波长差值最大值为3nm;
(2)将获得的红色发光单元阵列500颗×500颗,一次性键合到驱动基板1,精度对准误差为1μm,其中键合金属2为金、铜合金,厚度3μm,键合后先采用机械打磨减薄硅彻底至60μm,后采用HF和HNO3混合酸进行湿法浸蚀完全去除硅衬底;
在转移黄色Micro LED发光单元之前,对黄色非发光单元区域采用干法SF6进行全部刻蚀,刻蚀硅衬底5深度为10μm,形成刻蚀沟壑4;
(3)重复上述对准、键合和去除衬底步骤,将蓝色的Micro LED发光单元阵列转移到驱动基板,以使驱动基板上每个像素区域包两种发光颜色的发光单元。
实施例4
一种红、蓝、黄、绿四色InxGayAl1-x-yN(0≤x≤1,0≤y≤1)Micro LED发光模组的制备方法,包括以下步骤:
(1)将这四种外延片刻蚀除去每个像素单元中部分InxGayAl1-x-yN外延层面积直至暴露衬底,使留在衬底上的外延层面积不超过四分之一,并将每个像素区域剩余的发光层制成周期阵列的Micro LED发光单元阵列3,单颗发光单元尺寸为5μm×5μm,发光波长差值最大值为1nm;
(2)将获得的蓝色发光单元阵列1000颗×1000颗,一次性键合到1-驱动基板,精度对准误差为0.5μm,其中键合金属2为银、铟合金,厚度4μm,键合后先采用机械打磨减薄硅彻底至50μm,后采用干法SF6刻蚀完全去除硅衬底;
在转移红、黄、绿色Micro LED发光单元之前,分别对红、黄、绿色发光晶片非发光单元区域采用干法SF6进行全部刻蚀,刻蚀硅衬底5深度为5μm,形成刻蚀沟壑4;
(3)然后重复上述对准、键合和去除衬底步骤,将红、黄、绿色Micro LED发光单元阵列转移到驱动基板,以使驱动基板上每个像素区域包四种发光颜色的发光单元。
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种多色Micro LED发光模组制备方法,其特征在于,所述方法中包括以下步骤:
步骤S1,在不同发光颜色的硅基InxGayAl1-x-yN外延片上定义发光像素单元阵列,根据需要转移的次数,刻蚀除去每个像素单元中部分InxGayAl1-x-yN外延层直至暴露衬底,使留在衬底上的外延层面积不超过转移次数分之一,并将每个像素区域剩余的发光层制成Micro LED发光单元阵列;其中,0≤x≤1,0≤y≤1;
步骤S2,将第一种颜色的Micro LED发光单元阵列通过键合金属一次性键合到驱动基板,并去除硅衬底,以实现Micro LED发光单元阵列从外延基板到驱动基板的整体转移;
在所述步骤S2中,从所述步骤S1获得的所述Micro LED发光单元阵列的晶片进行单色多颗发光单元的转移,包括与驱动基板的精度对准、键合和硅衬底去除;
步骤S3,重复步骤S2,将其他颜色的Micro LED发光单元阵列转移到驱动基板,以使驱动基板上每个像素区域包含多种发光颜色的发光单元;
在所述步骤S3中其他颜色转移,Micro LED发光单元阵列的转移对准驱动基板电路触点后可直接连接,但在键合连接之前,需要提前对待转移的含有Micro LED发光单元阵列的晶片进行处理,对其非发光单元区域局部或全部进行衬底刻蚀,形成刻蚀沟壑,以保证键合过程不破坏第一次已经键合的发光单元。
2.如权利要求1所述的多色Micro LED发光模组制备方法,其特征在于:在步骤S1中的Micro LED发光单元阵列,单颗发光单元尺寸≤50μm;其中包含的发光单元的个数不少于10×10个。
3.如权利要求1所述的多色Micro LED发光模组制备方法,其特征在于:在所述步骤S1中的Micro LED发光单元阵列,其发光波长差值在5nm以内。
4.如权利要求1所述的多色Micro LED发光模组制备方法,其特征在于:在所述步骤S2中硅衬底的去除方法为湿法或干法化学刻蚀。
5.如权利要求4所述的多色Micro LED发光模组制备方法,其特征在于,在所述步骤S2中硅衬底的去除方法包括两个步骤:(1)机械打磨减薄其厚度至100μm以内;(2)化学刻蚀方法彻底去除硅衬底。
6.如权利要求1所述的多色Micro LED发光模组制备方法,其特征在于:在所述步骤S2中,与所述驱动基板上的键合金属由金、锡、铜、银和铟中的一种或多种金属制成。
7.如权利要求1所述的多色Micro LED发光模组制备方法,其特征在于:对待转移的Micro LED发光单元阵列的晶片中非发光单元区域进行的局部或全部衬底刻蚀的深度不低于1μm。
CN202010601783.4A 2020-06-29 2020-06-29 一种多色Micro LED发光模组制备方法 Active CN111769103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010601783.4A CN111769103B (zh) 2020-06-29 2020-06-29 一种多色Micro LED发光模组制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010601783.4A CN111769103B (zh) 2020-06-29 2020-06-29 一种多色Micro LED发光模组制备方法

Publications (2)

Publication Number Publication Date
CN111769103A CN111769103A (zh) 2020-10-13
CN111769103B true CN111769103B (zh) 2023-05-09

Family

ID=72722541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010601783.4A Active CN111769103B (zh) 2020-06-29 2020-06-29 一种多色Micro LED发光模组制备方法

Country Status (1)

Country Link
CN (1) CN111769103B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466795A (zh) * 2020-11-10 2021-03-09 南昌大学 一种Micro LED巨量转移方法及转移衬底
US11735573B2 (en) 2021-01-22 2023-08-22 Jade Bird Display (shanghai) Limited Slicing micro-LED wafer and slicing micro-LED chip
US11710725B2 (en) 2021-01-22 2023-07-25 Jade Bird Display (shanghai) Limited Slicing micro-LED wafer and slicing micro-LED chip
TWI770813B (zh) * 2021-02-08 2022-07-11 友達光電股份有限公司 顯示裝置及其製造方法
CN116779733A (zh) * 2023-08-24 2023-09-19 晶能光电股份有限公司 MicroLED像素单元形成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802018A (zh) * 2019-03-27 2019-05-24 京东方科技集团股份有限公司 微发光二极管阵列基板的制作方法
CN110610931A (zh) * 2019-09-20 2019-12-24 中国科学院长春光学精密机械与物理研究所 多色Micro LED分区分批次制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295758B (zh) * 2007-04-29 2013-03-06 晶能光电(江西)有限公司 含有碳基衬底的铟镓铝氮发光器件以及其制造方法
US9209059B2 (en) * 2009-12-17 2015-12-08 Cooledge Lighting, Inc. Method and eletrostatic transfer stamp for transferring semiconductor dice using electrostatic transfer printing techniques
US9478583B2 (en) * 2014-12-08 2016-10-25 Apple Inc. Wearable display having an array of LEDs on a conformable silicon substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802018A (zh) * 2019-03-27 2019-05-24 京东方科技集团股份有限公司 微发光二极管阵列基板的制作方法
CN110610931A (zh) * 2019-09-20 2019-12-24 中国科学院长春光学精密机械与物理研究所 多色Micro LED分区分批次制备方法

Also Published As

Publication number Publication date
CN111769103A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
CN111769103B (zh) 一种多色Micro LED发光模组制备方法
US20120286240A1 (en) Methods of Fabricating Light Emitting Diode Packages
EP3806168A1 (en) Light-emitting component
CN107305915A (zh) 电子-可编程磁性转移模块和电子元件的转移方法
CN110610931A (zh) 多色Micro LED分区分批次制备方法
CN113380929B (zh) 显示面板制造方法、显示面板及显示设备
JP7561887B2 (ja) 発光アレイ
CN113421893A (zh) 一种显示基板及其制作方法、显示装置
WO2022082903A1 (zh) 全彩色Micro LED阵列结构及其制备方法
CN114334923A (zh) 显示屏、Micro-LED显示基板及其制备方法
CN114843317A (zh) 一种无机-有机led混合彩色显示器件及其制备方法
WO2009117847A1 (en) Method for fabricating high-power light-emitting diode arrays
CN117253955A (zh) 一种Micro LED显示芯片及其制备方法
CN117253956A (zh) 多层膜结构的Micro LED显示芯片及其制备方法
JP2022538982A (ja) 光電子デバイス用集積構造体の製造方法及び光電子デバイス用集積構造体
KR102150792B1 (ko) 발광 소자 제조 방법 및 전사 방법
CN113471339B (zh) 一种Micro-LED芯片的巨量转移方法
CN115881857A (zh) 一种发光芯片的巨量转移方法及显示装置
CN220774375U (zh) LED显示芯片模块、LED显示芯片及AR microLED显示芯片
CN220796782U (zh) 一种Micro LED显示芯片
CN219658728U (zh) 一种Micro LED显示器件和Micro LED芯片
CN220895528U (zh) 一种多层膜结构的Micro LED显示芯片
CN221407340U (zh) 微型发光结构及发光装置
US20230197693A1 (en) Micro led display apparatus and method of manufacturing the same
CN112687601B (zh) 一种微元件的转移方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant