CN111758041A - 使用多梯度回波序列进行的Dixon MR成像 - Google Patents

使用多梯度回波序列进行的Dixon MR成像 Download PDF

Info

Publication number
CN111758041A
CN111758041A CN201980014803.3A CN201980014803A CN111758041A CN 111758041 A CN111758041 A CN 111758041A CN 201980014803 A CN201980014803 A CN 201980014803A CN 111758041 A CN111758041 A CN 111758041A
Authority
CN
China
Prior art keywords
echo
image
magnetic field
map
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980014803.3A
Other languages
English (en)
Inventor
G·M·贝克
H·埃格斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of CN111758041A publication Critical patent/CN111758041A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/243Spatial mapping of the polarizing magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/443Assessment of an electric or a magnetic field, e.g. spatial mapping, determination of a B0 drift or dosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • G01R33/4824MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56527Correction of image distortions, e.g. due to magnetic field inhomogeneities due to chemical shift effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56554Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by acquiring plural, differently encoded echo signals after one RF excitation, e.g. correction for readout gradients of alternating polarity in EPI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4816NMR imaging of samples with ultrashort relaxation times such as solid samples, e.g. MRI using ultrashort TE [UTE], single point imaging, constant time imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5616Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5617Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using RF refocusing, e.g. RARE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5619Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences by temporal sharing of data, e.g. keyhole, block regional interpolation scheme for k-Space [BRISK]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5676Gating or triggering based on an MR signal, e.g. involving one or more navigator echoes for motion monitoring and correction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及对对象进行MR成像的方法。本发明的目的是提供具有提高的采集速度并且固有地抑制因B0不均匀性、T2*衰减、化学位移、运动和/或流动而产生的伪影的多回波成像技术,尤其是结合了径向或螺旋k空间轨迹的多回波成像技术。本发明的方法包括以下步骤:使所述对象(10)经受包括RF激励脉冲和切换的磁场梯度的成像序列,其中,在每个RF激励脉冲之后的不同回波时间时生成多个回波信号;沿着径向或螺旋k空间轨迹采集回波信号数据,为此,所述成像序列包括在x方向/y方向和/或z方向上的磁场梯度跳点;分离来自水的信号贡献与来自脂肪的信号贡献,并且使用Dixon算法来估计B0图和/或表观横向弛豫时间图(T2*图);以及根据所述回波信号数据、所述B0图和/或所述T2*图来合成具有所述指定对比度的图像。此外,本发明还涉及MR设备(1)和用于MR设备(1)的计算机程序。

Description

使用多梯度回波序列进行的Dixon MR成像
技术领域
本发明涉及磁共振(MR)成像领域。本发明涉及对被放置在MR设备的检查体积中的对象进行MR成像的方法。本发明还涉及MR设备以及在MR设备上运行的计算机程序。
背景技术
如今,利用磁场与核自旋之间的相互作用来形成二维或三维图像的图像形成MR方法已经得到广泛使用,在医学诊断领域中尤其如此,因为它们与其他成像方法相比对于软组织成像在许多方面都具有优越性,它们不需要电离辐射并且通常是无创的。
通常,根据MR方法,将被检查的患者的身体布置在强且均匀的磁场B0中,该磁场B0的方向同时定义了测量与之相关的坐标系的轴(通常为z轴)。磁场B0针对个体核自旋产生取决于磁场强度的不同能级,该磁场强度能够通过施加定义频率(所谓的拉莫尔频率或MR频率)的电磁交变场(RF场)而被激励(自旋共振)。从宏观的角度看,个体核自旋的分布会产生整体磁化,能够通过施加适当频率的电磁脉冲(RF脉冲)使该整体磁化偏离平衡状态,而该RF脉冲的对应磁场B1垂直于z轴延伸,使得该磁化绕z轴进行进动运动。进动运动描述了圆锥的表面,其锥角被称为翻转角。翻转角的幅值取决于所施加的电磁脉冲的强度和持续时间。在所谓的90°脉冲的情况下,该磁化从z轴偏转到横向平面(翻转角90°)。
在RF脉冲终止之后,该磁化弛豫回原始的平衡状态,在该状态下,以第一时间常数T1(自旋晶格或纵向弛豫时间)再次建立z方向上的磁化,并且在垂直于z方向的方向上的磁化以较短的第二时间常数T2(自旋-自旋或横向弛豫时间)弛豫。能够借助于接收RF线圈来检测横向磁化及其变化,该接收RF线圈以在垂直于z轴的方向上测量磁化变化的方式被布置和定向在MR设备的检查空间内。横向磁化的衰减伴随着由局部磁场不均匀性引起的在RF激励之后发生的失相,该失相促进了从具有相同信号相位的有序状态转变到所有相角均匀分布的状态。能够借助于重新聚焦RF脉冲(例如,180°脉冲)来补偿失相。这会在接收线圈中产生回波信号(自旋回波)。
为了在体内实现空间分辨率,将沿着三个主轴延伸的时变磁场梯度叠加在均匀磁场B0上,从而使得自旋共振频率具有线性空间依赖性。然后,在接收线圈中拾取的信号包含不同频率的分量,这些分量能够与体内的不同位置相关联。经由接收线圈获得的信号数据对应于空间频域并且被称为k空间数据。k空间数据通常包括以不同相位编码采集的多条线。通过收集大量样本将每条线数字化。借助于傅立叶变换将k空间数据集转换为MR图像。
Altbach等人的“Radial Fast Spin-Echo Method for T2-Weighted Imagingand T2 Mapping of the Liver”(J.Magn.Reson.Imaging,第16卷,第179-189页,2002年)描述了被发展为改善腹部T2加权成像的质量以及局灶性肝病变的表征的多射径向快速自旋回波(RAD-FSE)方法。新颖的径向k空间采样方案用于使因T2的变化和运动产生的条纹伪影最小化。应用较小的扩散梯度来改善流动抑制。后处理算法用于根据回波信号数据来生成(具有不同的有效TE值的)多幅高分辨率图像以及T2图。T2图用于区分恶性病变与良性病变。
多回波重新组合梯度回波(MERGE)MR成像是被设计为对颈椎进行成像的成像技术。在该技术中使用了成像序列(例如,快速场回波(FFE)或回波平面成像(EPI)序列),该成像序列包含RF激励脉冲和切换的磁场梯度,其中,在每个RF激励脉冲之后的不同的回波时间(TE)生成多个回波信号。能够例如通过快速交替频率编码梯度的极性来生成回波信号。回波信号的数量受到明显的横向弛豫(T2*)衰减的限制。通常能够采集3-10个回波信号。根据所采集的回波信号数据来重建幅值单回波图像,并且(例如通过平方和算法)将该幅值单回波图像相加以获得“合并的”多回波图像,该“合并的”多回波图像示出对比度提高的脊髓内的灰质/白质,从而在诊断多发性硬化症中提高了病变醒目性。对应的技术也已知被缩写为MEDIC(“多回波数据图像组合”)。
已知的合并的多梯度回波技术的问题在于,组合图像中的实际对比度受选定的序列参数(例如,回波的数量、回波间隔以及体素大小)的控制,从而会受到各种序列约束的限制。此外,在利用这些方法检测病变时,已知患者的运动和血流以及系统缺陷会引起假阳性。
此外,尤其是在径向采集方法中,与EPI或螺旋采集相比,读出时段相对较短。因此,非常期望使用具有多回波读出轨迹的较长读出时段来提高速度。
Th.Benkert等人的文章“Free breathing volumeric fat/water separation bycombining radial sampling,compressed snesing and parallel imaging”(MRM78,2017年,第565-576页)涉及具有双极读取/输出功能的多回波运动鲁棒的星堆3D GRE序列。所采集的信号是T1加权的。这种已知方法实现了呼吸分辨的水-脂肪图并且可以重建不同的呼吸状态。
发明内容
根据前述内容,容易意识到,需要克服上述问题的改进的技术。本发明的一个目的是实现具有最优对比度的合并的多梯度回波MR成像。
此外,并且更一般地,本发明的目的是提供具有提高的采集速度并且固有地抑制因B0不均匀性、T2*衰减、化学位移、运动和/或流动而产生的伪影的多回波成像技术,尤其是结合了径向或螺旋采集的多回波成像技术。
根据本发明,公开了一种对被定位在MR设备的检查空间中的对象进行MR成像的方法。所述方法包括以下步骤:
使所述对象经受包括RF激励脉冲和切换的磁场梯度的成像序列,其中,在每个RF激励脉冲之后的不同回波时间时生成多个回波信号;
沿着径向或螺旋k空间轨迹采集回波信号数据,为此,所述成像序列包括在x方向/y方向和/或z方向上的磁场梯度跳点(blip);
分离来自水的信号贡献与来自脂肪的信号贡献,并且使用Dixon算法来估计B0图和/或表观横向弛豫时间图(T2*图);以及
根据所述回波信号数据、所述B0图和/或所述T2*图来合成具有所述指定对比度的图像。
根据本发明,在不同的TE时采集多个回波信号。回波信号是沿着径向或螺旋k空间轨迹采集的。相对于常规的笛卡尔k空间轨迹,径向或螺旋k空间轨迹因其具有固有的运动鲁棒性而更有优势。通过使用径向或螺旋k空间采样,对k空间的中心进行过采样并持续更新。能够有利地利用这种冗余性来检测和校正运动、B0和T2*的影响。
为了获得均匀的k空间覆盖,径向或螺旋k空间轨迹的旋转角度优选增加黄金角度ΔΦ=111.25°,该黄金角度对应于180°乘以黄金分割率。根据本发明,使用沿着x方向/y方向和/或z方向的磁场梯度跳点(在相同的RF激励脉冲之后的回波信号采集间隔之间施加的短磁场梯度脉冲)来获得以快速采集速度采集的回波信号数据在k空间中的最优分布。为了简单起见,x/y/z方向在这里指的是测量坐标系的轴,即,读出方向/相位编码方向/切片选择方向,它们可能与上面介绍的磁体坐标系对齐,也可能不与之对齐。
由于在多个回波读数之间的跳点编码时间有限,因此,为了获得最优分布,优选采用小黄金角度阶跃。利用在相同的RF激励脉冲之后采集的回波数覆盖k空间的至少一半,可以确保在2D成像中随时间的均匀分布。该方法还能够适于在等距径向网格上强制执行黄金角度方案的所谓伪黄金角度。小黄金角度和伪黄金角度在本文中均被认为属于通用术语“黄金角度”。在这样的黄金角度方案中,随后采样的径向或螺旋k空间轨迹在填充先前采样的k空间轨迹集合内的k空间中最大间隙的同时一直在添加补充信息。
根据本发明,使用Dixon算法来分离水和脂肪对所采集的回波信号的贡献。通常,这样的分离是可能的,因为在水和脂肪中的氢存在已知的进动频率差异。以最简单的形式,通过将两个回波信号相加或相减来生成水图像和脂肪图像,其中,水信号和脂肪信号分别是“同相的”和“异相的”。在稍微复杂的形式的Dixon算法中,还从所采集的回波信号中提取B0图和/或T2*图。
对水与脂肪的分离以及对B0图和T2*图的估计为特定诊断目的提供了优化合成图像的对比度的灵活性。T2*主要是由主磁场B0中的不均匀性引起的。这些不均匀性是主磁场本身固有的不均匀性以及由组织产生的磁化率引起的场失真的结果。后一种类型的B0失真决定了在T2*加权成像中感兴趣的对比度。在本发明的方法中考虑了前一种类型的B0不均匀性对T2*的影响,以进一步提高信噪比和/或增强合成图像中的对比度。
根据本发明,根据所采集的回波信号数据来合成图像,其中,能够选择期望的T2*对比度,并且能够基于根据所采集的单回波数据导出的对应图来补偿B0的不均匀性和T2*衰减。
结果,本发明使得能够利用固有的B0映射和T2*映射以及水/脂肪分离来实现超快速的3D径向或螺旋(例如,星堆或螺旋堆)采集。
本发明结合对比剂的应用会特别有价值,因为本发明使得能够根据同一回波信号数据来重建(合成)具有T1对比度的图像和具有所期望的T2*对比度的图像(动态对比度增强(DCE)MR成像和动态磁化率对比度(DSC)MR成像需要),而回波信号数据能够根据本发明以非常快的速度进行采集。
此外,本发明的见解是:能够将以已知的MERGE/MEDIC技术计算出的组合图像视为在由多回波序列的序列参数(即,回波数、序列中的第一回波时间的值、回波间隔以及T2*本身)确定的有效回波时间时的T2*加权图像。这种见解为根据所采集的回波信号和T2*图来合成具有所期望的对比度的图像而不受成像序列的任何限制提供了可能性。同时,所导出的B0图能够用于补偿B0不均匀性引起的图像伪影。
在本发明的优选实施例中,还根据所采集的回波信号数据来导出流程图,其中,在合成图像的步骤中使用该流程图来补偿不期望的流动伪影或者获得期望的流动对比度。
在三维采集中,能够仅在x方向/y方向上,仅在z方向上或者同时在x方向/y方向和z方向应用回波信号的相位编码。因此,在本发明的另一优选实施例中,回波信号的相位编码在z方向上变化,而径向或螺旋k空间轨迹的旋转角度在kx方向/ky方向上增加黄金角度增量,其中,针对多个相邻的kz平面的每一个单个kz步骤,实现了在kx方向/ky方向上对k空间的均匀覆盖。优点是改善了运动特性。
此外,为了加快采集速度,在kx方向/ky方向上的采样密度可以根据kz的变化而变化,使得对k空间的中心部分(其包括与图像对比度最相关的信息)比外围部分更密集地采样。因此,在k空间的外围部分处,仅能够执行在z方向上的相位编码,而向k空间的中心部分移动时,能够使用在x方向/y方向和z方向这两者上的均匀分布的相位编码。这种可变密度方法使得能够从3D径向星堆数据集中提取3D可变密度图像导航器。
另外,通过在演替的RF激励之间使x编码/y编码和z编码移位,能够实现回波时间在k空间上的良好分布。
为了促进图像重建,可以根据在相应的回波时间时采集的回波信号数据来重建单回波图像。
根据又一优选实施例,可以使用k空间加权图像对比度(KWIC)滤波器来重建单回波图像(参见Song等人的Magn.Reson.Med.,第44卷,第825-832页,2000年)。此外,压缩感测可以应用于重建单回波图像或应用在水/脂肪分离内。
此外,可以在超短回波时间(UTE)时生成回波信号的子集(参见Berker等人的J.Nucl.Med.,2012年,第53卷,第796-804页)来扩展可访问回波时间值的范围。已知的部分回波技术也可以应用于该目的。回波移位可以备选地或额外地用于提高回波时间覆盖度和优化T2*映射。
在本发明的另外的优选实施例中,合成具有指定对比度的图像包含:根据所采集的回波信号数据来计算零回波时间幅值图像和T2*图;并且将加权应用于所述零回波时间幅值图像的每个体素,所述加权是根据所述T2*图导出的。该加权是根据相应的体素位置处的T2*和有效回波时间计算得出的,该有效回波时间被选择为获得所期望的对比度。以这种方式,能够实现合成图像类似于常规的MERGE图像/MEDIC图像(其是通过根据所采集的回波信号对单回波图像进行幅值重建以及例如通过平方和算法对单回波图像进行组合而生成的),但是没有实际可访问的序列参数范围对对比度施加的限制。
优选地,本发明的方法所使用的成像序列是快速/turbo场回波(FFE/TFE)或平衡的快速/turbo场回波序列或回波平面成像(EPI)序列或自旋回波序列。这些经过验证的技术能用于快速有效地采集不同回波时间时的回波信号。
在本发明的另一优选实施例中,根据来自成像序列的一次或多次射击的“固有”数据来检测运动,并且在分离来自水的信号贡献与来自脂肪的信号贡献中和/或在合成具有指定对比度的图像中应用运动补偿。因此,3D多回波多射击可变密度导航器方法允许使用例如已知的压缩感测方法、XD-GRASP或3D弹性配准组合方法来提高“固有”运动检测和校正的可能性。
到目前为止所描述的本发明的方法能够借助于一种MR设备来执行,所述MR设备包括:至少一个主磁体线圈,其用于在检查体积内生成均匀稳定的磁场B0;多个梯度线圈,其用于在所述检查体积内生成在不同空间方向上的切换的磁场梯度;至少一个RF线圈,其用于在所述检查体积内生成RF脉冲和/或接收来自被定位在所述检查体积中的对象的身体的MR信号;控制单元,其用于控制RF脉冲和切换的磁场梯度的时间演替,以及重建单元,其用于根据接收到的MR信号来重建MR图像。本发明的方法能够通过对MR设备的重建单元和/或控制单元进行对应的编程来实施。
本发明的方法能够有利地在目前临床上使用的大多数MR设备上执行。为此,仅需要利用计算机程序来控制MR设备而使得MR设备执行本发明的上述方法步骤。该计算机程序可以存在于数据载体上或者存在于数据网络中,以便被下载而安装在MR设备的控制单元中。
附图说明
附图公开了本发明的优选实施例。然而,应当理解,附图仅被设计用于说明的目的,而不是对本发明进行限制。在附图中:
图1示出了用于执行本发明的方法的MR设备;
图2示出了根据本发明的多梯度回波MR成像序列的示意性(简化)脉冲序列图;
图3图示了本发明的k空间采样模式的示例;
图4示出了根据本发明合成的合并的多梯度回波图像的示例。
具体实施方式
参考图1,以框图形式示出了MR设备1。该设备包括超导或电阻式主磁体线圈2,使得沿着穿过检查体积的z轴创建基本上均匀的、在时间上恒定的主磁场B0。该设备还包括(1阶、2阶和(在适用时)3阶)匀场线圈的集合2',其中,流过集合2'的个体匀场线圈的电流是可控制的,从而最大程度地减少检查体积内的B0偏差。
磁共振生成和操纵系统应用一系列RF脉冲和切换的磁场梯度来反转或激励核磁自旋,引起磁共振,重新聚焦磁共振,操纵磁共振,在空间上编码磁共振和以其他方式编码磁共振,使自旋饱和等以执行MR成像。
更具体地,梯度放大器3沿着检查体积的x轴、y轴和z轴将电流脉冲或波形施加到全身梯度线圈4、5和6中的选定的一个。数字RF频率发射器7经由发射/接收开关8将RF脉冲或脉冲包发射到身体RF线圈9,以将RF脉冲发射到检查体积中。典型的MR成像序列包括短持续时间的RF脉冲段的包,它与任何施加的磁场梯度一起实现对核磁共振信号的选定操纵。RF脉冲用于饱和共振,激励共振,反转磁化,重新聚焦共振或操纵共振以及选择被定位在检查体积中的身体10的部分。MR信号也被身体RF线圈9拾取。
为了生成身体10的有限区域的MR图像或者为了借助于并行成像来进行扫描加速,将局部阵列RF线圈11、12、13的集合与被选择用于成像的区域邻接放置。阵列线圈11、12、13能够用于接收由身体线圈RF发射引起的MR信号。
结果得到的MR信号由身体RF线圈9和/或阵列RF线圈11、12、13拾取,并由优选由包括前置放大器(未示出)的接收器14解调。接收器14经由发送/接收开关8被连接到RF线圈9、11、12和13。
主机计算机15控制匀场线圈2'以及梯度脉冲放大器3和发射器7,以生成多个MR成像序列中的任一个,例如,回波平面成像(EPI)、回波体积成像、梯度和自旋回波成像、快速自旋回波成像等。对于选定的序列,接收器14在每个RF激励脉冲之后快速演替地接收单个或多个MR信号。数据采集系统16对接收到的信号执行模数转换并且将每个MR数据样本转换为数字格式以供进一步处理。在现代MR设备中,数据采集系统16是专门用于采集原始图像数据的单独的计算机。
最终,数字原始图像数据由重建处理器17重建成图像表示,重建处理器17应用傅立叶变换或其他适当的重建算法。MR图像可以表示穿过患者的平面切片、平行的平面切片的阵列、三维体积等。然后将图像存储在图像存储器中,在图像存储器中可以访问该图像以例如经由视频监视器18将切片、投影或图像表示的其他部分转换成适当的格式以进行可视化,视频监视器18提供结果得到的MR图像的人类可读显示。
对主机计算机15进行编程以运行在上文和下文中描述的本发明的方法。
在图2中,示出了根据本发明的成像序列的示意性脉冲序列图。该图示出了在读出和相位编码方向x和y上和在切片选择方向z上的切换的磁场梯度。此外,该图还示出了RF激励脉冲以及在其期间采集大量回波信号(分别由ACQ1、ACQ2和ACQN表示)的时间间隔。该图覆盖了N个回波信号的采集。通过在x方向/y方向和/或z方向上使用不同的梯度波形对所描绘的序列进行多次重复(射击)来采集N个回波信号的多个集合,以便通过径向采样模式来完全覆盖所需的k空间区域。在x方向/y方向上的读出梯度的定时和幅度被选择为使得提供不同的回波时间TE1、TE2、…、TEN。除了在x方向/y方向上的回波信号采集时间间隔ACQ1–ACQN之间的实际读取的磁场梯度之外,还应用了短的磁场梯度跳点。还在z方向上应用了跳点,以在该方向上实现笛卡尔k空间采样模式(星堆)。以这种方式实现了非常快的采集,其中,所采集的回波信号数据在k空间中具有最优分布。
如图3进一步所示,回波信号的相位编码在一次射击中在z方向上变化,而径向k空间轨迹的旋转角度在kx方向/ky方向上增加黄金角度增量。在图3的示例中,在z方向上的磁场梯度跳点(如图2所示)引起在两个相邻的kz平面(由kz1和kz2表示)中对k空间交替采样。在成像序列的单次射击中采集的回波信号的序列被表示为E1,…,E6。最初从平面kz1采集回波信号E1,然后将径向k空间轮廓的旋转角度增加小黄金角度α,并且从平面kz2对下一回波信号E2进行采样。旋转角度再次增加α,再次从平面kz1采集下一回波信号E3,依此类推。因此,从同一平面采集的两个相继的k空间轮廓之间的旋转角度增量为2α。因此,针对每一个单个的kz平面,可能没有在kx-ky平面中实现足够高的采样密度,但是针对多个相邻的kz平面,在kx-ky平面中实现了足够高的采样密度。以这种方式能够大大提高采集速度,而不会对最终图像质量产生负面影响。
作为中间步骤,可以根据所采集的回波信号数据来重建单回波图像:归于第一回波时间TE1的第一单回波图像、归于第二回波时间TE2的第二单回波图像,以此类推。基于不同的回波时间TE1、…、TEN,通过应用已知类型的Dixon算法,可以分离水和脂肪对各个体素值的贡献。同时,通过将T2*衰减包括在Dixon算法中使用的信号模型中来估计T2*图。备选地,可以对所采集的回波信号数据直接执行对水与脂肪的分离和对T2*的估计,而无需明确地重建单回波图像。
取决于组合的类型,能够通过以下公式来描述根据已知的MERGE方法或MEDIC方法获得的图像:
Figure BDA0002644197780000101
Figure BDA0002644197780000102
Figure BDA0002644197780000103
Figure BDA0002644197780000104
其中,N表示回波数,并且S表示结果得到的图像的体素值。
假定回波间隔为常数ΔTE,则公式(1)能够被重写为:
Figure BDA0002644197780000105
Figure BDA0002644197780000106
这样可以引入有效回波时间TE1e
Figure BDA0002644197780000107
给定:
Figure BDA0002644197780000108
Figure BDA0002644197780000109
类似地,能够使用由以下公式给定的有效回波时间来计算组合图像S2、S3、S4
Figure BDA00026441977800001010
Figure BDA00026441977800001011
Figure BDA00026441977800001012
因此,本发明的见解是:能够将由MERGE方法或MEDIC方法得到的图像视为T2*加权图像,其中,有效回波时间是由选定的回波数、第一回波时间和回波间接确定的,但也最明显的是由T2*间接确定的。
为了克服只能对有效回波时间进行间接确定的缺点和对成像序列的任何限制,本发明提出首先根据回波信号数据来估计T2*图,然后根据所估计的零回波时间幅值图像和T2*图来合成图像。取决于特定诊断目的,可以任选地包括对水与脂肪的分离以在优化结果得到的图像的对比度中提供更大的灵活性。
为了克服已知的MERGE方法/MEDIC方法对运动的敏感性,提出采用径向或螺旋k空间轨迹来代替常规的笛卡尔k空间轨迹。优选地,使用基于黄金角度的投影或插页顺序,并且在连续的径向或螺旋采集之间施加小黄金角度的增量旋转。另外,可以任选地拒绝不一致的数据,并且可以任选地在个体采集之间检测和校正运动。
图4示出了通过本发明的方法合成的脊髓的示例性图像。该图像允许出色地区分灰色和白质。

Claims (16)

1.一种对被定位在MR设备(1)的检查空间中的对象(10)进行MR成像的方法,所述方法包括以下步骤:
使所述对象(10)经受包括RF激励脉冲和切换的磁场梯度的成像序列,其中,在每个RF激励脉冲之后的不同回波时间时生成多个回波信号;
沿着径向或螺旋k空间轨迹采集回波信号数据,为此,所述成像序列包括在x方向/y方向和/或z方向上的磁场梯度跳点,使得提供不同的回波时间(TE1、TE2、…、TEN);
根据所采集的回波信号数据来合成具有指定对比度的T2*加权信号,其中,由选定的回波数、第一回波时间TE1和回波间隔以及T2*来间接确定有效回波时间;
分离来自水的信号贡献与来自脂肪的信号贡献,并且使用Dixon算法来估计B0图和/或表观横向弛豫时间图(T2*图);以及
根据所合成的T2*加权信号、所述B0图和/或所述T2*图来重建具有所述指定对比度的图像。
2.根据权利要求1所述的方法,其中,在采集期间,所述径向或螺旋k空间轨迹的旋转角度增加黄金角度。
3.根据权利要求1或2所述的方法,其中,所述回波信号的相位编码在所述z方向上变化并且/或者所述径向或螺旋k空间轨迹的旋转角度在kx方向/ky方向上增加。
4.根据权利要求1-3中的任一项所述的方法,其中,在kx方向/ky方向上的采样密度根据kz而变化,使得对k空间的中心部分比外围部分更密集地采样。
5.根据权利要求1-4中的任一项所述的方法,其中,所述多回波采集的一次或多次射击用于提取用于运动校正的固有图像导航信号。
6.根据权利要求1-5中的任一项所述的方法,其中,根据针对每个回波时间所采集的回波信号数据来重建单回波图像。
7.根据权利要求1-6中的任一项所述的方法,其中,k空间加权图像对比度(KWIC)滤波器用于重建所述单回波图像。
8.根据权利要求1-7中的任一项所述的方法,其中,压缩感测用于重建所述单回波图像或者用在水/脂肪分离内。
9.根据权利要求1-8中的任一项所述的方法,其中,在超短回波时间(UTE)时生成所述回波信号的子集。
10.根据权利要求1-9中的任一项所述的方法,其中,合成具有指定对比度的图像包含:
根据所采集的回波信号数据来计算零回波时间幅值图像;并且
将加权应用于所述零回波时间幅值图像的每个体素,所述加权是根据所述T2*图导出的。
11.根据权利要求1-10中的任一项所述的方法,其中,所述成像序列是场回波序列或自旋回波序列。
12.根据权利要求1-11中的任一项所述的方法,其中,在对所述回波信号的所述采集期间检测所述对象(10)的运动,其中,在重建所述单回波图像的步骤中,在分离来自水的信号贡献与来自脂肪的信号贡献的步骤中,或者在合成具有指定对比度的图像的步骤中应用对应的运动补偿。
13.根据权利要求1-12所述的方法,其中,所述合成图像类似于通过以下操作生成的图像:
根据所采集的回波信号数据对单回波图像进行幅值重建,以及
通过平方和算法对所述单回波图像进行组合。
14.根据权利要求1-13中的任一项所述的方法,其中,根据所采集的回波信号数据来导出流程图,其中,在合成所述图像的步骤中使用所述流程图。
15.一种MR设备,包括:至少一个主磁体线圈(2),其用于在检查体积内生成均匀稳定的磁场B0;多个梯度线圈(4、5、6),其用于在所述检查体积内生成在不同空间方向上的切换的磁场梯度;至少一个RF线圈(9),其用于在所述检查体积内生成RF脉冲和/或接收来自被定位在所述检查体积中的对象(10)的MR信号;控制单元(15),其用于控制RF脉冲和切换的磁场梯度的时间演替,以及重建单元(17),其用于根据接收到的MR信号来重建MR图像,其中,所述MR设备(1)被布置为执行以下步骤:
使所述对象(10)经受包括RF激励脉冲和切换的磁场梯度的成像序列,其中,在每个RF激励脉冲之后的不同回波时间时生成多个回波信号;
沿着径向或螺旋k空间轨迹采集回波信号数据,为此,所述成像序列包括在x方向/y方向和/或z方向上的磁场梯度跳点,使得提供不同的回波时间(TE1、TE2、…、TEN);
根据所采集的回波信号数据来合成具有指定对比度的T2*加权信号,其中,由选定的回波数、第一回波时间TE1和回波间隔以及T2*来间接确定有效回波时间;
分离来自水的信号贡献与来自脂肪的信号贡献,并且使用Dixon算法来估计B0图和/或表观横向弛豫时间图(T2*图);以及
根据所合成的T2*加权信号、所述B0图和/或所述T2*图来重建具有所述指定对比度的图像。
16.一种在MR设备上运行的计算机程序,所述计算机程序包括用于以下操作的指令:
生成包括RF激励脉冲和切换的磁场梯度的成像序列,其中,在每个RF激励脉冲之后的不同回波时间时生成多个回波信号;
沿着径向或螺旋k空间轨迹采集回波信号数据,为此,所述成像序列包括在x方向/y方向和/或z方向上的磁场梯度跳点,使得提供不同的回波时间(TE1、TE2、…、TEN);
根据所采集的回波信号数据来合成具有指定对比度的T2*加权信号,其中,由选定的回波数、第一回波时间TE1和回波间隔以及T2*来间接确定有效回波时间;
分离来自水的信号贡献与来自脂肪的信号贡献,并且使用Dixon算法来估计B0图和/或表观横向弛豫时间图(T2*图);以及
根据所合成的T2*加权信号、所述B0图和/或所述T2*图来重建具有所述指定对比度的图像。
CN201980014803.3A 2018-02-22 2019-02-15 使用多梯度回波序列进行的Dixon MR成像 Pending CN111758041A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18158035.8 2018-02-22
EP18158035.8A EP3531154A1 (en) 2018-02-22 2018-02-22 Dixon mr imaging using a multi-gradient-echo sequence
PCT/EP2019/053754 WO2019162198A1 (en) 2018-02-22 2019-02-15 Dixon mr imaging using a multi-gradient-echo sequence

Publications (1)

Publication Number Publication Date
CN111758041A true CN111758041A (zh) 2020-10-09

Family

ID=61256772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980014803.3A Pending CN111758041A (zh) 2018-02-22 2019-02-15 使用多梯度回波序列进行的Dixon MR成像

Country Status (6)

Country Link
US (1) US20210096202A1 (zh)
EP (1) EP3531154A1 (zh)
JP (1) JP2021514710A (zh)
CN (1) CN111758041A (zh)
DE (1) DE112019000927T8 (zh)
WO (1) WO2019162198A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217255A (zh) * 2021-11-29 2022-03-22 浙江大学 一种快速的肝脏多参数定量成像方法
WO2023216582A1 (zh) * 2022-05-12 2023-11-16 深圳先进技术研究院 磁共振化学交换饱和转移成像方法、系统以及设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11550013B2 (en) * 2020-09-30 2023-01-10 GE Precision Healthcare LLC Systems and methods of silent multi-gradient echo dynamic magnetic resonance imaging
EP4030178A1 (en) * 2021-01-14 2022-07-20 Koninklijke Philips N.V. Mr mammography
WO2022188026A1 (zh) * 2021-03-09 2022-09-15 深圳高性能医疗器械国家研究院有限公司 一种磁共振多参数定量方法及其应用
CN113281690B (zh) * 2021-05-18 2022-08-12 上海联影医疗科技股份有限公司 一种磁共振成像方法和系统
EP4336203A1 (en) 2022-09-09 2024-03-13 Koninklijke Philips N.V. De-blurring and water/fat separation in mr imaging with spiral acquisition

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308828A1 (en) * 2009-06-04 2010-12-09 Koch Kevin M System and method for reconstructing multi-spectral 3d mr images
US20120074938A1 (en) * 2010-09-27 2012-03-29 David Grodzki Magnetic resonance method and system to generate an image data set
US20120256625A1 (en) * 2011-04-08 2012-10-11 Walter Francis Block Method for Accelerated High Resolution Chemical Species Separation for Magnetic Resonance Imaging
US20130076355A1 (en) * 2011-09-28 2013-03-28 Siemens Corporation Fast, Low Energy Deposition and Homogeneous T2 Weighted Variable Amplitude PSIF (T2 VAPSIF) Imaging in the Presence of B0inhomogeneities
US20130076357A1 (en) * 2011-09-28 2013-03-28 David Grodzki Method and magnetic resonance apparatus to generate a series of mr images to monitor a position of an interventional device
US20130231554A1 (en) * 2012-03-05 2013-09-05 Wake Forest University Health Sciences Vessel encoded arterial spin labeling using fourier encoding suitable for vascular territory mapping
US20140002080A1 (en) * 2011-03-17 2014-01-02 Koninklijke Philips N.V. Restriction of the imaging region for mri in an inhomogeneous magnetic field
US20140043023A1 (en) * 2012-08-07 2014-02-13 Scott B. Reeder System and method for accelerated magnetic resonance imaging using spectral sensitivity
AU2014271235A1 (en) * 2008-10-01 2015-01-15 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors including neuronal and brain tumors
US20150253406A1 (en) * 2012-10-02 2015-09-10 Koninklijke Philips N.V. Metal resistant mr imaging reference scan
US20150301142A1 (en) * 2014-04-21 2015-10-22 Case Western Reserve University Diffusion-Weighted Double-Echo Magnetic Resonance Fingerprinting (MRF)
CN105334321A (zh) * 2014-07-31 2016-02-17 西门子(深圳)磁共振有限公司 磁共振成像方法和系统
DE102015204483A1 (de) * 2015-03-12 2016-09-15 Siemens Healthcare Gmbh Magnetresonanz-Vorschau-Abbildung
US20160313422A1 (en) * 2013-12-19 2016-10-27 Koninklijki Philips N.V. Phase sensitive inversion recovery mri with water/fat separation
WO2016180983A1 (en) * 2015-05-13 2016-11-17 Koninklijke Philips N.V. Multi-echo mri with correction of concomitant gradient-induced phase errors
US20170038447A1 (en) * 2014-04-24 2017-02-09 Dignity Health System and method for spiral multislab magnetic resonance imaging
CN107219484A (zh) * 2016-03-22 2017-09-29 西门子(深圳)磁共振有限公司 多层并行激发弥散成像的激发翻转角度确定方法和装置
US20170322274A1 (en) * 2016-05-05 2017-11-09 Siemens Healthcare Gmbh Multi-Echo Pseudo-Golden Angle Stack of Stars Thermometry with High Spatial and Temporal Resolution Using k-Space Weighted Image Contrast
US20180020946A1 (en) * 2015-01-30 2018-01-25 Sunnybrook Research Institute System and method for detection of collagen using magnetic resonance imaging

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393895B2 (ja) * 1993-09-13 2003-04-07 株式会社東芝 磁気共鳴映像装置
AU2003272024A1 (en) * 2002-11-18 2004-06-15 Koninklijke Philips Electronics N.V. Magnetic resonance method and device
EP1706755A1 (en) * 2004-01-14 2006-10-04 Koninklijke Philips Electronics N.V. Regularized variable density sense
RU2016129155A (ru) * 2013-12-19 2018-01-23 Конинклейке Филипс Н.В. Мр-визуализация с разделением воды и жира по методу диксона
US11041926B2 (en) * 2016-06-02 2021-06-22 Koninklijke Philips N.V. Dixon-type water/fat separation MR imaging

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014271235A1 (en) * 2008-10-01 2015-01-15 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors including neuronal and brain tumors
US20100308828A1 (en) * 2009-06-04 2010-12-09 Koch Kevin M System and method for reconstructing multi-spectral 3d mr images
US20120074938A1 (en) * 2010-09-27 2012-03-29 David Grodzki Magnetic resonance method and system to generate an image data set
US20140002080A1 (en) * 2011-03-17 2014-01-02 Koninklijke Philips N.V. Restriction of the imaging region for mri in an inhomogeneous magnetic field
US20120256625A1 (en) * 2011-04-08 2012-10-11 Walter Francis Block Method for Accelerated High Resolution Chemical Species Separation for Magnetic Resonance Imaging
US20130076357A1 (en) * 2011-09-28 2013-03-28 David Grodzki Method and magnetic resonance apparatus to generate a series of mr images to monitor a position of an interventional device
US20130076355A1 (en) * 2011-09-28 2013-03-28 Siemens Corporation Fast, Low Energy Deposition and Homogeneous T2 Weighted Variable Amplitude PSIF (T2 VAPSIF) Imaging in the Presence of B0inhomogeneities
US20130231554A1 (en) * 2012-03-05 2013-09-05 Wake Forest University Health Sciences Vessel encoded arterial spin labeling using fourier encoding suitable for vascular territory mapping
US20140043023A1 (en) * 2012-08-07 2014-02-13 Scott B. Reeder System and method for accelerated magnetic resonance imaging using spectral sensitivity
US20150253406A1 (en) * 2012-10-02 2015-09-10 Koninklijke Philips N.V. Metal resistant mr imaging reference scan
US20160313422A1 (en) * 2013-12-19 2016-10-27 Koninklijki Philips N.V. Phase sensitive inversion recovery mri with water/fat separation
US20150301142A1 (en) * 2014-04-21 2015-10-22 Case Western Reserve University Diffusion-Weighted Double-Echo Magnetic Resonance Fingerprinting (MRF)
US20170038447A1 (en) * 2014-04-24 2017-02-09 Dignity Health System and method for spiral multislab magnetic resonance imaging
CN105334321A (zh) * 2014-07-31 2016-02-17 西门子(深圳)磁共振有限公司 磁共振成像方法和系统
US20180020946A1 (en) * 2015-01-30 2018-01-25 Sunnybrook Research Institute System and method for detection of collagen using magnetic resonance imaging
DE102015204483A1 (de) * 2015-03-12 2016-09-15 Siemens Healthcare Gmbh Magnetresonanz-Vorschau-Abbildung
WO2016180983A1 (en) * 2015-05-13 2016-11-17 Koninklijke Philips N.V. Multi-echo mri with correction of concomitant gradient-induced phase errors
CN107219484A (zh) * 2016-03-22 2017-09-29 西门子(深圳)磁共振有限公司 多层并行激发弥散成像的激发翻转角度确定方法和装置
US20170322274A1 (en) * 2016-05-05 2017-11-09 Siemens Healthcare Gmbh Multi-Echo Pseudo-Golden Angle Stack of Stars Thermometry with High Spatial and Temporal Resolution Using k-Space Weighted Image Contrast

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THOMAS BENKERT: "Free-Breathing Volumetric Fat/Water Separation by Combining Radial Sampling, Compressed Sensing, and Parallel Imaging", 《MAGNETIC RESONANCE IN MEDICINE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217255A (zh) * 2021-11-29 2022-03-22 浙江大学 一种快速的肝脏多参数定量成像方法
WO2023216582A1 (zh) * 2022-05-12 2023-11-16 深圳先进技术研究院 磁共振化学交换饱和转移成像方法、系统以及设备

Also Published As

Publication number Publication date
WO2019162198A1 (en) 2019-08-29
DE112019000927T8 (de) 2020-12-10
US20210096202A1 (en) 2021-04-01
JP2021514710A (ja) 2021-06-17
DE112019000927T5 (de) 2020-11-26
EP3531154A1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
US9983284B2 (en) MRI with dixon-type water/fat separation and prior knowledge about inhomogeneity of the main magnetic field
JP5547800B2 (ja) 並列信号収集を利用したmr撮像
CN111758041A (zh) 使用多梯度回波序列进行的Dixon MR成像
CN109219757B (zh) Dixon型水/脂肪分离MR成像
EP3084460A1 (en) Phase-sensitive inversion recovery mri with water/fat separation
CN110720047B (zh) 双回波Dixon型水/脂肪分离MR成像
JP2023109791A (ja) 並列マルチスライスmr撮像
EP3447517A1 (en) Dixon-type water/fat separation mr imaging
CN113614558A (zh) 使用具有软运动门控的3d径向或螺旋采集的mr成像
US10859652B2 (en) MR imaging with dixon-type water/fat separation
CN111512173A (zh) 具有脂肪抑制的扩散mr成像
US20220236357A1 (en) Dual echo steady state mr imaging using bipolar diffusion gradients
EP2581756A1 (en) MR imaging using parallel signal acquisition
EP3688479B1 (en) Dixon-type water/fat separation mr imaging with improved fat shift correction
EP3931588A1 (en) Epi mr imaging with distortion correction
WO2018001759A1 (en) Diffusion weighted mr imaging using multi-shot epi with motion detection and modified sense reconstruction
EP4012434A1 (en) Dixon-type water/fat separation mr imaging
US20240069136A1 (en) Mr mammography
CN114402214A (zh) 狄克逊型水/脂肪分离mr成像

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201009

WD01 Invention patent application deemed withdrawn after publication