CN111753874A - 一种结合半监督聚类的图像场景分类方法及系统 - Google Patents
一种结合半监督聚类的图像场景分类方法及系统 Download PDFInfo
- Publication number
- CN111753874A CN111753874A CN202010410756.9A CN202010410756A CN111753874A CN 111753874 A CN111753874 A CN 111753874A CN 202010410756 A CN202010410756 A CN 202010410756A CN 111753874 A CN111753874 A CN 111753874A
- Authority
- CN
- China
- Prior art keywords
- kmeans
- svm
- samples
- semi
- supervised
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000012549 training Methods 0.000 claims abstract description 82
- 238000002372 labelling Methods 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 claims description 44
- 230000006870 function Effects 0.000 claims description 43
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 8
- 230000004927 fusion Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 230000009977 dual effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000001502 supplementing effect Effects 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- 230000009471 action Effects 0.000 claims 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims 1
- 238000004364 calculation method Methods 0.000 claims 1
- 238000012512 characterization method Methods 0.000 claims 1
- 238000012847 principal component analysis method Methods 0.000 claims 1
- 238000012706 support-vector machine Methods 0.000 abstract description 100
- 230000006872 improvement Effects 0.000 description 10
- 238000000513 principal component analysis Methods 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000007635 classification algorithm Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000013145 classification model Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012804 iterative process Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/254—Fusion techniques of classification results, e.g. of results related to same input data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Medical Informatics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
序列 | 符号 | 符号说明 |
1 | L | 有标签数据集 |
2 | U | 无标签数据集 |
3 | P | 簇集 |
4 | P1,P2 | 伪标签数据集 |
5 | C | 类集 |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010410756.9A CN111753874B (zh) | 2020-05-15 | 2020-05-15 | 一种结合半监督聚类的图像场景分类方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010410756.9A CN111753874B (zh) | 2020-05-15 | 2020-05-15 | 一种结合半监督聚类的图像场景分类方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111753874A true CN111753874A (zh) | 2020-10-09 |
CN111753874B CN111753874B (zh) | 2024-08-02 |
Family
ID=72673307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010410756.9A Active CN111753874B (zh) | 2020-05-15 | 2020-05-15 | 一种结合半监督聚类的图像场景分类方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111753874B (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112200245A (zh) * | 2020-10-10 | 2021-01-08 | 深圳市华付信息技术有限公司 | 一种基于半监督的图像分类方法 |
CN112560998A (zh) * | 2021-01-19 | 2021-03-26 | 德鲁动力科技(成都)有限公司 | 针对目标检测的少样本数据扩增方法 |
CN112861999A (zh) * | 2021-03-17 | 2021-05-28 | 中山大学 | 一种基于主动半监督字典学习的图像分类方法 |
CN112990377A (zh) * | 2021-05-08 | 2021-06-18 | 创新奇智(北京)科技有限公司 | 视觉类别的发现方法及装置、电子设备、存储介质 |
CN113408606A (zh) * | 2021-06-16 | 2021-09-17 | 中国石油大学(华东) | 基于图协同训练的半监督小样本图像分类方法 |
CN114092798A (zh) * | 2021-10-26 | 2022-02-25 | 北京工业大学 | 一种基于半监督学习策略的火灾实例分割方法 |
CN114523985A (zh) * | 2022-04-24 | 2022-05-24 | 新石器慧通(北京)科技有限公司 | 基于传感器的感知结果的无人车运动决策方法及装置 |
CN114896391A (zh) * | 2022-04-13 | 2022-08-12 | 广州大学 | 基于任务提示的小样本句型分类方法、系统、设备及介质 |
CN115130619A (zh) * | 2022-08-04 | 2022-09-30 | 中建电子商务有限责任公司 | 一种基于聚类选择集成的风险控制方法 |
CN115147426A (zh) * | 2022-09-06 | 2022-10-04 | 北京大学 | 基于半监督学习的模型训练与图像分割方法和系统 |
CN115272777A (zh) * | 2022-09-26 | 2022-11-01 | 山东大学 | 面向输电场景的半监督图像解析方法 |
CN115661856A (zh) * | 2022-10-10 | 2023-01-31 | 西南交通大学 | 一种基于Lite-HRNet的自定义康复训练监测与评估方法 |
CN116310463A (zh) * | 2023-05-25 | 2023-06-23 | 深圳市森歌数据技术有限公司 | 一种无监督学习的遥感目标分类方法 |
CN118551274A (zh) * | 2024-07-24 | 2024-08-27 | 西安科技大学 | 一种煤岩石识别系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106778796A (zh) * | 2016-10-20 | 2017-05-31 | 江苏大学 | 基于混合式协同训练的人体动作识别方法及系统 |
CN110309302A (zh) * | 2019-05-17 | 2019-10-08 | 江苏大学 | 一种结合svm和半监督聚类的不平衡文本分类方法及系统 |
-
2020
- 2020-05-15 CN CN202010410756.9A patent/CN111753874B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106778796A (zh) * | 2016-10-20 | 2017-05-31 | 江苏大学 | 基于混合式协同训练的人体动作识别方法及系统 |
CN110309302A (zh) * | 2019-05-17 | 2019-10-08 | 江苏大学 | 一种结合svm和半监督聚类的不平衡文本分类方法及系统 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112200245A (zh) * | 2020-10-10 | 2021-01-08 | 深圳市华付信息技术有限公司 | 一种基于半监督的图像分类方法 |
CN112560998A (zh) * | 2021-01-19 | 2021-03-26 | 德鲁动力科技(成都)有限公司 | 针对目标检测的少样本数据扩增方法 |
CN112861999B (zh) * | 2021-03-17 | 2023-09-19 | 中山大学 | 一种基于主动半监督字典学习的图像分类方法 |
CN112861999A (zh) * | 2021-03-17 | 2021-05-28 | 中山大学 | 一种基于主动半监督字典学习的图像分类方法 |
CN112990377A (zh) * | 2021-05-08 | 2021-06-18 | 创新奇智(北京)科技有限公司 | 视觉类别的发现方法及装置、电子设备、存储介质 |
CN112990377B (zh) * | 2021-05-08 | 2021-08-13 | 创新奇智(北京)科技有限公司 | 视觉类别的发现方法及装置、电子设备、存储介质 |
CN113408606A (zh) * | 2021-06-16 | 2021-09-17 | 中国石油大学(华东) | 基于图协同训练的半监督小样本图像分类方法 |
CN113408606B (zh) * | 2021-06-16 | 2022-07-22 | 中国石油大学(华东) | 基于图协同训练的半监督小样本图像分类方法 |
CN114092798A (zh) * | 2021-10-26 | 2022-02-25 | 北京工业大学 | 一种基于半监督学习策略的火灾实例分割方法 |
CN114092798B (zh) * | 2021-10-26 | 2024-06-11 | 北京工业大学 | 一种基于半监督学习策略的火灾实例分割方法 |
CN114896391A (zh) * | 2022-04-13 | 2022-08-12 | 广州大学 | 基于任务提示的小样本句型分类方法、系统、设备及介质 |
CN114523985A (zh) * | 2022-04-24 | 2022-05-24 | 新石器慧通(北京)科技有限公司 | 基于传感器的感知结果的无人车运动决策方法及装置 |
CN115130619A (zh) * | 2022-08-04 | 2022-09-30 | 中建电子商务有限责任公司 | 一种基于聚类选择集成的风险控制方法 |
CN115147426A (zh) * | 2022-09-06 | 2022-10-04 | 北京大学 | 基于半监督学习的模型训练与图像分割方法和系统 |
CN115272777B (zh) * | 2022-09-26 | 2022-12-23 | 山东大学 | 面向输电场景的半监督图像解析方法 |
CN115272777A (zh) * | 2022-09-26 | 2022-11-01 | 山东大学 | 面向输电场景的半监督图像解析方法 |
CN115661856A (zh) * | 2022-10-10 | 2023-01-31 | 西南交通大学 | 一种基于Lite-HRNet的自定义康复训练监测与评估方法 |
CN116310463A (zh) * | 2023-05-25 | 2023-06-23 | 深圳市森歌数据技术有限公司 | 一种无监督学习的遥感目标分类方法 |
CN116310463B (zh) * | 2023-05-25 | 2024-01-26 | 深圳市森歌数据技术有限公司 | 一种无监督学习的遥感目标分类方法 |
CN118551274A (zh) * | 2024-07-24 | 2024-08-27 | 西安科技大学 | 一种煤岩石识别系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111753874B (zh) | 2024-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111753874A (zh) | 一种结合半监督聚类的图像场景分类方法及系统 | |
Haeusser et al. | Associative deep clustering: Training a classification network with no labels | |
Zhong et al. | Ghostvlad for set-based face recognition | |
CN107480261B (zh) | 一种基于深度学习细粒度人脸图像快速检索方法 | |
Yin et al. | Scene classification based on single-layer SAE and SVM | |
Calik et al. | Large-scale offline signature recognition via deep neural networks and feature embedding | |
Masnadi-Shirazi et al. | Cost-sensitive boosting | |
Doersch et al. | Mid-level visual element discovery as discriminative mode seeking | |
Li et al. | Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning | |
CN103150580B (zh) | 一种高光谱图像半监督分类方法及装置 | |
Hu et al. | Nonlinear dictionary learning with application to image classification | |
CN112528928B (zh) | 一种基于自注意力深度网络的商品识别方法 | |
CN110309868A (zh) | 结合无监督学习的高光谱图像分类方法 | |
CN103258210B (zh) | 一种基于字典学习的高清图像分类方法 | |
CN107943856A (zh) | 一种基于扩充标记样本的文本分类方法及系统 | |
Davari et al. | GMM-based synthetic samples for classification of hyperspectral images with limited training data | |
Dehshibi et al. | Cubic norm and kernel-based bi-directional PCA: toward age-aware facial kinship verification | |
CN106296734B (zh) | 基于极限学习机和boosting多核学习的目标跟踪方法 | |
Elguebaly et al. | Simultaneous high-dimensional clustering and feature selection using asymmetric Gaussian mixture models | |
Yang et al. | Data-driven compressive sampling and learning sparse coding for hyperspectral image classification | |
Wu et al. | Manifold kernel sparse representation of symmetric positive-definite matrices and its applications | |
CN105069478A (zh) | 基于超像素张量稀疏编码的高光谱遥感地物分类方法 | |
He et al. | Object-oriented mangrove species classification using hyperspectral data and 3-D Siamese residual network | |
Puthenputhussery et al. | A sparse representation model using the complete marginal fisher analysis framework and its applications to visual recognition | |
Naseer et al. | Pixels to precision: features fusion and random forests over labelled-based segmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240411 Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Applicant after: Shenzhen Wanzhida Technology Transfer Center Co.,Ltd. Country or region after: China Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Applicant before: JIANGSU University Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240611 Address after: Building 6, 7th Floor, Artificial Intelligence Industrial Park, No. 266 Chuangyan Road, Qilin Technology Innovation Park, Nanjing City, Jiangsu Province, 211135 Applicant after: NANJING KINGYOUNG INTELLIGENT SCIENCE AND TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Henglang Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Applicant before: Shenzhen Wanzhida Technology Transfer Center Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |