CN111751985A - Optical scanners, 3D measuring devices and robotic systems - Google Patents
Optical scanners, 3D measuring devices and robotic systems Download PDFInfo
- Publication number
- CN111751985A CN111751985A CN202010224338.0A CN202010224338A CN111751985A CN 111751985 A CN111751985 A CN 111751985A CN 202010224338 A CN202010224338 A CN 202010224338A CN 111751985 A CN111751985 A CN 111751985A
- Authority
- CN
- China
- Prior art keywords
- mirror
- back surface
- optical scanner
- support portion
- swing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 93
- 238000005259 measurement Methods 0.000 claims description 56
- 238000003384 imaging method Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 description 28
- 239000000470 constituent Substances 0.000 description 19
- 230000008646 thermal stress Effects 0.000 description 14
- 239000011521 glass Substances 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012636 effector Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/085—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2518—Projection by scanning of the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0011—Arrangements for eliminating or compensation of measuring errors due to temperature or weight
- G01B5/0014—Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/181—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
- G02B7/1815—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation with cooling or heating systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Manipulator (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
Abstract
本发明提供光学扫描仪、三维测量装置及具备该三维测量装置的机器人系统。该光学扫描仪的特征在于包括:反射镜,具有反射光的反射面和位于所述反射面的相反侧的第一背面;永久磁铁,配置在所述反射镜的所述第一背面;支撑部,支撑所述反射镜,具有位于与所述第一背面同一侧的第二背面;轴部,将所述反射镜与所述支撑部连接,使所述反射镜能够绕摆动轴摆动;第一部件,配置在所述支撑部的所述第二背面;第二部件,与所述摆动轴正交,在沿着所述第二背面的方向上悬臂支撑所述第一部件;第三部件,隔着所述第二部件与所述第一部件相对配置,并且与所述第二部件连接;以及电磁线圈,配置在所述第一部件与所述第三部件之间。
The present invention provides an optical scanner, a three-dimensional measuring device, and a robot system equipped with the three-dimensional measuring device. The optical scanner is characterized by comprising: a reflecting mirror having a reflecting surface for reflecting light and a first back surface located on the opposite side of the reflecting surface; a permanent magnet arranged on the first back surface of the reflecting mirror; a support portion , which supports the mirror and has a second back on the same side as the first back; a shaft part connects the mirror with the support so that the mirror can swing around the swing axis; the first a member arranged on the second back surface of the support portion; a second member, which is orthogonal to the swing axis and supports the first member in a cantilever direction along the second back surface; and a third member, The second member is arranged opposite to the first member and is connected to the second member, and the electromagnetic coil is arranged between the first member and the third member.
Description
技术领域technical field
本发明涉及一种光学扫描仪、三维测量装置及机器人系统。The invention relates to an optical scanner, a three-dimensional measuring device and a robot system.
背景技术Background technique
在专利文献1中,公开了一种光学扫描装置,其使入射光偏转而进行光学扫描。专利文献1中记载的光学扫描装置具有:矩形板状的反射镜部件,形成有镜面;框架部件,通过一对扭杆支撑反射镜部件;以及永久磁铁,粘合在反射镜部件的镜面的相反侧的面上。另外,专利文献1中还公开了:框架部件处于被上盖及下盖夹持的状态,反射镜部件及永久磁铁被密封在收纳空间内。而且,该光学扫描装置具有电磁铁,该电磁铁具备设置在永久磁铁附近的磁轭及卷绕在磁轭上的线圈。并且,专利文献1中还公开了:通过磁轭的间隙附近产生的磁场与永久磁铁的相互作用,使扭杆扭转而作为旋转轴并使反射镜部件往复运动。此外,下盖位于电磁铁与永久磁铁之间,并且电磁铁与永久磁铁之间的间隙难以减小,所以为了增大作用在永久磁铁上的洛伦兹力,需要增大流过电磁铁的电流。Patent Document 1 discloses an optical scanning device that deflects incident light to perform optical scanning. The optical scanning device described in Patent Document 1 includes: a rectangular plate-shaped mirror member formed with a mirror surface; a frame member supporting the mirror member via a pair of torsion bars; and a permanent magnet bonded to the opposite side of the mirror surface of the mirror member side surface. In addition, Patent Document 1 discloses that the frame member is held between the upper cover and the lower cover, and the mirror member and the permanent magnet are sealed in the storage space. Furthermore, the optical scanning device includes an electromagnet including a yoke provided in the vicinity of the permanent magnet and a coil wound around the yoke. Furthermore, Patent Document 1 discloses that the torsion bar is twisted as a rotation axis by the interaction of the magnetic field generated in the vicinity of the gap of the yoke and the permanent magnet, and the mirror member is reciprocated. In addition, the lower cover is located between the electromagnet and the permanent magnet, and it is difficult to reduce the gap between the electromagnet and the permanent magnet, so in order to increase the Lorentz force acting on the permanent magnet, it is necessary to increase the amount of flow through the electromagnet. current.
专利文献1:日本特开2009-69676号公报Patent Document 1: Japanese Patent Laid-Open No. 2009-69676
发明内容SUMMARY OF THE INVENTION
但是,专利文献1所记载的光学扫描装置中,如果流过电磁铁的电流增大,则电磁铁的发热量变大,使得框架部件产生热应力,从而导致框架部件变形。其结果产生镜面偏转光的方向的精度下降的问题。However, in the optical scanning device described in Patent Document 1, when the current flowing through the electromagnet increases, the amount of heat generated by the electromagnet increases, and thermal stress is generated in the frame member, which causes deformation of the frame member. As a result, there is a problem that the accuracy of the direction of the mirror-deflected light is lowered.
本发明的光学扫描仪的特征在于,具有:反射镜,具有反射光的反射面及位于所述反射面的相反侧的第一背面;永久磁铁,配置在所述反射镜的所述第一背面;支撑部,支撑所述反射镜,具有位于与所述第一背面同一侧的第二背面;轴部,将所述反射镜与所述支撑部连接,使所述反射镜能够绕摆动轴摆动;第一部件,配置在所述支撑部的所述第二背面上;第二部件,与所述摆动轴正交,在沿着所述第二背面的方向上悬臂支撑所述第一部件;第三部件,隔着所述第二部件与所述第一部件相对配置,并且与所述第二部件连接;以及电磁线圈,配置在所述第一部件与所述第三部件之间。The optical scanner of the present invention is characterized by comprising: a reflecting mirror having a reflecting surface for reflecting light and a first back surface located on the opposite side of the reflecting surface; and a permanent magnet arranged on the first back surface of the reflecting mirror a support part, supporting the reflector, and having a second back surface located on the same side as the first back surface; a shaft part, connecting the reflector with the support part, so that the reflector can swing around the swing axis a first member, disposed on the second back surface of the support portion; a second member, orthogonal to the swing axis, cantilevered to support the first member in a direction along the second back surface; A third member is arranged opposite to the first member via the second member and is connected to the second member; and an electromagnetic coil is arranged between the first member and the third member.
附图说明Description of drawings
图1是表示第一实施方式所涉及的机器人系统的整体构成的图。FIG. 1 is a diagram showing the overall configuration of a robot system according to the first embodiment.
图2是表示图1所示的机器人系统所具备的三维测量装置的整体构成的图。FIG. 2 is a diagram showing the overall configuration of a three-dimensional measurement device included in the robot system shown in FIG. 1 .
图3是表示图2所示的三维测量装置的立体图。FIG. 3 is a perspective view showing the three-dimensional measuring apparatus shown in FIG. 2 .
图4是表示图3所示的三维测量装置的内部的立体图。FIG. 4 is a perspective view showing the inside of the three-dimensional measuring apparatus shown in FIG. 3 .
图5是表示图4所示的投影部所投影的图案光的一个例子的俯视图。FIG. 5 is a plan view showing an example of pattern light projected by the projection unit shown in FIG. 4 .
图6是表示图4所示的三维测量装置所具有的光学扫描部的俯视图。FIG. 6 is a plan view showing an optical scanning unit included in the three-dimensional measurement apparatus shown in FIG. 4 .
图7是图6所示的光学扫描部的剖视图。FIG. 7 is a cross-sectional view of the optical scanning unit shown in FIG. 6 .
图8是图7所示的光学扫描部的立体图。FIG. 8 is a perspective view of the optical scanning unit shown in FIG. 7 .
图9是表示图7所示的光学扫描部的温度上升而产生热应力导致第一部件产生翘曲的状态的图。FIG. 9 is a view showing a state in which the temperature of the optical scanning unit shown in FIG. 7 rises and thermal stress is generated to cause warpage of the first member.
图10是表示图7所示的光学扫描部的温度上升而产生热应力导致第一部件产生翘曲的状态的图。FIG. 10 is a diagram showing a state in which the temperature of the optical scanning unit shown in FIG. 7 rises and thermal stress is generated to cause warpage of the first member.
图11是表示作为第二实施方式所涉及的光学扫描仪的光学扫描部的剖视图。11 is a cross-sectional view showing an optical scanning unit as an optical scanner according to a second embodiment.
附图标记说明Description of reference numerals
1:机器人系统;2:机器人;4:三维测量装置;5:机器人控制装置;6:主计算机;21:基座;22:机械臂;24:末端执行器;40:壳体;41:投影部;42:激光光源;44:光学系统;45:光学扫描部;45A:光学扫描部;47:拍摄部;48:控制部;49:测量部;221:第一臂;222:第二臂;223:第三臂;224:第四臂;225:第五臂;226:第六臂;251:第一驱动装置;252:第二驱动装置;253:第三驱动装置;254:第四驱动装置;255:第五驱动装置;256:第六驱动装置;401:底面;402:顶面;403:前表面;403a:窗部;404:背面;405:侧面;406:侧面;441:会聚透镜;442:棒状透镜;450:反射面;451:反射镜;451a:背面;452:支撑部;452a:背面;453:轴部;455:永久磁铁;456:电磁线圈;457:第一部件;458:第二部件;459:第三部件;471:相机;472:拍摄元件;473:会聚透镜;4562:绕组;4564:第一磁芯;4566:第二磁芯;4571:开口部;4572:支撑面;4592:支撑面;J:摆动轴;L:激光光束;O:中心;O1:第一轴;O2:第二轴;O3:第三轴;O4:第四轴;O5:第五轴;O6:第六轴;P0:基准面;P1:平面;PL:图案光;W:对象物;θ:角度。1: Robot system; 2: Robot; 4: 3D measuring device; 5: Robot control device; 6: Main computer; 21: Base; 22: Robot arm; 24: End effector; 40: Housing; 41: Projection part; 42: laser light source; 44: optical system; 45: optical scanning part; 45A: optical scanning part; 47: imaging part; 48: control part; 49: measuring part; 221: first arm; 222: second arm ;223:third arm;224:fourth arm;225:fifth arm;226:sixth arm;251:first drive;252:second drive;253:third drive;254:fourth 255: fifth drive; 256: sixth drive; 401: bottom; 402: top; 403: front; 403a: window; 404: back; 405: side; 406: side; 441: 442: Rod lens; 450: Reflective surface; 451: Reflector; 451a: Back surface; 452: Support part; 452a: Back surface; 453: Shaft part; 455: Permanent magnet; parts; 458: second part; 459: third part; 471: camera; 472: photographing element; 473: condenser lens; 4562: winding; 4564: first core; 4566: second core; 4571: opening ;4572: Support surface; 4592: Support surface; J: Swing axis; L: Laser beam; O: Center; O1: First axis; O2: Second axis; O3: Third axis; O4: Fourth axis; O5 : Fifth axis; O6: Sixth axis; P0: Reference plane; P1: Plane; PL: Pattern light; W: Object; θ: Angle.
具体实施方式Detailed ways
下面,基于附图所示的实施方式详细地说明本发明的光学扫描仪、三维测量装置及机器人系统。Hereinafter, the optical scanner, the three-dimensional measurement device, and the robot system of the present invention will be described in detail based on the embodiments shown in the drawings.
第一实施方式first embodiment
图1是表示第一实施方式所涉及的机器人系统的整体构成的图。图2是表示图1所示的机器人系统所具备的三维测量装置的整体构成的图。图3是表示图2所示的三维测量装置的立体图。图4是表示图3所示的三维测量装置的内部的立体图。图5是表示图4所示的投影部所投影的图案光的一个例子的俯视图。图6是表示图4所示的三维测量装置所具有的光学扫描部的俯视图。FIG. 1 is a diagram showing the overall configuration of a robot system according to the first embodiment. FIG. 2 is a diagram showing the overall configuration of a three-dimensional measurement device included in the robot system shown in FIG. 1 . FIG. 3 is a perspective view showing the three-dimensional measuring apparatus shown in FIG. 2 . FIG. 4 is a perspective view showing the inside of the three-dimensional measuring apparatus shown in FIG. 3 . FIG. 5 is a plan view showing an example of pattern light projected by the projection unit shown in FIG. 4 . FIG. 6 is a plan view showing an optical scanning unit included in the three-dimensional measurement apparatus shown in FIG. 4 .
图1所示的机器人系统1包括:机器人2;三维测量装置4,使用激光光束L进行对象物W的三维测量;机器人控制装置5,基于三维测量装置4的测量结果来控制机器人2的驱动;以及主计算机6,能够与机器人控制装置5通信。另外,这些各个部分可以有线或无线通信,也可以通过因特网等网络进行通信。The robot system 1 shown in FIG. 1 includes: a
1.机器人1. Robots
机器人2例如是进行精密仪器或构成精密仪器的组件的材料供给、材料去除、输送及组装等作业的机器人。但是,机器人2的用途并无特别限定。本实施方式所涉及的机器人2是六轴机器人,如图1所示,具有固定于地板或天花板的基座21以及连接于基座21的机械臂22。The
机械臂22具有:第一臂221,绕着第一轴O1转动自如地连结于基座21;第二臂222,绕着第二轴O2转动自如地连结于第一臂221;第三臂223,绕着第三轴O3转动自如地连结于第二臂222;第四臂224,绕着第四轴O4转动自如地连结于第三臂223;第五臂225,绕着第五轴O5转动自如地连结于第四臂224;以及第六臂226,绕着第六轴O6转动自如地连结于第五臂225。另外,在第六臂226上安装有末端执行器24,用于供机器人2执行作业。此外,以下也将第一臂221到第六臂226的末端执行器24侧称为“前端”或“前端侧”,将基座21侧称为“基端”或“基端侧”。The
另外,机器人2具有:第一驱动装置251,使第一臂221相对于基座21转动;第二驱动装置252,使第二臂222相对于第一臂221转动;第三驱动装置253,使第三臂223相对于第二臂222转动;第四驱动装置254,使第四臂224相对于第三臂223转动;第五驱动装置255,使第五臂225相对于第四臂224转动;以及第六驱动装置256,使第六臂226相对于第五臂225转动。第一驱动装置251~第六驱动装置256分别具有例如作为驱动源的电机、控制电机驱动的控制器和检测电机旋转量的编码器。并且,第一驱动装置251~第六驱动装置256分别由机器人控制装置5独立地控制。In addition, the
此外,机器人2并不限定于本实施方式的构成,例如机械臂22具有的臂数量也可以是1~5个,还可以是7个以上。另外,例如机器人2的种类也可以是SCARA机器人或具有两个机械臂22的双臂机器人。In addition, the
2.机器人控制装置2. Robot control device
机器人控制装置5从主计算机6接收机器人2的位置指令,以第一臂221~第六臂226到达与接收的位置指令相应的位置的方式分别独立地控制第一驱动装置251~第六驱动装置256的驱动。机器人控制装置5例如由计算机构成,并具有:处理信息的处理器(CPU)、与处理器以可通信的方式连接的存储器、以及外部接口。存储器中保存处理器可执行的各种程序,处理器可读取存储器中存储的各种程序等并执行该各种程序。The robot control device 5 receives the position command of the
3.三维测量装置3. Three-dimensional measuring device
接下来,说明第一实施方式所涉及的三维测量装置4。Next, the three-
三维测量装置4使用相移法来进行对象物W的三维测量。如图2所示,三维测量装置4具备:投影部41,将激光光束L形成的三维测量用的图案光PL投影至包含对象物W的区域;拍摄部47,对投影了图案光PL的包含对象物W的区域进行拍摄而获取图像数据;控制部48,控制投影部41及拍摄部47的驱动;测量部49,基于图像数据来测量对象物W的三维形状;以及壳体40,收纳这些各个部分。The three-
本实施方式中,如图3所示,壳体40固定在机器人2的第五臂225上。另外,壳体40形成为箱状,并具有:固定在第五臂225的底面401、与底面401相对的顶面402、位于第五臂225的前端侧的前表面403、位于第五臂225的基端侧的背面404、以及一对侧面405、406。并且,如图4所示,在这种壳体40内收纳投影部41、拍摄部47、控制部48及测量部49。但是,壳体40的形状并无特别限定。In this embodiment, as shown in FIG. 3 , the
另外,作为壳体40的构成材料,并无特别限定,例如可使用各种树脂、各种金属、各种陶瓷。但是,从散热性的观点出发,优选使用例如铝、不锈钢等热导率优异的材料。另外,壳体40的底面401也可以通过未图示的接合部而固定在机器人2的第五臂225上。In addition, it does not specifically limit as a constituent material of the
投影部41以向第五臂225的前端侧照射激光光束L的方式配置在壳体40内,拍摄部47以朝向第五臂225的前端侧并拍摄包含激光光束L的照射范围的区域的方式配置在壳体40内。此外,如图3所示,在壳体40的前表面403,设置有供激光光束L射出的窗部403a。The
此外,三维测量装置4的配置并无特别限定,可以配置在第一臂221~第四臂224中的任一者或者第六臂226上。另外,投影部41及拍摄部47也可以固定在不同的臂上。另外,控制部48、测量部49也可以配置在壳体40的外部,例如也可以被机器人控制装置5或主计算机6包括。In addition, the arrangement of the three-
投影部41具有如下功能:通过向对象物W照射激光光束L,将图5所示的图案光PL投影至对象物W。如图2及图4所示,这种投影部41具有:射出激光光束L的激光光源42;光学系统44,包括供激光光束L通过的多个透镜;以及光学扫描部45(光学扫描仪),向对象物W扫描通过光学系统44后的激光光束L。激光光源42并无特别限定,例如可使用垂直腔面发射激光器(VCSEL)、垂直外腔面发射激光器(VECSEL)等半导体激光器。The
光学系统44具有:会聚透镜441,使激光光源42射出的激光光束L在对象物W附近会聚;以及棒状透镜442,使会聚透镜441所会聚的激光光束L沿后述摆动轴J的平行方向、即图2的图纸深度方向延伸成线状。The
光学扫描部45具有扫描由棒状透镜442形成为线状的激光光束L的功能。光学扫描部45并无特别限定,例如可使用MEMS(Micro Electro Mechanical Systems,微电机系统)、检流计镜、多角镜等。The
本实施方式所涉及的光学扫描部45由MEMS构成。如图6所示,光学扫描部45具有:具有反射面450的反射镜451;配置在反射镜451的永久磁铁455;支撑反射镜451的支撑部452;将反射镜451与支撑部452连接的轴部453;配置在支撑部452的第一部件457;与第一部件457连接的第二部件458;与第二部件458连接的第三部件459;以及与永久磁铁455定向配置的电磁线圈456。The
此外,在图6中,在处于静止状态的反射面450的法线的延伸方向上,将图纸近前侧设为+Z轴方向,将图纸里侧设为-Z轴方向。另外,将轴部453的延伸方向设为与Z轴方向正交的X轴方向。并且,将与Z轴方向及X轴方向均正交的方向设为Y轴方向。In addition, in FIG. 6 , in the extending direction of the normal line of the
在这种光学扫描部45中,摆动轴J与线状的激光光束L的延伸方向、即由棒状透镜442扩展后的激光光束L的扩宽方向一致。并且,若对电磁线圈456施加驱动信号,则反射镜451绕着摆动轴J以预定周期正反交替地摆动,由此将线状的激光光束L扫描为面状。此外,光学扫描部45将在下文详细描述。In such an
上面说明了投影部41,但其构成并无特别限定,只要能向对象物W投影预定的图案光PL即可。例如,在本实施方式中,是利用光学系统44将激光光束L呈线状扩展的,但并不限定于此,例如,也可以使用MEMS或检流计镜使其扩展为线状。即,也可以使用两个光学扫描部45二维扫描激光光束L。另外,例如也可以使用具有两个轴自由度的万向节型MEMS二维扫描激光光束L。The
拍摄部47拍摄对至少一个对象物W投影图案光PL的状态。如图2所示,拍摄部47例如由具备CMOS图像传感器、CCD图像传感器等拍摄元件472和会聚透镜473的相机471构成。相机471连接于测量部49,并将图像数据发送至测量部49。The
控制部48通过向电磁线圈456施加驱动信号来控制光学扫描部45的驱动,并且通过向激光光源42施加驱动信号来控制激光光源42的驱动。控制部48与反射镜451的摆动同步地使激光光源42射出激光光束L,例如将图5所示的以亮度值的明暗表现的条纹状图案光PL投影至对象物W上。但是,图案光PL只要可用于后述相移法则并无特别限定。另外,控制部48控制相机471的驱动,以预定的定时拍摄包含对象物W的区域。The
例如,控制部48将相位每次偏移π/2而向对象物W投影四次图案光PL,并且每次均利用拍摄部47拍摄投影了图案光PL的对象物W。但是,图案光PL的投影次数并无特别限定,只要是能够根据拍摄结果计算相位的次数即可。另外,也可以使用间距较大的图案或反之较小的图案进行同样的投影和拍摄而进行相位展开。间距种类越多,测量范围与分辨率越高,但拍摄次数增加,获取图像数据所需的时间会相应地增加,导致机器人2的运行效率降低。因此,兼顾三维测量的精度及测量范围与机器人2的运行效率而适当地设定图案光PL的投影次数即可。For example, the
测量部49基于拍摄部47获取的多个图像数据,进行对象物W的三维测量。具体来说,计算包含对象物W的姿态、空间坐标等的三维信息。然后,测量部49将计算出的对象物W的三维信息发送至主计算机6。The
这种控制部48及测量部49例如由计算机构成,并具有:处理信息的处理器(CPU)、与处理器以能够通信的方式连接的存储器、以及外部接口。存储器中存储处理器可执行的各种程序,处理器可读取存储器中存储的各种程序等并执行该各种程序。The
4.主计算机4. Main computer
主计算机6根据测量部49算出的对象物W的三维信息来生成机器人2的位置指令,并将生成的位置指令发送至机器人控制装置5。机器人控制装置5基于主计算机6接收的位置指令分别独立地驱动第一驱动装置251~第六驱动装置256,使第一臂221~第六臂226移动至指示位置。此外,在本实施方式中,主计算机6与测量部49彼此为独立部件,但并不限定于此,主计算机6也可以具有作为测量部49的功能。The
5.光学扫描部(光学扫描仪)5. Optical scanning section (optical scanner)
接下来,说明作为第一实施方式所涉及的光学扫描仪的光学扫描部45。Next, the
图7是图6所示的光学扫描部的剖视图。图8是图7所示的光学扫描部的立体图。FIG. 7 is a cross-sectional view of the optical scanning unit shown in FIG. 6 . FIG. 8 is a perspective view of the optical scanning unit shown in FIG. 7 .
如上所述,图7及图8所示的光学扫描部45具有反射镜451、支撑部452、轴部453、永久磁铁455、电磁线圈456、第一部件457、第二部件458、第三部件459。以下说明各个部分。As described above, the
反射镜451具有反射光的反射面450以及位于反射面450的相反侧的背面451a(第一背面)。反射面450反射激光光束L。此外,反射面450上形成有未图示的反射膜。反射膜例如可以使用铝等金属膜。The
背面451a上粘合并配置有永久磁铁455,永久磁铁455与反射镜451一同摆动。永久磁铁455在与摆动轴J正交的Y轴方向上磁化。永久磁铁455例如列举钕磁铁、铁氧体磁铁、钐钴磁铁、铝镍钴磁铁、粘结磁铁等。A
轴部453将反射镜451与支撑部452连接,将反射镜451支撑为能够绕摆动轴J摆动。光学扫描部45具有沿X轴方向延伸的两个轴部453、453,两个轴部453、453隔着反射镜451而配置在彼此相反侧,以在X轴方向上从两侧支撑反射镜451。随着反射镜451绕摆动轴J摆动,轴部453、453扭曲变形。此外,轴部453、453的形状并不限定于图示的形状,只要能将反射镜451支撑为能够绕摆动轴J摆动即可。例如,轴部453、453可以分别由多个梁构成,也可以在延伸方向中途的至少一处具有弯折或弯曲部分、分支部分、宽度不同的部分等。The
支撑部452如图6所示从Z轴方向俯视时呈框状,以包围反射镜451的方式配置。并且,支撑部452通过两个轴部453、453将反射镜451支撑为能够摆动。此外,支撑部452的形状并无特别限定,只要能够支撑反射镜451即可,例如也可以被分成支撑一个轴部453的部分与支撑另一个轴部453的部分。As shown in FIG. 6 , the
支撑部452的背面452a(第二背面)上粘合配置有第一部件457。第一部件457具有作为加强支撑部452的机械强度的加强部的功能。这种第一部件457呈沿着XY面扩展的板状。另外,从Z轴方向俯视时第一部件457也呈框状,如图7所示,具有贯通与反射镜451对应的区域而成的开口部4571。通过该开口部4571来确保用于配置永久磁铁455的空间及用于供反射镜451摆动的空间。The
而且,第一部件457在-Y轴方向上延伸得比支撑部452长。并且,-Y轴方向的端部与第二部件458连接。具体来说,第一部件457的-Z轴方向的面中的-Y轴方向的端部为被第二部件458支撑的支撑面4572。Also, the
另外,第二部件458具有在Z轴方向上具有长轴的形状。第二部件458的+Z轴方向的端面连接于第一部件457,-Z轴方向的端面连接于第三部件459。因此,第二部件458介于第一部件457与第三部件459之间。并且,由此在第一部件457与第三部件459之间形成与第二部件458的长轴的长度相等的空间。In addition, the
第三部件459呈沿着XY面扩展的板状。并且,-Y轴方向的端部与第二部件458连接。具体来说,第三部件459的+Z轴方向的面中的-Y轴方向的端部为支撑第二部件458的支撑面4592。The
在第一部件457与第三部件459之间配置有电磁线圈456。电磁线圈456在永久磁铁455所形成的静磁场中通过交流电流的通电而产生洛伦兹力,使配置有永久磁铁455的反射镜451摆动。根据这种电磁驱动方式,能够产生较大的驱动力,因此能够在实现驱动电压降低的同时增大反射镜451的摆动角。An
如上所述的光学扫描部45中,第二部件458悬臂支撑第一部件457。例如,如图7所示,悬臂支撑是指如下结构:第一部件457中,+Y轴方向的端部未被支撑而成为所谓的自由端,而-Y轴方向的端部被第二部件458支撑。根据这种悬臂支撑结构,例如即使第一部件457或第二部件458的温度上升而产生热应力,导致第一部件457产生翘曲,也能修正因翘曲带来的影响。In the
具体来说,图9及图10分别表示图7所示的光学扫描部45的温度上升而产生热应力导致第一部件457产生翘曲的状态。此外,图9及图10中,为了便于说明而简化了图示。Specifically, FIGS. 9 and 10 respectively show a state in which the temperature of the
若光学扫描部45的温度上升,则第一部件457、第二部件458及第三部件459各部件的边界附近产生热应力。该热应力很容易表现为第一部件457的翘曲。并且,如图9所示,第一部件457中,配置有反射镜451的端部产生在+Z轴方向上移位的翘曲。这样一来,随着翘曲产生,反射面450的中心O向-Y轴方向移动。When the temperature of the
另外,相比不产生翘曲的情况,该翘曲还会导致反射面450计划外倾斜的问题。具体来说,不产生翘曲的状态下反射镜451不摆动时,将包含反射面450的平面设为基准面P0。若产生翘曲,则轴部453、453扭曲变形,导致反射面450相对于基准面P0意外倾斜。由此,如图10所示,产生翘曲的状态下包含反射面450的平面P1与基准面P0形成角度θ的倾斜。In addition, compared with the case where no warping occurs, the warping also causes a problem that the
如上所述产生反射面450的中心O的移动、反射面450的倾斜,会导致上述的对象物W上投影的条纹状的图案光PL的中心从预期位置偏离。其结果产生三维测量的精度降低的问题。The movement of the center O of the
因此,在本实施方式中,如上所述第二部件458悬臂支撑第一部件457。并且,悬臂支撑的支撑方向、即第一部件457中未被支撑的端部与被第二部件458支撑的端部相连的方向被设定为与摆动轴J交叉的方向。该交叉角度可以小于90°,在本实施方式中为特殊情况,支撑方向与Y轴方向平行,且摆动轴J与X轴方向平行。因此,支撑方向与摆动轴J呈90°交叉。Therefore, in the present embodiment, the
根据这种悬臂支撑结构,即使第一部件457产生如图9及图10所示的翘曲,且图案光PL的中心随之偏离,也能使其偏离方向与随着反射镜451摆动产生的图案光PL的扫描方向一致。由此,即使图案光PL的中心发生了偏离,也能通过调整反射镜451的摆动角来修正其偏离。其结果为,能够使图案光PL的中心回到预期位置,从而能够抑制三维测量的精度降低。According to this cantilever support structure, even if the
具体来说,在扫描图案光PL并投影时,通常是对电磁线圈456施加交流电流,并使反射镜451以一定周期摆动。由此,图案光PL以一定振幅往复扫描,描绘出条纹图案。并且,在修正图案光PL的中心位置时,在交流电流上叠加直流电流。通过该直流电流的叠加,能够使反射镜451的摆动角的幅度的中间值根据直流电流的电压值而偏移,即能够执行所谓的直流偏移(DC offset)操作。其结果为,能够修正图案光PL的描绘中心位置,从而能够抑制三维测量的精度降低。Specifically, when the pattern light PL is scanned and projected, an alternating current is usually applied to the
如上所述,作为本实施方式所涉及的光学扫描仪的光学扫描部45具有:反射镜451,具有反射光的反射面450及位于反射面450的相反侧的背面451a(第一背面);永久磁铁455,配置在反射镜451的背面451a上;支撑部452,支撑反射镜451,具有位于与背面451a(第一背面)同一侧的背面452a(第二背面);轴部453、453,将反射镜451与支撑部452连接,使反射镜451能够绕着摆动轴J摆动;第一部件457,配置在支撑部452的背面452a(第二背面)上;第二部件458,与摆动轴J正交,在沿着背面452a(第二背面)的方向上悬臂支撑第一部件457;第三部件459,隔着第二部件458与第一部件457相对配置,并且与第二部件458连接;以及电磁线圈456,配置在第一部件457与第三部件459之间。As described above, the
在这种光学扫描部45中,第二部件458悬臂支撑第一部件457,且其支撑方向与摆动轴J交叉。因此,即使随着热应力的产生而导致第一部件457产生翘曲,也能通过调整反射镜451的摆动角来修正因翘曲引起的图案光PL的描绘位置偏离。因此,根据本实施方式所涉及的光学扫描部45,即使光学扫描部45发生温度变化,也能实现反射面450所带来的光扫描位置的精度高的光学扫描部45。In such an
此外,光学扫描部45的温度与图案光PL的位置的偏离量之间存在一定的相关性。因此,在上述的直流偏移操作中,可以基于预先获取的相关性来设定直流偏移中的直流电压的电压值,以抵消根据光学扫描部45的温度推断的偏离量。In addition, there is a certain correlation between the temperature of the
另外,光学扫描部45优选具备未图示的温度传感器。由此,能够更准确地检测光学扫描部45的温度,因此能够更准确地进行直流偏移修正。此外,温度传感器可以设置在与光学扫描部45接触的位置上,也可以设置在壳体40内的任意位置。另外,考虑环境温度的影响时,也可以设置在壳体40的外部。In addition, it is preferable that the
另外,在本实施方式中,从Z轴方向(垂直方向)俯视反射面450时,通过第二部件458支撑第一部件457的支撑面4572与反射镜451及轴部453错开。而且,在本实施方式中,该支撑面4572还与支撑部452错开。In the present embodiment, when the
根据这种构成,上述的悬臂支撑结构带来的效果更加显著。即,以上述方式错开能够确保容易产生热应力的支撑面4572与反射镜451之间的距离。由此,即使支撑面4572产生了热应力,也能将反射镜451附近的第一部件457产生的翘曲等变形抑制得较少。此外,所述“错开”是指不存在重叠部分。According to this configuration, the effect of the above-described cantilever support structure is more remarkable. That is, the distance between the
另外,在本实施方式中,被第二部件458支撑的第一部件457的支撑面4572如图6所示呈具有与摆动轴J平行的长轴的长方形。因此,支撑面4572与摆动轴J的距离均匀。其结果为,例如即使第一部件457产生了翘曲,也能通过调整反射镜451的摆动角以更高精度修正图案光PL的描绘位置偏离。In addition, in the present embodiment, the
此外,本说明书中,“平行”是指允许有制造误差所造成的偏差的概念。制造误差所造成的偏差量例如约为±5°。同样地,本说明书中,“正交”是指允许有制造误差所造成的偏差的概念。制造误差所造成的偏差量例如约为±5°。In addition, in this specification, "parallel" means a concept that allows for variations due to manufacturing errors. The amount of deviation due to manufacturing errors is, for example, about ±5°. Likewise, in this specification, "orthogonal" refers to a concept that allows for variations due to manufacturing errors. The amount of deviation due to manufacturing errors is, for example, about ±5°.
此外,支撑面4572的X轴方向的长度X1、即长轴的长度并无特别限定,但优选为5mm以上且30mm以下,更优选为7mm以上且15mm以下。In addition, the length X1 of the X-axis direction of the
另外,支撑面4572的Y轴方向的长度Y1并无特别限定,但优选为2mm以上且5mm以下。In addition, the length Y1 of the Y-axis direction of the
而且,第一部件457中,将未被支撑面4572支撑的部分在Y轴方向的长度设为Y2[mm]时,Y2/Y1的比值优选为1.2以上且3.0以下,更优选为1.5以上且2.5以下。通过将Y2/Y1的比值设定在上述范围内,能够充分地确保在未被支撑面4572支撑的部分设置的反射镜451的面积,并且能够确保支撑面4572的支撑强度。Furthermore, in the
此外,支撑部452的Y轴方向的长度Y3优选比长度Y2短,作为一个例子,优选为3mm以上且10mm以下。Moreover, it is preferable that the length Y3 of the Y-axis direction of the
另一方面,第一部件457的Z轴方向的长度Z1、即第一部件457的厚度并无特别限定,但优选为0.2mm以上且2.0mm以下,更优选为0.3mm以上且1.0mm以下。由此,能够抑制第一部件457的变形,同时能够避免永久磁铁455与电磁线圈456被第一部件457阻碍而无法充分靠近的情况。On the other hand, the length Z1 of the
另外,第二部件458的Z轴方向的长度Z2、即第二部件458的高度并无特别限定,但优选为2.5mm以上且8.0mm以下,更优选为3.0mm以上且6.0mm以下。由此,能够充分确保第一部件457与第三部件459之间的间隔,从而能够配置足够大的电磁线圈456。另外,由于能够确保第二部件458在Z轴方向上的导热路径足够长,所以传递至第三部件459的热不容易传递到第一部件457。其结果为,第一部件457更不容易变形。The length Z2 of the
第三部件459的热导率优选大于第二部件458的热导率。由此,能够减小第三部件459与配置在其上表面的电磁线圈456之间的热阻。其结果为,电磁线圈456产生的热容易传递至第三部件459。由此,能够抑制电磁线圈456的温度上升,并且能够抑制第一部件457或反射镜451因热辐射而温度上升导致的应变。另一方面,由于第三部件459与第二部件458之间的热阻变大,所以传递至第三部件459的热不容易传递到第二部件458。由此,能够抑制第二部件458的温度上升,例如能够抑制第二部件458与第三部件459的界面、第二部件458与第一部件457的界面产生热应力。其结果为,能够抑制第一部件457产生翘曲等变形。The thermal conductivity of the
此外,第三部件459的热导率与第二部件458的热导率的差优选为10W/m·K以上,更优选为20W/m·K以上。另外,第三部件459的热导率优选为50W/m·K以上,更优选为100W/m·K以上。Further, the difference between the thermal conductivity of the
另一方面,第一部件457的热膨胀系数优选与第二部件458的热膨胀系数相同。由此,在第一部件457与第二部件458之间几乎不产生因温度变化导致的热膨胀差异。因此,支撑面4572不容易产生热应力,能够将第一部件457的变形抑制得特别小。另外,第一部件457的热膨胀系数优选与支撑部452的热膨胀系数相同。由此,在第一部件457与支撑部452之间,几乎不产生因温度变化导致的热膨胀差异。因此,支撑部452的背面452a不容易产生热应力,能够将支撑部452的变形抑制得特别小。另外,第一部件457的热膨胀系数优选与轴部453的热膨胀系数相同。由此,第一部件457与轴部453之间,几乎不产生因温度变化导致的热膨胀差异。因此,即使第一部件457、轴部453周围的气氛温度发生了变化,也能将轴部453的变形抑制得特别小。另外,第一部件457的热膨胀系数优选与反射镜451的热膨胀系数相同。由此,第一部件457与反射镜451之间,几乎不产生因温度变化导致的热膨胀差异。因此,即使第一部件457、反射镜451周围的气氛温度发生了变化,也能将反射镜451的变形抑制得特别小。此外,热膨胀系数相同是指线膨胀系数的差为1.0×10-6/K以下。On the other hand, the thermal expansion coefficient of the
此外,第一部件457的构成材料及第二部件458的构成材料分别可列举例如派热克斯玻璃(注册商标)、Tempax玻璃(注册商标)等硼硅酸玻璃、石英玻璃等玻璃材料外,还可列举硅、陶瓷、金属等。其中,优选使用玻璃材料。玻璃材料的热导率相对较小,因此抑制了第一部件457、第二部件458的温度上升。因此,能够更有效地抑制第一部件457的变形。另外,硼硅酸玻璃的线膨胀系数与硅相近,因此例如优选在支撑部452的构成材料为硅系材料时使用。In addition, the constituent material of the
另一方面,第三部件459的构成材料例如可列举铝、铝合金、不锈钢、铜、铜合金、镍、镍合金等金属材料。其中,优选使用铝或铝合金。由于它们的热导率相对较大,所以能够更有效地传递电磁线圈456产生的热。On the other hand, the constituent material of the
另外,第一部件457与第二部件458之间被粘合或接合。进而,第二部件458与第三部件459之间也被粘合或接合。粘合使用例如环氧系粘合剂、硅酮系粘合剂、丙烯酸系粘合剂等各种粘合剂。接合例如使用直接接合。In addition, the
此外,第二部件458与第三部件459的边界面并不限定于图示的位置。例如,也可以是比图7所示的边界面更向+Z轴方向偏移的位置。但在这种情况下,第二部件458的高度降低,第二部件458的热阻相应减少,并且从X轴方向俯视时第三部件459的形状呈L字形状导致制造成本增加,因此优选为图7所示的位置。In addition, the boundary surface of the
支撑部452的构成材料例如使用硅、氧化硅、氮化硅等硅系材料。具体来说,例如可通过对SOI(Silicon on Insulator,绝缘衬底上的硅)基板实施图案化加工,形成支撑部452和与其连接的轴部453、453及反射镜451。As the constituent material of the
另一方面,第一部件457与支撑部452之间及反射镜451与永久磁铁455之间例如使用上述粘合剂等进行粘合。On the other hand, between the
另外,图1所示的三维测量装置4具有收纳投影部41的壳体40,光学扫描部45(光学扫描仪)的第三部件459如图1及图8所示连接于壳体40。例如,第三部件459与壳体40之间通过粘合、金属接合、拧紧或其它方法而紧密接触。通过将第三部件459连接于壳体40,传递至第三部件459的热能够进一步向壳体40侧散发。由此,能够抑制热滞留在第三部件459并且能够抑制热传递到第二部件458。其结果为,能够进一步抑制第一部件457的变形。The three-
图7所示的电磁线圈456包括绕组4562、插通在绕组4562内侧的第一磁芯4564、及支撑第一磁芯4564的第二磁芯4566。第二磁芯4566呈板状,配置在第三部件459的+Z轴方向的面上。另外,第一磁芯4564呈圆柱状,连接于第二磁芯4566。The
从控制部48通过未图示的布线而对绕组4562施加交流电流及直流电流。另外,第一磁芯4564及第二磁芯4566分别为磁路调整用芯。通过设置这种第一磁芯4564及第二磁芯4566,能够调整磁路并增加使反射镜451摆动的转矩。因此,能够减小电磁线圈456的耗电。An alternating current and a direct current are applied to the winding 4562 from the
另外,通过将第二磁芯4566连接于第三部件459,绕组4562产生的热容易传递至第三部件459侧。其结果为,能够进一步缓和电磁线圈456的温度上升。In addition, by connecting the second
第一磁芯4564的构成材料及第二磁芯4566的构成材料分别可列举例如Mn-Zn系铁氧体、Ni-Zn系铁氧体等各种软铁氧体材料。As the constituent material of the first
如上所述,本实施方式所涉及的三维测量装置4使用激光光束L进行对象物W的三维测量,并具有:投影部41,具备光学扫描部45,光学扫描部45是向包含对象物W的区域投影激光光束L形成的图案光PL的光学扫描仪;拍摄部47,对照射了激光光束L的包含对象物W的区域进行拍摄而获取图像数据;控制部48,控制投影部41及拍摄部47的驱动;以及测量部49,基于图像数据进行包含对象物W的区域的三维测量。并且,光学扫描部45具有:反射镜451,具有反射光的反射面450和位于反射面450的相反侧的背面451a(第一背面);永久磁铁455,配置在反射镜451的背面451a;支撑部452,支撑反射镜451,具有位于与背面451a(第一背面)同一侧的背面452a(第二背面);轴部453、453,将反射镜451与支撑部452连接,使反射镜451能够绕着摆动轴J摆动;第一部件457,配置在支撑部452的背面452a(第二背面);第二部件458,与摆动轴J正交,在沿着背面452a(第二背面)的方向上悬臂支撑第一部件457;第三部件459,隔着第二部件458与第一部件457相对配置,并且与第二部件458连接;以及电磁线圈456,配置在第一部件457与第三部件459之间。As described above, the three-
这种三维测量装置4的光学扫描部45中,第二部件458悬臂支撑第一部件457,并且其支撑方向与摆动轴J交叉。因此,即使第一部件457随着热应力的产生而产生了翘曲,也能通过调整反射镜451的摆动角来修正该翘曲引起的图案光PL的描绘位置偏离。因此,即使光学扫描部45发生了温度变化,也能实现反射面450所带来的光扫描位置的精度高的光学扫描部45。其结果为,能够实现三维测量的精度高的三维测量装置4。In the
另外,本实施方式所涉及的机器人系统1具有:具备机械臂22的机器人2;三维测量装置4,设置在机械臂22上,使用激光光束L来进行对象物W的三维测量;机器人控制装置5,基于三维测量装置4的测量结果来控制机器人2的驱动。In addition, the robot system 1 according to the present embodiment includes a
这种机器人系统1中,如上所述,三维测量装置4的三维测量的精度高。因此,能够更准确地掌握对象物W的三维信息,从而能够提高机器人2针对对象物W执行的各种作业的准确性。In the robot system 1 of this type, as described above, the three-
6.应力解析6. Stress Analysis
以下的表1表示比较结果,具体为对于图7所示的光学扫描部45的第二部件458的不同构成材料的两个模型,当使光学扫描部45的温度变化时,通过应力解析求出反射面450的中心的移动量及反射面450的倾斜角度并进行比较而得到结果,该结果为上述比较结果。Table 1 below shows the comparison results, which are obtained by stress analysis when the temperature of the
光学扫描部45的第一模型中,反射镜451的构成材料及支撑部452的构成材料均为硅,第一部件457的构成材料为Tempax玻璃(注册商标),第二部件458的构成材料及第三部件459的构成材料均为铝。第一模型中,支撑部452与第一部件457的界面、第一部件457与第二部件458的界面通过粘合剂接合,第二部件458与第三部件459的界面是一体形成的。In the first model of the
光学扫描部45的第二模型中,第二部件458与第三部件459彼此独立设置,第二部件458的构成材料为Tempax玻璃(注册商标),第三部件459的构成材料为铝,除此以外与第一模型相同。另外,第二模型中,第二部件458与第三部件459的界面通过粘合剂接合。In the second model of the
关于这两个模型,通过FEM(Finite Element Method,有限单元法)解析来计算温度从5℃上升至60℃时的行为。Regarding these two models, the behavior when the temperature is increased from 5°C to 60°C is calculated by FEM (Finite Element Method) analysis.
表1Table 1
结果如表1所示,可知相比采用铝的第一模型,第二部件458的构成材料采用玻璃材料的第二模型在温度变化时,也能将反射面450的中心移动量及反射面450的倾斜角度分别抑制得较小。这些结果表明,分别优选为:第三部件459的热导率大于第二部件458的热导率,第一部件457的热膨胀系数与第二部件458的热膨胀系数相同,第一部件457的构成材料及第二部件458的构成材料分别为玻璃材料。The results are shown in Table 1. It can be seen that compared with the first model using aluminum, the second model using glass material as the constituent material of the
第二实施方式Second Embodiment
接下来,说明作为第二实施方式所涉及的光学扫描仪的光学扫描部45A。Next, the
图11是表示作为第二实施方式所涉及的光学扫描仪的光学扫描部45A的剖视图。11 is a cross-sectional view showing an
下面说明第二实施方式,以下说明中,以与第一实施方式不同的方面为中心进行说明,相同事项则省略说明。另外,图11中省略了一部分构成的图示。Next, the second embodiment will be described. In the following description, the difference from the first embodiment will be mainly described, and the description of the same matters will be omitted. In addition, in FIG. 11, illustration of a part of a structure is abbreviate|omitted.
图11所示的光学扫描部45A中,第一部件457与第二部件458形成为一体,除此以外与第一实施方式相同。The
具体来说,第一实施方式所涉及的光学扫描部45中,第一部件457与第二部件458分别独立设置,相对于此本实施方式中形成为一体。根据这种构成,第一部件457与第二部件458之间不存在边界面。因此,能够消除部件之间的边界面容易产生的粘合应力,从而能够更可靠地抑制第一部件457的变形。其结果为,能够将图案光PL投影至预期位置,从而能够提高三维测量的精度。另外,由于不需要第一部件457与第二部件458的粘合工序,所以能够减少光学扫描部45A的组装步骤数。如上所述的第二实施方式也获得与第一实施方式相同的效果。Specifically, in the
以上,基于图示的实施方式对本发明的光学扫描仪、三维测量装置及机器人系统进行了说明,但本发明并不限定于此,各部分的构成也可以替换成具有相同功能的任意构成。另外,本发明也可以附加其它任意的构成物。The optical scanner, the three-dimensional measurement device, and the robot system of the present invention have been described above based on the illustrated embodiments, but the present invention is not limited thereto, and the configuration of each part may be replaced with any configuration having the same function. In addition, other arbitrary components may be added to the present invention.
此外,本发明的光学扫描仪也可以用于三维测量装置以外的用途,例如可以用于头戴式显示器、平视显示器、投影仪等图像显示装置。In addition, the optical scanner of the present invention can also be used in applications other than three-dimensional measurement devices, and can be used in image display devices such as head-mounted displays, head-up displays, and projectors, for example.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-060482 | 2019-03-27 | ||
JP2019060482A JP7263878B2 (en) | 2019-03-27 | 2019-03-27 | Optical scanner, three-dimensional measuring device and robot system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111751985A true CN111751985A (en) | 2020-10-09 |
CN111751985B CN111751985B (en) | 2022-07-12 |
Family
ID=72605550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010224338.0A Active CN111751985B (en) | 2019-03-27 | 2020-03-26 | Optical scanners, 3D measuring devices and robotic systems |
Country Status (3)
Country | Link |
---|---|
US (1) | US11422361B2 (en) |
JP (1) | JP7263878B2 (en) |
CN (1) | CN111751985B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11022792B2 (en) * | 2016-12-27 | 2021-06-01 | Intel Corporation | Coupling a magnet with a MEMS device |
JP2020166371A (en) * | 2019-03-28 | 2020-10-08 | セイコーエプソン株式会社 | Information processing method, information processing device, object detection device and robot system |
JP2021089405A (en) * | 2019-12-06 | 2021-06-10 | セイコーエプソン株式会社 | Optical scanner, three-dimensional measuring device, and robot system |
JP7630947B2 (en) * | 2020-10-05 | 2025-02-18 | キヤノン株式会社 | Three-dimensional measurement device, system, and production method |
JP7537386B2 (en) | 2021-07-06 | 2024-08-21 | 横河電機株式会社 | Optical resonator and surface-emitting laser |
CN115793256B (en) * | 2022-12-01 | 2024-12-10 | 业成光电(深圳)有限公司 | Optical path adjustment component, optical system and vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736244A (en) * | 2011-04-06 | 2012-10-17 | 精工爱普生株式会社 | Actuator, optical scanner, and image forming apparatus |
CN104865698A (en) * | 2014-02-26 | 2015-08-26 | 北阳电机株式会社 | Metal elastic member and miniature machine |
US20180088336A1 (en) * | 2016-09-29 | 2018-03-29 | Seiko Epson Corporation | Optical scanner, image display device, head-mounted display, and heads-up display |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6445483B2 (en) * | 1996-07-01 | 2002-09-03 | Seiko Epson Corporation | Optical scanning apparatus |
JP2001004952A (en) * | 1999-06-24 | 2001-01-12 | Victor Co Of Japan Ltd | Optical deflector |
US20060119925A1 (en) * | 2004-12-03 | 2006-06-08 | Orcutt John W | Single torsional hinge mirror package |
JP2009069676A (en) | 2007-09-14 | 2009-04-02 | Ricoh Co Ltd | Optical scanner |
US9024992B2 (en) * | 2011-01-07 | 2015-05-05 | Canon Denshi Kabushiki Kaisha | Vibrating element, optical scanning device, and image forming device and image projection device using same |
JP6018926B2 (en) * | 2013-01-09 | 2016-11-02 | 富士フイルム株式会社 | Micromirror device and manufacturing method thereof |
JP6148057B2 (en) | 2013-03-29 | 2017-06-14 | 日本信号株式会社 | Planar actuator |
JP6569329B2 (en) * | 2015-06-29 | 2019-09-04 | セイコーエプソン株式会社 | Optical device and image display apparatus |
JP2017049436A (en) * | 2015-09-02 | 2017-03-09 | セイコーエプソン株式会社 | Electronic device, image display device, and head mounted display |
JP2017110991A (en) * | 2015-12-16 | 2017-06-22 | セイコーエプソン株式会社 | Measurement system, measurement method, robot control method, robot, robot system, and picking device |
JP2017181748A (en) * | 2016-03-30 | 2017-10-05 | セイコーエプソン株式会社 | Optical scanner, image display device, and head mounted display |
US10620447B2 (en) * | 2017-01-19 | 2020-04-14 | Cognex Corporation | System and method for reduced-speckle laser line generation |
-
2019
- 2019-03-27 JP JP2019060482A patent/JP7263878B2/en active Active
-
2020
- 2020-03-26 US US16/830,471 patent/US11422361B2/en active Active
- 2020-03-26 CN CN202010224338.0A patent/CN111751985B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736244A (en) * | 2011-04-06 | 2012-10-17 | 精工爱普生株式会社 | Actuator, optical scanner, and image forming apparatus |
CN104865698A (en) * | 2014-02-26 | 2015-08-26 | 北阳电机株式会社 | Metal elastic member and miniature machine |
US20180088336A1 (en) * | 2016-09-29 | 2018-03-29 | Seiko Epson Corporation | Optical scanner, image display device, head-mounted display, and heads-up display |
Also Published As
Publication number | Publication date |
---|---|
CN111751985B (en) | 2022-07-12 |
US11422361B2 (en) | 2022-08-23 |
US20200310107A1 (en) | 2020-10-01 |
JP2020160312A (en) | 2020-10-01 |
JP7263878B2 (en) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111751985B (en) | Optical scanners, 3D measuring devices and robotic systems | |
JP5913726B2 (en) | Gimbal scanning mirror array | |
JP5614167B2 (en) | Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus | |
US11312029B2 (en) | Three-dimensional measuring apparatus, robot, and robot system | |
JP7321688B2 (en) | Oscillating wave actuator and imaging device and stage device using the same | |
JP2015518977A (en) | Shape memory alloy actuator | |
CN112917473B (en) | Optical scanning device, three-dimensional measuring device, and robot system | |
CN103994728A (en) | Object detector and robot system | |
JP6452338B2 (en) | Stage device and driving method thereof | |
US20170307364A1 (en) | Holding apparatus, measurement apparatus, and article manufacturing method | |
CN211955984U (en) | Driving mechanism | |
US11693097B2 (en) | Optical scanning device, optical measuring apparatus, and robot | |
JP2021032798A (en) | Optical measuring device and robot | |
JP4789456B2 (en) | Planar actuator | |
US20160320609A1 (en) | Driving apparatus | |
JP6854638B2 (en) | Manufacturing methods for optics, exposure equipment, and articles | |
JP5787084B2 (en) | Optical scanning device | |
JP5314553B2 (en) | Light irradiation apparatus and imaging system | |
JP2017203871A (en) | Retainer, measuring device, and article manufacturing method | |
JP2004295029A (en) | Optical scanning device | |
TWM664942U (en) | Positioner | |
WO2023188533A1 (en) | Optical path changing device and projection-type image display device provided with same | |
WO2023188532A1 (en) | Optical path changing device and projection image display device provided with same | |
CN117308824A (en) | 3-dimensional measuring device, component mounting device, and 3-dimensional measuring method | |
JP2023020404A (en) | Camera module and electronic product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |