CN111751502A - Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing - Google Patents

Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing Download PDF

Info

Publication number
CN111751502A
CN111751502A CN202010649234.4A CN202010649234A CN111751502A CN 111751502 A CN111751502 A CN 111751502A CN 202010649234 A CN202010649234 A CN 202010649234A CN 111751502 A CN111751502 A CN 111751502A
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
simulated annealing
improved simulated
unmanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010649234.4A
Other languages
Chinese (zh)
Other versions
CN111751502B (en
Inventor
张振明
丁涛
刘振国
崔学林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202010649234.4A priority Critical patent/CN111751502B/en
Publication of CN111751502A publication Critical patent/CN111751502A/en
Application granted granted Critical
Publication of CN111751502B publication Critical patent/CN111751502B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0063General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0068General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a computer specifically programmed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention discloses a multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on an improved simulated annealing algorithm. Each unmanned aerial vehicle transmits information to the PC terminal ground center through the wireless transmission module, so that information interaction is carried out. The PC terminal ground center continuously updates the positions of all unmanned aerial vehicles based on an improved simulated annealing algorithm, and sends new position information to all unmanned aerial vehicles. When each unmanned aerial vehicle wanders ceaselessly at a certain position to form a circle with the radius of 1m, and the concentration of each unmanned aerial vehicle gas sensor is higher than a certain threshold value, the unmanned aerial vehicle gas sensor judges that a pollution source is found. Further, the algorithm is subjected to a simulation experiment under a manually-built Gaussian plume concentration field, and the simulation result verifies that the algorithm has higher feasibility, accuracy and traceability efficiency in the field of pollutant traceability research.

Description

Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing
Technical Field
The invention relates to a multi-unmanned-aerial-vehicle cooperative pollutant tracing method, and belongs to the field of multi-rotor unmanned aerial vehicles and atmospheric environment monitoring.
Background
Pollutants are primarily gaseous substances that are emitted into the atmosphere during human activities or natural processes and have a harmful effect on humans and the environment. Along with the rapid development of industrialization in recent years, governments at all levels put forward the requirements of higher emergency response and emergency disposal capability aiming at the severe situation of atmospheric pollution, accurately and rapidly determine the position and the influence of a pollution source, and have important significance for realizing the targeted treatment of the atmospheric pollution and establishing an effective emergency disposal scheme.
Traditional pollution source location is generally based on fixed monitoring stations, vehicle-mounted monitoring stations and wireless sensor networks, and the location of the pollution source is estimated by combining the location and pollutant concentration information. However, the positioning method of the fixed monitoring station and the vehicle-mounted monitoring station is slow and high in cost; the grid automatic detection method has small coverage area and low positioning accuracy. In recent years, many scholars try to search odor pollution sources by using single or multiple ground robots, however, the robots are influenced by the complex ground environment, the positioning speed is slow, the coverage area is small, and the robots are limited to the experimental stage at present. Also the scholars install gas sensor respectively in single unmanned aerial vehicle all directions, adopt concentration gradient algorithm to carry out the pollution sources location, nevertheless there is very big error in the sensor detection data that leads to all directions by the reason that rotor unmanned aerial vehicle screw stirs the air, sinks into local optimum easily, and single unmanned aerial vehicle spends long, and the robustness is relatively poor.
Disclosure of Invention
The invention aims to provide a multi-unmanned aerial vehicle cooperative pollutant tracing method based on improved simulated annealing. The method has the advantages of high positioning precision, high speed and strong robustness, and can avoid falling into local optimum.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows: a multi-unmanned aerial vehicle cooperative pollutant tracing method based on an improved simulated annealing algorithm comprises the following steps: the system comprises a plurality of rotor unmanned aerial vehicles, a gas sensor module, a wireless transmission module, an obstacle avoidance module and a PC end ground center; the plurality of rotor unmanned aerial vehicles are used for searching the specific position information of the leakage pollution source; the gas sensor module detects a pollutant gas type and concentration; the wireless transmission module is used for realizing information interaction between a plurality of unmanned aerial vehicles and a ground center of a PC (personal computer) terminal; the obstacle avoidance module is used for avoiding obstacles in the flight process of the unmanned aerial vehicle; and the PC terminal ground center is used for receiving information such as concentration and position of each unmanned aerial vehicle and updating the position of the unmanned aerial vehicle. The method comprises the following steps:
step 1: the suspected pollution source leakage area is set by adopting an artificial olfaction method, and the suspected pollution source leakage area is generally set mainly in densely distributed areas such as petrochemical plants, garbage treatment plants, leather plants, sewage treatment plants and the like.
Step 2: and dividing the suspected pollution source into a plurality of sub-areas according to the number N of the unmanned aerial vehicles. The fan-shaped sub-region angles are:
Figure BDA0002574265940000021
an unmanned aerial vehicle is placed in each sub-area to form a particle for searching, and all unmanned aerial vehicles in the whole area form a particle group to carry out pollution source positioning through information interaction.
And step 3: particle group X ═ X (X) composed of N unmanned aerial vehicles1,X2,X3...XN) Starting to take off from an initial position in a three-dimensional search space, and recording the initial position of each unmanned aerial vehicle as Xi=(Xix,Xiy,Xiz) (i ═ 1, 2.., N) and read the current location concentration data f (X)i)。
And 4, step 4: executing an improved simulated annealing global search strategy, searching smoke plume by adopting the thought of a hill climbing algorithm by each unmanned aerial vehicle, taking the current position as the circle center, taking the detection range of the gas sensor as the radius, and reading concentration data f (X ') of any point in the detection range'i) And the read data is transmitted back to the ground center of the PC terminal through the transmission module and is judged: if f (X'i)>f(Xi) Then Xi=X′i,f(Xi)=f(X′i) Otherwise Xi=Xi,f(Xi)=f(Xi) (ii) a The global search capability of the unmanned aerial vehicle is enhanced, and the global search efficiency of the unmanned aerial vehicle is improved.
And 5: continuously updating position X of each unmanned aerial vehicle based on improved simulated annealing global search strategyiThe unmanned aerial vehicle receives the instruction and flies to the updated position XiAnd quickly searching for smoke plume.
Step 6: and the ground center of the PC terminal judges whether the unmanned aerial vehicle finds the smoke plume by calculating whether the concentration data value of the population unmanned aerial vehicle exceeds a threshold value, if so, the local search strategy of executing improved simulated annealing is entered, and otherwise, the global search strategy of executing improved simulated annealing is continuously executed.
And 7: after the latest position information of each unmanned aerial vehicle is updated through the step 4, the concentration data f (X) of each unmanned aerial vehicle at the current position is comparedi) And the position of the unmanned aerial vehicle storing the current global optimal solution concentration data is taken as the center, the detection range of the gas sensor is taken as the radius, any N point concentration data in the detection range are read and randomly and evenly distributed to N unmanned aerial vehicles, and the group of concentration data is recorded as f (X ″)i) And the read data is transmitted back to the ground center of the PC terminal through the transmission module and is judged: if f (X ″)i)>f(Xi) Or f (X ″)i)<f(Xi) And meets Metropolis criterion, then Xi=X″i,f(Xi)=f(X″i) Otherwise Xi=Xi,f(Xi)=f(Xi)。
And 8: continuously updating position X of each unmanned aerial vehicle based on improved simulated annealing local search strategyiThe unmanned aerial vehicle receives the instruction and flies to the updated position XiGradually approaching the pollution source.
And step 9: judging whether the updated position is a stink pollution source, if each unmanned aerial vehicle continuously wanders at a certain position and forms a circular shape with the radius of about 1m, and the concentration of each unmanned aerial vehicle gas sensor is higher than a certain threshold value, judging that the pollution source is found, transmitting the position of the pollution source back to a PC-end ground center, and transmitting a return flight instruction to the unmanned aerial vehicle by the PC-end ground center; otherwise, continuing to execute the improved simulated annealing local search strategy in the step 7.
Drawings
FIG. 1 is a flow chart of the present invention
FIG. 2 is a schematic diagram of the division of the suspected contamination source leakage area and sub-area
FIG. 3 is a simulation route diagram of the algorithm of the present invention under the artificially constructed Gaussian plume concentration field
FIG. 4 is a polygonal line graph of experiment times and efficiency of the algorithm in the simulation process
FIG. 5 is a bar graph of the number of hits versus error rate for the inventive algorithm during simulation
FIG. 6 is a bar graph of the effective times and iteration times of the algorithm of the present invention during simulation
Detailed Description
As shown in fig. 1, a multi-drone collaborative pollutant tracing method based on improved simulated annealing specifically includes the following steps:
step 1: the suspected pollution source leakage area is set by adopting an artificial olfaction method, and the suspected pollution source leakage area is generally set mainly in densely distributed areas such as petrochemical plants, garbage treatment plants, leather plants, sewage treatment plants and the like.
Step 2: and dividing the suspected pollution source into a plurality of sub-areas according to the number N of the unmanned aerial vehicles. An unmanned aerial vehicle is placed in each sub-area to form a particle for searching, and all unmanned aerial vehicles in the whole area form a particle group to carry out pollution source positioning through information interaction.
The step 2: according to the number N of the unmanned aerial vehicles, the suspected pollution source is divided into a plurality of fan-shaped sub-areas, and the angles of the fan-shaped sub-areas are as follows:
Figure BDA0002574265940000031
and step 3: particle group X ═ X (X) composed of N unmanned aerial vehicles1,X2,X3…XN) Starting to take off from an initial position in a three-dimensional search space, and recording the initial position of each unmanned aerial vehicle as Xi=(Xix,Xiy,Xiz) (i ═ 1,2, …, N) and read the current position density data f (X)i)。
And 4, step 4: executing an improved simulated annealing global search strategy, and reading concentration data f (X ') of any point in a detection range by taking the current position as the circle center and the detection range of the gas sensor as the radius of each unmanned aerial vehicle'i) And the read data is transmitted back to the ground center of the PC terminal through the transmission module and is judged: if f (X'i)>f(Xi) Then Xi=X′i,f(Xi)=f(X′i) Otherwise Xi=Xi,f(Xi)=f(Xi)。
The step 4: and executing an improved simulated annealing global search strategy, and searching smoke plume by each unmanned aerial vehicle by adopting the thought of a hill climbing algorithm, so that the global search capability of the unmanned aerial vehicle is enhanced, and the global search efficiency of the unmanned aerial vehicle is improved.
And 5: continuously updating position X of each unmanned aerial vehicle based on improved simulated annealing global search strategyiThe unmanned aerial vehicle receives the instruction and flies to the updated position XiAnd quickly searching for smoke plume.
Step 6: the PC terminal ground center calculates whether the concentration data value of the unmanned aerial vehicles in the population exceeds a threshold value, and if the current concentration data of each unmanned aerial vehicle is less than a certain threshold value, the max (f (x) is1),f(x2),...f(xN) And <), the PC end ground center sends an instruction for continuously executing the improved simulated annealing global search strategy to each unmanned aerial vehicle, if the current concentration data of a certain unmanned aerial vehicle is greater than a set threshold value, the smoke plume is determined to be found, and the PC end ground center sends an instruction for executing the improved simulated annealing local search strategy to each unmanned aerial vehicle.
And 7: after the latest position information of each unmanned aerial vehicle is updated through the step 4, the concentration data f (X) of each unmanned aerial vehicle at the current position is comparedi) And the position of the unmanned aerial vehicle storing the current global optimal solution concentration data is taken as the center, the detection range of the gas sensor is taken as the radius, any N point concentration data in the detection range are read and randomly and evenly distributed to N unmanned aerial vehicles, and the group of concentration data is recorded as f (X ″)i) And the read data is transmitted back to the ground center of the PC terminal through the transmission module and is judged: if f (X ″)i)>f(Xi) Or f (X ″)i)<f(Xi) And meets Metropolis criterion, then Xi=X″i,f(Xi)=f(X″i) Otherwise Xi=Xi,f(Xi)=f(Xi)。
The step 7: the Metropolis criteria decision rule is as follows:
let Δ f (x)i)=f(X″i)-f(Xi),
Figure BDA0002574265940000041
If Δ f (x)i) If > 0, then Xi=X″i,f(Xi)=f(X″i);
If Δ f (x)i) < 0 and c ═ random (0, 1) > P, then Xi=Xi,f(Xi)=f(Xi);
If Δ f (x)i) < 0 and c ═ random (0, 1) < P, then Xi=X″i,f(Xi)=f(X″i);
Where k is the number of iterations and T (k) is the temperature after k iterations.
And 8: continuously updating position X of each unmanned aerial vehicle based on improved simulated annealing local search strategyiThe unmanned aerial vehicle receives the instruction and flies to the updated position XiGradually approaching the pollution source.
And step 9: judging whether the pollution source is successfully positioned or not, if so, transmitting the position of the pollution source back to the PC terminal ground center, and transmitting a return flight instruction to the unmanned aerial vehicle by the PC terminal ground center; otherwise, continuing to execute the improved simulated annealing local search strategy in the step 7.
The step 9: and judging whether the pollution source is successfully positioned or not, wherein if each unmanned aerial vehicle continuously wanders at a certain position, a circle with the radius of about 1m is formed, and the concentration of each unmanned aerial vehicle gas sensor is higher than a certain threshold value, judging that the pollution source is found.
As shown in fig. 4, the fact that whether the simulation experiment is effective is judged to be that if the monitoring concentration of each unmanned aerial vehicle is higher than a certain threshold, the simulation is effective.
As shown in fig. 4, on the basis of counting 100 simulation experiments, the number of times that a pollution source can be successfully searched is 93, the simulation effective rate reaches 93%, and data shows that the algorithm of the present invention has high feasibility in the field of pollutant tracing research.
As shown in FIG. 5, the error rate is calculated as
Figure BDA0002574265940000051
Wherein
Figure BDA0002574265940000052
Error rate for the ith drone, FiConcentration monitoring value F of the ith unmanned aerial vehicle in Gaussian plume concentration field built for people0And (4) setting up an actual concentration value of the pollution source in the Gaussian plume concentration field.
As shown in fig. 5, the probability of the traceability accuracy error range of each unmanned aerial vehicle is 0.871, 0.849, 0.892, 0.828 and 0.914 respectively in the range of 0-5%, and the probability of the traceability accuracy error range of each unmanned aerial vehicle is 0.968, 0.946, 0.957 and 0.968 respectively in the range of 0-10%, and data shows that the algorithm of the present invention has high accuracy in the field of researching the pollutant traceability.
As shown in fig. 6, the probability of the unmanned aerial vehicle population iteration frequency in the range of 0-20 is 0.763, and the probability of the unmanned aerial vehicle population iteration frequency in the range of 0-40 is 0.946, and data shows that the algorithm has high traceability efficiency in the field of pollutant traceability research.
The invention provides a multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing, a simulation experiment is carried out under a manually-built Gaussian plume concentration field, and a simulation result verifies that the algorithm has higher feasibility, accuracy and tracing efficiency in the field of pollutant tracing research.

Claims (7)

1. A multi-unmanned aerial vehicle cooperative pollutant tracing method based on improved simulated annealing is characterized by comprising the following steps:
step 1: setting a suspected pollution source leakage area by an artificial olfaction method;
step 2: dividing a suspected pollution source leakage area into a plurality of sub-areas according to the number N of the unmanned aerial vehicles, placing one unmanned aerial vehicle in each sub-area to form particle search, and enabling all the unmanned aerial vehicles in the whole area to form particle groups to carry out pollution source positioning through information interaction;
and step 3: particle group X ═ X (X) composed of N unmanned aerial vehicles1,X2,X3...XN) Starting to take off from an initial position in a three-dimensional search space, and recording the initial position of each unmanned aerial vehicleIs set to Xi=(Xix,Xiy,Xiz) (i ═ 1, 2.., N) and read the current location concentration data f (X)i);
And 4, step 4: executing an improved simulated annealing global search strategy, and reading concentration data f (X ') of any point in a detection range by taking the current position as the circle center and the detection range of the gas sensor as the radius of each unmanned aerial vehicle'i) And the read data is transmitted back to the ground center of the PC terminal through the transmission module and is judged: if f (X'i)>f(Xi) Then Xi=X′i,f(Xi)=f(X′i) Otherwise Xi=Xi,f(Xi)=f(Xi);
And 5: continuously updating position X of each unmanned aerial vehicle based on improved simulated annealing global search strategyiThe unmanned aerial vehicle receives the instruction and flies to the updated position XiRapidly searching for smoke plumes;
step 6: the ground center of the PC terminal judges whether the unmanned aerial vehicle finds the smoke plume or not by calculating whether the concentration data value of the population unmanned aerial vehicle exceeds a threshold value, if so, the local search strategy of executing improved simulated annealing is entered, otherwise, the global search strategy of executing improved simulated annealing is continuously executed;
and 7: after the latest position information of each unmanned aerial vehicle is updated through the step 4, the concentration data f (X) of each unmanned aerial vehicle at the current position is comparedi) And the position of the unmanned aerial vehicle storing the current global optimal solution concentration data is taken as the center, the detection range of the gas sensor is taken as the radius, any N point concentration data in the detection range are read and randomly and evenly distributed to N unmanned aerial vehicles, and the group of concentration data is recorded as f (X ″)i) And the read data is transmitted back to the ground center of the PC terminal through the transmission module and is judged: if f (X ″)i)>f(Xi) And meets Metropolis criterion, then Xi=X″i,f(Xi)=f(X″i) Otherwise Xi=Xi,f(Xi)=f(Xi);
And 8: continuously updating position X of each unmanned aerial vehicle based on improved simulated annealing local search strategyiAfter the unmanned aerial vehicle receives the instruction and flies to the updatePosition X ofiGradually approaching the pollution source;
and step 9: judging whether the pollution source is successfully positioned or not, if so, transmitting the position of the pollution source back to the PC terminal ground center, and transmitting a return flight instruction to the unmanned aerial vehicle by the PC terminal ground center; otherwise, continuing to execute the improved simulated annealing local search strategy in the step 7.
2. The multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on the improved simulated annealing is characterized in that: the areas where the suspected pollution sources are leaked in the step 1 are mainly densely distributed areas such as petrochemical plants, garbage disposal plants, leather plants, sewage disposal plants and the like.
3. The multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on the improved simulated annealing is characterized in that: in the step 2, the suspected pollution source leakage area is divided into a plurality of fan-shaped sub-areas according to the number of the unmanned aerial vehicles, and the angles of the fan-shaped sub-areas are as follows:
Figure FDA0002574265930000021
4. the multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on the improved simulated annealing is characterized in that: in the step 4, an improved simulated annealing global search strategy is executed, and each unmanned aerial vehicle adopts the thought of a hill climbing algorithm to search for smoke plumes, so that the global search capability of the unmanned aerial vehicle is enhanced, and the global search efficiency of the unmanned aerial vehicle is improved.
5. The multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on the improved simulated annealing is characterized in that: the PC terminal ground center calculates whether the concentration data value of the unmanned aerial vehicles in the population exceeds a threshold value, and if the current concentration data of each unmanned aerial vehicle is less than a certain threshold value, the max (f (x) is1),f(x2),...f(xN) <), the PC terminal ground center sends an instruction for continuously executing the improved simulated annealing global search strategy to each unmanned aerial vehicleIf the current concentration data of a certain unmanned aerial vehicle is larger than a set threshold value, the smoke plume is judged to be found, and the PC terminal ground center sends an instruction for executing an improved simulated annealing local search strategy to each unmanned aerial vehicle.
6. The multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on the improved simulated annealing is characterized in that: the Metropolis criterion decision rule in step 7 is as follows:
let Δ f (x)i)=f(X″i)-f(Xi),
Figure FDA0002574265930000022
If Δ f (x)i) < 0, then Xi=Xi,f(Xi)=f(Xi);
If Δ f (x)i) > 0 and c ═ random (0, 1) > P, then Xi=Xi,f(Xi)=f(Xi);
If Δ f (x)i) > 0 and c ═ random (0, 1) < P, then Xi=X″i,f(Xi)=f(X″i);
Where k is the number of iterations and T (k) is the temperature after k iterations.
7. The multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on the improved simulated annealing is characterized in that: and 9, judging whether the pollution source is successfully positioned or not, wherein the condition is that if each unmanned aerial vehicle continuously loiters at a certain position to form a circle with the radius of about 1m, and the concentration of each unmanned aerial vehicle gas sensor is higher than a certain threshold value, the unmanned aerial vehicle is judged to find the pollution source.
CN202010649234.4A 2020-07-08 2020-07-08 Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing Active CN111751502B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010649234.4A CN111751502B (en) 2020-07-08 2020-07-08 Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010649234.4A CN111751502B (en) 2020-07-08 2020-07-08 Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing

Publications (2)

Publication Number Publication Date
CN111751502A true CN111751502A (en) 2020-10-09
CN111751502B CN111751502B (en) 2022-07-05

Family

ID=72680064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010649234.4A Active CN111751502B (en) 2020-07-08 2020-07-08 Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing

Country Status (1)

Country Link
CN (1) CN111751502B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345201A (en) * 2020-11-10 2021-02-09 中国石油大学(北京) Gas leakage detection method and system
CN112446457A (en) * 2020-12-02 2021-03-05 中国计量大学 Gas leakage source positioning method based on improved artificial fish swarm algorithm
CN112650292A (en) * 2020-12-29 2021-04-13 中国计量大学 Multi-unmanned aerial vehicle path optimization method for industrial park pollution source monitoring
CN113190801A (en) * 2021-05-31 2021-07-30 中国计量大学 Multi-unmanned aerial vehicle cooperative pollution source positioning method based on anxiety degree-auction
CN113325129A (en) * 2021-04-20 2021-08-31 中国计量大学 Atmospheric pollutant tracing algorithm based on dynamic population
CN113484470A (en) * 2021-07-01 2021-10-08 浙江始祖鸟环境工程有限公司 High-sensitivity hydrogen sulfide gas detector
CN113532962A (en) * 2021-08-20 2021-10-22 中国计量大学 Pollution gas collection system based on unmanned aerial vehicle
CN114459538A (en) * 2022-01-21 2022-05-10 南京数之信市场研究有限公司 Unmanned aerial vehicle remote sensing inspection method and system for garbage classification point
CN114755373A (en) * 2022-06-16 2022-07-15 西安工业大学 Air pollution source early warning positioning method based on multi-robot formation
CN115409483A (en) * 2022-09-05 2022-11-29 江苏尚维斯环境科技股份有限公司 Tracing method and system for atmospheric pollution source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828140A (en) * 2018-04-26 2018-11-16 中国计量大学 A kind of multiple no-manned plane collaboration stench source tracing method based on particle swarm algorithm
CN106405040B (en) * 2016-11-17 2019-01-08 苏州航天系统工程有限公司 A kind of water quality inspection based on unmanned machine, pollutant source tracing method
CN109211202A (en) * 2018-09-21 2019-01-15 长安大学 A kind of method for optimizing route of the expressway slope inspection based on unmanned plane
CN110031004A (en) * 2019-03-06 2019-07-19 沈阳理工大学 Unmanned plane static state and dynamic path planning method based on numerical map
CN110927342A (en) * 2019-12-12 2020-03-27 中国计量大学 Atmospheric pollutant tracing method based on longicorn stigma search algorithm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405040B (en) * 2016-11-17 2019-01-08 苏州航天系统工程有限公司 A kind of water quality inspection based on unmanned machine, pollutant source tracing method
CN108828140A (en) * 2018-04-26 2018-11-16 中国计量大学 A kind of multiple no-manned plane collaboration stench source tracing method based on particle swarm algorithm
CN109211202A (en) * 2018-09-21 2019-01-15 长安大学 A kind of method for optimizing route of the expressway slope inspection based on unmanned plane
CN110031004A (en) * 2019-03-06 2019-07-19 沈阳理工大学 Unmanned plane static state and dynamic path planning method based on numerical map
CN110927342A (en) * 2019-12-12 2020-03-27 中国计量大学 Atmospheric pollutant tracing method based on longicorn stigma search algorithm

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
崔学林等: "基于无人机的大气污染物模糊控制溯源算法的仿真实现", 《科学技术与工程》 *
程磊等: "基于无线传感器网络的气体泄漏源定位机器人设计", 《传感器与微系统》 *
谢丽华等: "基于无人机的大气污染物变步长溯源算法研究", 《中国计量大学学报》 *
骆德汉等: "基于修正蚁群算法的多机器人气味源定位策略研究", 《机器人》 *
黄建新 等: "机器人主动嗅觉烟羽分布辨识方法研究", 《计算机仿真》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345201B (en) * 2020-11-10 2022-01-28 中国石油大学(北京) Gas leakage detection method and system
CN112345201A (en) * 2020-11-10 2021-02-09 中国石油大学(北京) Gas leakage detection method and system
CN112446457A (en) * 2020-12-02 2021-03-05 中国计量大学 Gas leakage source positioning method based on improved artificial fish swarm algorithm
CN112446457B (en) * 2020-12-02 2023-07-18 中国计量大学 Gas leakage source positioning method based on improved artificial fish swarm algorithm
CN112650292A (en) * 2020-12-29 2021-04-13 中国计量大学 Multi-unmanned aerial vehicle path optimization method for industrial park pollution source monitoring
CN112650292B (en) * 2020-12-29 2022-04-22 中国计量大学 Multi-unmanned aerial vehicle path optimization method for industrial park pollution source monitoring
CN113325129A (en) * 2021-04-20 2021-08-31 中国计量大学 Atmospheric pollutant tracing algorithm based on dynamic population
CN113190801A (en) * 2021-05-31 2021-07-30 中国计量大学 Multi-unmanned aerial vehicle cooperative pollution source positioning method based on anxiety degree-auction
CN113190801B (en) * 2021-05-31 2023-11-17 中国计量大学 Anxiety-auction-based multi-unmanned aerial vehicle collaborative pollution source positioning method
CN113484470A (en) * 2021-07-01 2021-10-08 浙江始祖鸟环境工程有限公司 High-sensitivity hydrogen sulfide gas detector
CN113532962A (en) * 2021-08-20 2021-10-22 中国计量大学 Pollution gas collection system based on unmanned aerial vehicle
CN113532962B (en) * 2021-08-20 2023-02-17 中国计量大学 Pollution gas collection system based on unmanned aerial vehicle
CN114459538A (en) * 2022-01-21 2022-05-10 南京数之信市场研究有限公司 Unmanned aerial vehicle remote sensing inspection method and system for garbage classification point
CN114755373A (en) * 2022-06-16 2022-07-15 西安工业大学 Air pollution source early warning positioning method based on multi-robot formation
CN115409483A (en) * 2022-09-05 2022-11-29 江苏尚维斯环境科技股份有限公司 Tracing method and system for atmospheric pollution source
CN115409483B (en) * 2022-09-05 2023-10-20 江苏尚维斯环境科技股份有限公司 Tracing method and system for atmospheric pollution source

Also Published As

Publication number Publication date
CN111751502B (en) 2022-07-05

Similar Documents

Publication Publication Date Title
CN111751502B (en) Multi-unmanned-aerial-vehicle cooperative pollutant tracing method based on improved simulated annealing
CN108828140A (en) A kind of multiple no-manned plane collaboration stench source tracing method based on particle swarm algorithm
Fu et al. Pollution source localization based on multi-UAV cooperative communication
CN112446457B (en) Gas leakage source positioning method based on improved artificial fish swarm algorithm
CN107562072A (en) A kind of unmanned plane optimum path planning method based on self-adaptive genetic operator
Cheng et al. Path planning based on immune genetic algorithm for UAV
CN115407784B (en) Unmanned vehicle route planning method based on air-ground information complementation
CN104181276A (en) Unmanned plane-based enterprise carbon emission detection method
CN111750869A (en) Unmanned aerial vehicle path planning method for reconstructing Voronoi diagram in real time
CN112666981A (en) Unmanned aerial vehicle cluster dynamic route planning method based on dynamic group learning of original pigeon group
CN105301203A (en) Odor source location method based on firework algorithm
CN110568140A (en) Pollution source exploration positioning method based on machine bionic fish
CN110927342B (en) Atmospheric pollutant tracing method based on longicorn stigma search algorithm
CN113092329A (en) Control method for preventing and controlling atmospheric pollution
CN113051665B (en) Multi-unmanned aerial vehicle gas leakage source positioning method based on improved particle swarm optimization
CN114489052A (en) Path planning method for improving RRT algorithm reconnection strategy
CN113701762B (en) Unmanned aerial vehicle search route establishing method and device
Yu et al. Path planning for mobile robot based on fast convergence ant colony algorithm
CN105066998A (en) Quantum-behaved pigeon inspired optimization-based unmanned aerial vehicle autonomous aerial refueling target detection method
CN116400737B (en) Safety path planning system based on ant colony algorithm
CN109558934A (en) A kind of unmanned plane interpolation moth flutters flame low-level penetration method
CN115469673A (en) Unmanned vehicle route planning method based on air-ground information cooperation
Bai et al. Dynamic multi-UAVs formation reconfiguration based on hybrid diversity-PSO and time optimal control
Ren et al. Intelligent path planning and obstacle avoidance algorithms for autonomous vehicles based on enhanced rrt algorithm
Li et al. Implementation of a UAV-sensory-system-based hazard source estimation in a chemical plant cluster

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240112

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 310018 School of modern science and technology, China University of metrology, No. 258 Xueyuan street, Jianggan District, Hangzhou, Zhejiang Province

Patentee before: China Jiliang University

TR01 Transfer of patent right