CN111744468A - A kind of low temperature alkali metal SCR denitration catalyst and its preparation method and application - Google Patents
A kind of low temperature alkali metal SCR denitration catalyst and its preparation method and application Download PDFInfo
- Publication number
- CN111744468A CN111744468A CN202010583698.XA CN202010583698A CN111744468A CN 111744468 A CN111744468 A CN 111744468A CN 202010583698 A CN202010583698 A CN 202010583698A CN 111744468 A CN111744468 A CN 111744468A
- Authority
- CN
- China
- Prior art keywords
- precursor
- oxide
- low
- denitration catalyst
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 68
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 229910052783 alkali metal Inorganic materials 0.000 title claims abstract description 24
- 150000001340 alkali metals Chemical class 0.000 title claims abstract description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000002243 precursor Substances 0.000 claims abstract description 35
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000003756 stirring Methods 0.000 claims abstract description 17
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 9
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 239000011733 molybdenum Substances 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 8
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims abstract description 8
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 8
- 239000010937 tungsten Substances 0.000 claims abstract description 8
- 229910001930 tungsten oxide Inorganic materials 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 6
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 239000010936 titanium Substances 0.000 claims abstract description 6
- 229910001935 vanadium oxide Inorganic materials 0.000 claims abstract description 6
- 238000001354 calcination Methods 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000000227 grinding Methods 0.000 claims abstract description 3
- 150000002739 metals Chemical class 0.000 claims abstract description 3
- 238000005303 weighing Methods 0.000 claims abstract description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract 5
- 238000007598 dipping method Methods 0.000 claims abstract 4
- 239000012702 metal oxide precursor Substances 0.000 claims abstract 2
- 239000003513 alkali Substances 0.000 claims description 19
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical group [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 15
- 229940010552 ammonium molybdate Drugs 0.000 claims description 15
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 15
- 239000011609 ammonium molybdate Substances 0.000 claims description 15
- 239000002028 Biomass Substances 0.000 claims description 10
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 10
- MBULCFMSBDQQQT-UHFFFAOYSA-N (3-carboxy-2-hydroxypropyl)-trimethylazanium;2,4-dioxo-1h-pyrimidine-6-carboxylate Chemical compound C[N+](C)(C)CC(O)CC(O)=O.[O-]C(=O)C1=CC(=O)NC(=O)N1 MBULCFMSBDQQQT-UHFFFAOYSA-N 0.000 claims description 7
- JRLDUDBQNVFTCA-UHFFFAOYSA-N antimony(3+);trinitrate Chemical compound [Sb+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JRLDUDBQNVFTCA-UHFFFAOYSA-N 0.000 claims description 7
- GAGGCOKRLXYWIV-UHFFFAOYSA-N europium(3+);trinitrate Chemical compound [Eu+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GAGGCOKRLXYWIV-UHFFFAOYSA-N 0.000 claims description 7
- WDVGLADRSBQDDY-UHFFFAOYSA-N holmium(3+);trinitrate Chemical group [Ho+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WDVGLADRSBQDDY-UHFFFAOYSA-N 0.000 claims description 7
- 238000003760 magnetic stirring Methods 0.000 claims description 7
- CFYGEIAZMVFFDE-UHFFFAOYSA-N neodymium(3+);trinitrate Chemical compound [Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CFYGEIAZMVFFDE-UHFFFAOYSA-N 0.000 claims description 7
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 5
- JVLRYPRBKSMEBF-UHFFFAOYSA-K diacetyloxystibanyl acetate Chemical compound [Sb+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JVLRYPRBKSMEBF-UHFFFAOYSA-K 0.000 claims description 5
- PVDYMOCCGHXJAK-UHFFFAOYSA-H europium(3+);oxalate Chemical compound [Eu+3].[Eu+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O PVDYMOCCGHXJAK-UHFFFAOYSA-H 0.000 claims description 5
- LNYNHRRKSYMFHF-UHFFFAOYSA-K europium(3+);triacetate Chemical compound [Eu+3].CC([O-])=O.CC([O-])=O.CC([O-])=O LNYNHRRKSYMFHF-UHFFFAOYSA-K 0.000 claims description 5
- DYYFBWLZDJSPGO-UHFFFAOYSA-H holmium(3+);oxalate Chemical compound [Ho+3].[Ho+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O DYYFBWLZDJSPGO-UHFFFAOYSA-H 0.000 claims description 5
- BONORRGKLJBGRV-UHFFFAOYSA-N methapyrilene hydrochloride Chemical compound Cl.C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CS1 BONORRGKLJBGRV-UHFFFAOYSA-N 0.000 claims description 5
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- UTWHRPIUNFLOBE-UHFFFAOYSA-H neodymium(3+);tricarbonate Chemical compound [Nd+3].[Nd+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O UTWHRPIUNFLOBE-UHFFFAOYSA-H 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 8
- 206010027439 Metal poisoning Diseases 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 3
- 238000010531 catalytic reduction reaction Methods 0.000 abstract description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 10
- 239000003546 flue gas Substances 0.000 description 10
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 238000007654 immersion Methods 0.000 description 7
- 231100000572 poisoning Toxicity 0.000 description 7
- 230000000607 poisoning effect Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- WKXHZKXPFJNBIY-UHFFFAOYSA-N titanium tungsten vanadium Chemical compound [Ti][W][V] WKXHZKXPFJNBIY-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 239000007848 Bronsted acid Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- -1 sodium and potassium Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及催化剂领域,具体为一种低温抗碱金属SCR脱硝催化剂及其制备方法与应用。The invention relates to the field of catalysts, in particular to a low-temperature alkali-resistant SCR denitration catalyst and a preparation method and application thereof.
背景技术Background technique
氮氧化物的大量排放,是造成复合型大气污染的关键污染物,成为当前迫切需要解决的环境问题。近年来,生物质锅炉因其独特的优势而被广泛关注。生物质锅炉避免了目前燃煤锅炉存在的“烟尘污染大、燃烧不充分、浪费大、不节能”等问题,且具有直接排放无烟、无尘、燃烧充分等特点,是未来的重要发展方向之一。随着环保标准的日益严格,生物质锅炉的NOx治理迫在眉睫。目前排放标准参考《锅炉大气污染物排放标准》GB13271-2014,特别排放限值为200mg/m3。要求更严格的地方规定生物质锅炉氮氧化物排放标准为150mg/m3,特别排放标准50mg/m3。The massive emission of nitrogen oxides is the key pollutant causing compound air pollution, and it has become an environmental problem that urgently needs to be solved. In recent years, biomass boilers have received extensive attention due to their unique advantages. Biomass boilers avoid the problems of "large smoke and dust pollution, insufficient combustion, large waste, and no energy saving" existing in coal-fired boilers, and have the characteristics of direct emission without smoke, dust, and sufficient combustion, which is an important development direction in the future. one. With the increasingly strict environmental protection standards, the NO x treatment of biomass boilers is imminent. The current emission standard refers to the "Boiler Air Pollutant Emission Standard" GB13271-2014, and the special emission limit is 200mg/m 3 . In places with stricter requirements, the nitrogen oxide emission standard for biomass boilers is 150mg/m 3 , and the special emission standard is 50 mg/m 3 .
NH3-SCR技术是目前应用最广泛的、技术最成熟的烟气脱硝技术之一,催化剂为该技术的核心。目前商用催化剂多为V2O5-WO3/TiO2催化剂,其工作温度一般在300~400℃范围内,已在燃煤电厂烟气处理上应用多年,技术较为成熟。然而,生物质锅炉烟气中含有较高浓度的钠、钾等碱金属,传统V2O5-WO3/TiO2催化剂的活性在此条件下会迅速降低,甚至完全失活。催化剂的抗碱金属中毒性能较差,是阻碍生物质能源化转化利用的一个主要障碍。NH 3 -SCR technology is currently one of the most widely used and mature flue gas denitrification technologies, and the catalyst is the core of the technology. At present, most commercial catalysts are V 2 O5-WO 3 /TiO 2 catalysts, whose working temperature is generally in the range of 300-400 °C. They have been used in coal-fired power plant flue gas treatment for many years, and the technology is relatively mature. However, the flue gas of biomass boilers contains high concentrations of alkali metals such as sodium and potassium, and the activity of traditional V 2 O5-WO 3 /TiO 2 catalysts will decrease rapidly or even completely deactivate under these conditions. The poor resistance to alkali metal poisoning of catalysts is a major obstacle to the conversion and utilization of biomass energy.
目前公开的关于低温抗碱金属SCR脱硝催化剂的专利,普遍起活温度较高,活性温度窗口仍然较窄,无法适用于温度波动大的烟气;同时其活性组分含量较高,增加了催化剂的制造成本。如专利CN201810573766.7公开的抗碱中毒高效脱硝催化剂,其起活温度高达300℃,极大的限制了该技术的应用。专利201810048205.5公开的平板式抗碱金属和硫中毒催化剂其测试温度则高达350℃。此外,专利CN201911015822.6公开了一种蜂窝式低温SCR催化剂制备工艺,虽然起活温度低至130℃,但温度高于180℃后活性迅速降低,且SO2明显导致催化剂较为严重的不可逆失活,同时仅仅活性组分锰的加入量已超过30%,这导致了过高的生产成本。The currently published patents on low-temperature alkali-resistant SCR denitration catalysts generally have a high activation temperature and a narrow active temperature window, which cannot be applied to flue gas with large temperature fluctuations; at the same time, the content of active components is high, increasing the catalyst manufacturing cost. For example, the anti-alkali poisoning and efficient denitration catalyst disclosed in patent CN201810573766.7 has an activation temperature as high as 300°C, which greatly limits the application of this technology. The test temperature of the flat-plate anti-alkali metal and sulfur poisoning catalyst disclosed in Patent 201810048205.5 is as high as 350°C. In addition, patent CN201911015822.6 discloses a preparation process of a honeycomb low-temperature SCR catalyst. Although the activation temperature is as low as 130 °C, the activity decreases rapidly when the temperature is higher than 180 °C, and SO 2 obviously leads to serious irreversible deactivation of the catalyst. At the same time, only the active component manganese has been added in an amount of more than 30%, which leads to excessive production costs.
研制开发低温高效、宽活性温度窗口、抗碱金属中毒性能优异同时生产成本低的SCR低温脱硝催化剂,对生物质锅炉的发展以及氮氧化物的减排具有重要意义。It is of great significance to the development of biomass boilers and the emission reduction of nitrogen oxides to develop SCR low-temperature denitration catalysts with low temperature and high efficiency, wide active temperature window, excellent anti-alkali metal poisoning performance and low production cost.
发明内容SUMMARY OF THE INVENTION
发明目的:为了克服现有技术中存在的不足,本发明目的是提供一种具有低温高效、宽活性温度窗口、强抗碱金属中毒性能且低成本的低温抗碱金属SCR脱硝催化剂,本发明的另一目的是提供一种制备方法简便、易于操作的低温抗碱金属SCR脱硝催化剂的制备方法,本发明的再一目的是提供一种低温抗碱金属SCR脱硝催化剂在生物质锅炉能源化转化中的应用。Purpose of the invention: In order to overcome the deficiencies in the prior art, the purpose of the present invention is to provide a low-temperature alkali-resistant SCR denitration catalyst with low temperature efficiency, wide active temperature window, strong alkali metal poisoning resistance and low cost. Another object is to provide a preparation method of a low-temperature alkali-resistant SCR denitration catalyst with a simple preparation method and easy operation. Another object of the present invention is to provide a low-temperature alkali-resistant SCR denitration catalyst in the energy conversion of biomass boilers. Applications.
技术方案:本发明所述的一种低温抗碱金属SCR脱硝催化剂,以钛的氧化物为载体,钒的氧化物为活性成分,钨、钼和稀有金属的氧化物为助催化剂;稀有金属为Eu、Nd、Ho或Sb中的一种或多种;钛、钒、钨、钼、稀有金属的质量比为100∶1~4∶2~6∶0.5~4∶0.5~3。Technical scheme: The low-temperature alkali-resistant SCR denitration catalyst described in the present invention takes titanium oxide as carrier, vanadium oxide as active component, tungsten, molybdenum and rare metal oxide as co-catalyst; the rare metal is One or more of Eu, Nd, Ho or Sb; the mass ratio of titanium, vanadium, tungsten, molybdenum and rare metals is 100:1-4:2-6:0.5-4:0.5-3.
钒的氧化物为VO2、V2O5或偏钒酸铵。钨的氧化物的前驱物为钨酸铵,钼的氧化物的前驱物为钼酸铵,铕的前驱物为硝酸铕、醋酸铕或草酸铕中的一种或多种,钕的前驱物为硝酸钕、碳酸钕或草酸钕中的一种或多种,钬的前驱体为硝酸钬、草酸钬或醋酸钬,锑的前驱体为硝酸锑或醋酸锑中的一种或多种。Oxides of vanadium are VO 2 , V 2 O 5 or ammonium metavanadate. The precursor of tungsten oxide is ammonium tungstate, the precursor of molybdenum oxide is ammonium molybdate, the precursor of europium is one or more of europium nitrate, europium acetate or europium oxalate, and the precursor of neodymium is One or more of neodymium nitrate, neodymium carbonate or neodymium oxalate, the precursor of holmium is holmium nitrate, holmium oxalate or holmium acetate, and the precursor of antimony is one or more of antimony nitrate or antimony acetate.
优选地,铕的前驱物为硝酸铕,钕的前驱物为硝酸钕,钬的前驱体为硝酸钬,锑的前驱体为醋酸锑。Preferably, the precursor of europium is europium nitrate, the precursor of neodymium is neodymium nitrate, the precursor of holmium is holmium nitrate, and the precursor of antimony is antimony acetate.
上述低温抗碱金属SCR脱硝催化剂的制备方法,包含以下步骤:The preparation method of the above-mentioned low-temperature alkali-resistant SCR denitration catalyst comprises the following steps:
步骤一,按元素质量比分别称量钛的氧化物、钒的氧化物、钨的氧化物的前驱物、钼的氧化物的前驱物、稀有金属氧化物的前驱物;In
步骤二,将钒的氧化物的前驱物、钨的氧化物的前驱物、钼的氧化物的前驱物及稀有金属的前驱物及二氧化钛加入50ml去离子水中,获得的溶液先用20~60kHz频率的超声波浸渍20~40min,后用转速为20~30r/s磁力搅拌浸渍3~5h,再升温至50~70℃,搅拌至水分完全蒸干,蒸干后,放入100~120℃烘箱中烘干10~16h,研磨成粉末,在400~500℃煅烧3~5h,得到低温抗碱SCR脱硝催化剂。Step 2: Add vanadium oxide precursors, tungsten oxide precursors, molybdenum oxide precursors, rare metal precursors and titanium dioxide into 50ml of deionized water, and the obtained solution is first used at a frequency of 20-60kHz. Ultrasonic immersion for 20~40min, then immersion for 3~5h with magnetic stirring at a rotational speed of 20~30r/s, then heat up to 50~70℃, stir until the water is completely evaporated to dryness, and after evaporation, put it in an oven at 100~120℃ Drying for 10-16 hours, grinding into powder, and calcining at 400-500° C. for 3-5 hours to obtain a low-temperature alkali-resistant SCR denitration catalyst.
上述低温抗碱金属SCR脱硝催化剂在生物质锅炉能源化转化中的应用。The application of the above-mentioned low-temperature alkali-resistant SCR denitration catalyst in the energy conversion of biomass boilers.
制备原理:采用超声加强的浸渍工艺,使活性组分更加均匀、分散的负载在TiO2载体表面。钼、锑及多种稀有金属元素,提供更多额外的酸性位点,同时改善催化剂低温氧化还原性能,进而提高催化剂低温活性及抗碱金属中毒性能。Preparation principle: The ultrasonic-enhanced impregnation process is used to make the active components more uniform and dispersed on the surface of the TiO 2 carrier. Molybdenum, antimony and various rare metal elements provide more additional acid sites, and at the same time improve the catalyst's low-temperature redox performance, thereby improving the catalyst's low-temperature activity and anti-alkali metal poisoning performance.
有益效果:本发明和现有技术相比,具有如下显著性特点:Beneficial effect: Compared with the prior art, the present invention has the following remarkable features:
1、低温抗碱金属SCR脱硝催化剂中仅添加少量钨、钼和锑的氧化物,且合理设定催化剂中钒、钨、钼、和稀有金属助剂的质量比,并采用超声加强的辅助手段,制备得到的低温抗碱金属SCR脱硝催化剂,具有低脱硝反应温度,宽催化还原脱硝活性温度窗口、优异抗碱金属中毒性能且成本低的特点;1. Only a small amount of oxides of tungsten, molybdenum and antimony are added to the low-temperature alkali-resistant SCR denitration catalyst, and the mass ratio of vanadium, tungsten, molybdenum, and rare metal additives in the catalyst is reasonably set, and the auxiliary means of ultrasonic reinforcement is adopted. , The prepared low-temperature alkali metal SCR denitration catalyst has the characteristics of low denitration reaction temperature, wide catalytic reduction and denitration activity temperature window, excellent alkali metal poisoning resistance and low cost;
2、低温抗碱金属SCR脱硝催化剂的起活温度T50低至150℃,能够在180℃条件下达到90%的脱硝效率,且在180~380℃温度区间内,脱硝效率能够维持在90%以上;2. The activation temperature T50 of the low-temperature alkali-resistant SCR denitration catalyst is as low as 150°C, and the denitration efficiency can reach 90% at 180°C, and the denitration efficiency can be maintained above 90% in the temperature range of 180-380°C. ;
3、低温抗碱金属SCR脱硝催化剂表面具有更多的Lewis酸及Bronsted酸,更加稳定;3. The surface of the low temperature alkali metal SCR denitration catalyst has more Lewis acid and Bronsted acid, which is more stable;
4、稀有金属元素的掺杂,显著改善了催化剂的低温氧化还原性;4. The doping of rare metal elements significantly improves the low-temperature redox performance of the catalyst;
5、本发明的制备方法简便,易于操作。5. The preparation method of the present invention is simple and easy to operate.
附图说明Description of drawings
图1是本发明的脱硝催化剂的脱硝性能曲线图。Fig. 1 is the denitration performance curve diagram of the denitration catalyst of the present invention.
图2是本发明的脱硝催化剂钠中毒后的性能曲线。Fig. 2 is the performance curve of the denitration catalyst of the present invention after sodium poisoning.
图3是本发明的脱硝催化剂钾中毒后的性能曲线。Fig. 3 is the performance curve of the denitration catalyst of the present invention after potassium poisoning.
图4是本发明的脱硝催化剂的原位红外测试结果。Figure 4 is an in-situ infrared test result of the denitration catalyst of the present invention.
具体实施方式Detailed ways
以下各实施例中,所有原料均为购买使用。In the following examples, all raw materials are purchased and used.
实施例1Example 1
低温抗碱金属SCR脱硝催化剂的制备方法,包含以下步骤:A preparation method of a low-temperature alkali-resistant SCR denitration catalyst, comprising the following steps:
(1)称量5g二氧化钛,0.081gVO2,0.134g钨酸铵,0.046g钼酸铵,0.037g硝酸铕,0.038g硝酸钕;(1) Weigh 5g titanium dioxide, 0.081g VO 2 , 0.134g ammonium tungstate, 0.046g ammonium molybdate, 0.037g europium nitrate, 0.038g neodymium nitrate;
(2)将VO2、钨酸铵、钼酸铵、硝酸铕、硝酸钕加入50ml去离子水中,在搅拌过程中缓慢加入二氧化钛,获得的溶液在20℃先用20kHz频率的超声波浸渍20min,后用转速为20r/s磁力搅拌3h,再升温至50℃,搅拌浸渍5h,蒸干后,放入100~120℃烘箱中烘干10h,研磨过100目筛,粉末在400℃煅烧3h。(2) Add VO 2 , ammonium tungstate, ammonium molybdate, europium nitrate, and neodymium nitrate into 50 ml of deionized water, slowly add titanium dioxide during stirring, and immerse the obtained solution at Stir with magnetic force at 20r/s for 3h, then heat up to 50°C, stir and impregnate for 5h, evaporate to dryness, put it in an oven at 100-120°C for 10h, grind it through a 100-mesh sieve, and calcine the powder at 400°C for 3h.
其中,硝酸铕可以替换为醋酸铕、草酸铕中的一种或多种,硝酸钕可以替换为碳酸钕或草酸钕中的一种或多种。Wherein, europium nitrate can be replaced with one or more of europium acetate and europium oxalate, and neodymium nitrate can be replaced with one or more of neodymium carbonate or neodymium oxalate.
实施例2Example 2
低温抗碱金属SCR脱硝催化剂的制备方法,包含以下步骤:The preparation method of the low-temperature alkali-resistant SCR denitration catalyst comprises the following steps:
(1)称量5g二氧化钛,0.357g V2O5,0.413g钨酸铵,0.368g钼酸铵,0.201g硝酸钬、0.190g硝酸锑;(1) Weigh 5g titanium dioxide, 0.357g V 2 O 5 , 0.413g ammonium tungstate, 0.368g ammonium molybdate, 0.201g holmium nitrate, 0.190g antimony nitrate;
(2)将V2O5、钨酸铵、钼酸铵、硝酸钬、硝酸锑加入50ml去离子水中,在搅拌过程中缓慢加入二氧化钛,获得的溶液在30℃先用60kHz频率的超声波浸渍40min,后用转速为30r/s磁力搅拌5h,再升温至70℃,搅拌浸渍8h,蒸干后,放入120℃烘箱中烘干16h,研磨过100目筛,粉末在500℃煅烧5h。(2) V 2 O 5 , ammonium tungstate, ammonium molybdate, holmium nitrate, and antimony nitrate were added to 50 ml of deionized water, and titanium dioxide was slowly added during the stirring process, and the obtained solution was first soaked with ultrasonic waves of 60 kHz frequency at 30° C. for 40 minutes After 5 hours of magnetic stirring with a rotating speed of 30r/s, the temperature was raised to 70°C, stirred and immersed for 8 hours, evaporated to dryness, dried in an oven at 120°C for 16 hours, ground through a 100-mesh sieve, and the powder was calcined at 500°C for 5 hours.
其中,硝酸钬可以替换为草酸钬、醋酸钬中的一种或多种,硝酸锑可以替换为醋酸锑。Wherein, holmium nitrate can be replaced with one or more of holmium oxalate and holmium acetate, and antimony nitrate can be replaced with antimony acetate.
实施例3Example 3
低温抗碱金属SCR脱硝催化剂的制备方法,包含以下步骤:The preparation method of the low-temperature alkali-resistant SCR denitration catalyst comprises the following steps:
(1)称量5g二氧化钛,0.229g偏钒酸铵,0.307g钨酸铵,0.184g钼酸铵,0.073g醋酸铕,0.048g草酸铕,0.063g草酸钕,0.063g硝酸锑;(1) Weigh 5g of titanium dioxide, 0.229g of ammonium metavanadate, 0.307g of ammonium tungstate, 0.184g of ammonium molybdate, 0.073g of europium acetate, 0.048g of europium oxalate, 0.063g of neodymium oxalate, and 0.063g of antimony nitrate;
(2)将偏钒酸铵、钨酸铵、钼酸铵、醋酸铕、草酸铕、草酸钕、硝酸锑加入50ml去离子水中,在搅拌过程中缓慢加入二氧化钛,获得的溶液在25℃先用40kHz频率的超声波浸渍30min,后用转速为25r/s磁力搅拌4h,再升温至60℃,搅拌浸渍6.5h,蒸干后,放入110℃烘箱中烘干13h,研磨过100目筛,粉末在450℃煅烧4h。(2) Add ammonium metavanadate, ammonium tungstate, ammonium molybdate, europium acetate, europium oxalate, neodymium oxalate, and antimony nitrate to 50 ml of deionized water, and slowly add titanium dioxide during stirring. Ultrasonic immersion at 40 kHz frequency for 30 minutes, followed by magnetic stirring at 25 r/s for 4 hours, then heated to 60 °C, stirring and immersion for 6.5 hours, evaporated to dryness, dried in a 110 °C oven for 13 hours, ground through a 100-mesh sieve, and powdered Calcined at 450°C for 4h.
实施例4Example 4
低温抗碱金属SCR脱硝催化剂的制备方法,包含以下步骤:The preparation method of the low-temperature alkali-resistant SCR denitration catalyst comprises the following steps:
(1)称量5g二氧化钛,0.081gVO2,0.115g偏钒酸铵,0.206g钨酸铵,0.092g钼酸铵,0.063g草酸钕,0.055g醋酸钬;(1) Weigh 5g titanium dioxide, 0.081g VO 2 , 0.115g ammonium metavanadate, 0.206g ammonium tungstate, 0.092g ammonium molybdate, 0.063g neodymium oxalate, 0.055g holmium acetate;
(2)将VO2、偏钒酸铵、钨酸铵、钼酸铵、草酸钕、醋酸钬加入50ml去离子水中,在搅拌过程中缓慢加入二氧化钛,获得的溶液在22℃先用25kHz频率的超声波浸渍25min,后用转速为22r/s磁力搅拌3.5h,再升温至55℃,搅拌浸渍6h,蒸干后,放入105℃烘箱中烘干11h,研磨过100目筛,粉末在410℃煅烧3.5h。(2) Add VO 2 , ammonium metavanadate, ammonium tungstate, ammonium molybdate, neodymium oxalate, and holmium acetate into 50 ml of deionized water, slowly add titanium dioxide during stirring, and use a Ultrasonic immersion for 25min, followed by magnetic stirring at 22r/s for 3.5h, then heated to 55°C, stirring and immersion for 6h, evaporated to dryness, placed in a 105°C oven for 11h, ground through a 100-mesh sieve, and the powder was heated at 410°C Calcined for 3.5h.
实施例5Example 5
低温抗碱金属SCR脱硝催化剂的制备方法,包含以下步骤:The preparation method of the low-temperature alkali-resistant SCR denitration catalyst comprises the following steps:
(1)称量5g二氧化钛,0.268g V2O5,0.344g钨酸铵,0.276g钼酸铵,0.180g草酸钬;(1) Weigh 5g of titanium dioxide, 0.268g of V 2 O 5 , 0.344g of ammonium tungstate, 0.276g of ammonium molybdate, and 0.180g of holmium oxalate;
(2)将V2O5、钨酸铵、钼酸铵、草酸钬加入50ml去离子水中,在搅拌过程中缓慢加入二氧化钛,获得的溶液在28℃先用55kHz频率的超声波浸渍35min,后用转速为28r/s磁力搅拌4.5h,再升温至65℃,搅拌浸渍7h,蒸干后,放入115℃烘箱中烘干15h,研磨过100目筛,粉末在490℃煅烧4.5h。(2) Add V 2 O 5 , ammonium tungstate, ammonium molybdate, and holmium oxalate into 50 ml of deionized water, and slowly add titanium dioxide during stirring. The obtained solution is first immersed with ultrasonic waves of 55 kHz frequency at 28° C. for 35 minutes, and then used Magnetic stirring at 28r/s for 4.5h, then heated to 65°C, stirring and immersing for 7h, evaporated to dryness, dried in a 115°C oven for 15h, ground through a 100-mesh sieve, and the powder was calcined at 490°C for 4.5h.
实施例6Example 6
低温抗碱金属SCR脱硝催化剂的制备方法,包含以下步骤:The preparation method of the low-temperature alkali-resistant SCR denitration catalyst comprises the following steps:
(1)称量(1) Weighing
(2)将5g二氧化钛溶于50mL去离子水中,加入0.229g偏钒酸铵、0.344g钨酸铵、0.184g钼酸铵、0.126g醋酸锑及0.182g硝酸铕;在40kHz条件下超声浸渍30min,常温下均匀搅拌4h,再升温至60℃以20r/s继续搅拌浸渍5h,然后待水分蒸干后,于110℃在烘箱中干燥12h,取出后研磨至100目以下,在马弗炉中500℃煅烧5h。(2) Dissolve 5g of titanium dioxide in 50mL of deionized water, add 0.229g of ammonium metavanadate, 0.344g of ammonium tungstate, 0.184g of ammonium molybdate, 0.126g of antimony acetate and 0.182g of europium nitrate; ultrasonically soak for 30min at 40kHz , stir evenly for 4 hours at room temperature, then heat up to 60 °C and continue stirring and immersion for 5 hours at 20 r/s, then after the water is evaporated to dryness, dry it in an oven at 110 °C for 12 hours, take it out and grind it to below 100 mesh, in a muffle furnace 500 ℃ calcination 5h.
实施例7Example 7
制备步骤与实施例6相同,不同之处在于催化剂原料为:二氧化钛5g、偏钒酸铵0.344g、钨酸铵0.344g、钼酸铵0.184g、硝酸钬0.384g。The preparation steps are the same as those in Example 6, except that the catalyst raw materials are: 5 g of titanium dioxide, 0.344 g of ammonium metavanadate, 0.344 g of ammonium tungstate, 0.184 g of ammonium molybdate, and 0.384 g of holmium nitrate.
实施例8Example 8
制备步骤与实施例6相同,不同之处在于催化剂原料为:二氧化钛5g、偏钒酸铵0.287g、钨酸铵0.172g、钼酸铵0.368g、硝酸钕0.304g。The preparation steps are the same as in Example 6, except that the catalyst raw materials are: 5 g of titanium dioxide, 0.287 g of ammonium metavanadate, 0.172 g of ammonium tungstate, 0.368 g of ammonium molybdate, and 0.304 g of neodymium nitrate.
对比例Comparative ratio
制备步骤与实施例6相同,不同之处在于催化剂原料为:二氧化钛5g、偏钒酸铵0.344及钨酸铵0.344g。The preparation steps are the same as in Example 6, except that the catalyst raw materials are: 5 g of titanium dioxide, 0.344 g of ammonium metavanadate and 0.344 g of ammonium tungstate.
脱硝性能测试Denitrification performance test
将实施例6-8及对比例制得的催化剂研磨、压片、筛分,取40~60目样品300mg用于催化活性测试实验。由于在烟气NOx的组成中,有约90%为NO,故模拟烟气中以NO来代替NOx,以标准钢瓶气(其中NO、NH3均是以N2为平衡气的混合气,NO体积分数为1.0%,NH3体积分数为1.0%)模拟烟气,进气组成为Φ(NO)=Φ(NH3)=0.05%,Φ(O2)=5%,N2为平衡气,总烟气量为100mL/min;各路气体经过质量流量计逐步混合最后进入空气混合器充分混合;反应器为内径7mm的石英管,带温控系统的立式管式加热炉提供反应温度环境;由Testo350-XL烟气分析仪对烟气进行分析,分析结果如图1。The catalysts prepared in Examples 6-8 and Comparative Examples were ground, tableted and sieved, and 300 mg of 40-60 mesh samples were used for catalytic activity testing experiments. Since about 90% of the NO x in the flue gas is NO, NO x is replaced by NO in the simulated flue gas, and the standard cylinder gas (where NO and NH 3 are mixed with N 2 as the balance gas) , the volume fraction of NO is 1.0%, and the volume fraction of NH 3 is 1.0%) to simulate the flue gas, and the intake air composition is Φ(NO)=Φ(NH 3 )=0.05%, Φ(O 2 )=5%, and N 2 is Equilibrium gas, the total flue gas volume is 100mL/min; each gas is gradually mixed through the mass flow meter and finally enters the air mixer for full mixing; the reactor is a quartz tube with an inner diameter of 7mm, which is provided by a vertical tubular heating furnace with a temperature control system The reaction temperature environment; the flue gas is analyzed by the Testo350-XL flue gas analyzer, and the analysis results are shown in Figure 1.
由图1可知,本发明制得的脱硝催化剂具有较低的起活温度和较宽的活性温度窗口,实施例6-8制备的SCR脱硝催化剂的起活温度T50低至150℃,在180℃~380℃之间,分别可以达到90%、80%和80%以上的脱硝效率。It can be seen from Figure 1 that the denitration catalyst prepared by the present invention has a lower activation temperature and a wider activation temperature window. Between ~380°C, denitration efficiencies of 90%, 80%, and 80% or more can be achieved, respectively.
由图2、3可知,本发明制得的脱硝催化剂表现出更高的抗钠、钾中毒性能。在250℃时,钠、钾中毒后的脱硝效率,相比钒钨钛催化剂分别提高了24%和17%。其中,钾中毒后,钒钨钛催化剂的高温活性几乎完全丧失,而本发明制备的催化剂仍具有一定活性。It can be seen from Figures 2 and 3 that the denitration catalyst prepared by the present invention exhibits higher resistance to sodium and potassium poisoning. At 250 °C, the denitration efficiency after sodium and potassium poisoning was increased by 24% and 17%, respectively, compared with the vanadium-tungsten-titanium catalyst. Wherein, after potassium poisoning, the high-temperature activity of the vanadium-tungsten-titanium catalyst is almost completely lost, while the catalyst prepared by the present invention still has a certain activity.
图4可以看出,相比传统钒钨钛催化剂,本发明制得的脱硝催化剂的酸性显著增强,尤其是1440cm-1处的B酸强度。这有利于催化剂活性的改善和抗碱金属性能的提高。将实施例6-8制得的催化剂的XRF测试结果分别汇总于表1,可以看出各组分含量与制备要求基本相符。It can be seen from Figure 4 that, compared with the traditional vanadium-tungsten-titanium catalyst, the acidity of the denitration catalyst prepared by the present invention is significantly enhanced, especially the B acid strength at 1440 cm −1 . This is beneficial to the improvement of catalyst activity and the improvement of anti-alkali metal performance. The XRF test results of the catalysts prepared in Examples 6-8 are summarized in Table 1, respectively, and it can be seen that the content of each component basically conforms to the preparation requirements.
表1催化剂的XRF测试结果Table 1 XRF test results of catalysts
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010583698.XA CN111744468A (en) | 2020-06-23 | 2020-06-23 | A kind of low temperature alkali metal SCR denitration catalyst and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010583698.XA CN111744468A (en) | 2020-06-23 | 2020-06-23 | A kind of low temperature alkali metal SCR denitration catalyst and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111744468A true CN111744468A (en) | 2020-10-09 |
Family
ID=72676917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010583698.XA Pending CN111744468A (en) | 2020-06-23 | 2020-06-23 | A kind of low temperature alkali metal SCR denitration catalyst and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111744468A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116272953A (en) * | 2023-02-28 | 2023-06-23 | 东南大学 | Catalyst for synergistic removal of nitrogen oxides and CVOCs, preparation and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005144299A (en) * | 2003-11-13 | 2005-06-09 | Nippon Shokubai Co Ltd | Nitrogen oxide removal catalyst and nitrogen oxide removal method |
CN108160086A (en) * | 2018-01-18 | 2018-06-15 | 华北电力大学 | A kind of flat alkali resistant metal and sulfur poisoning denitrating catalyst and preparation method thereof |
CN108201891A (en) * | 2017-12-28 | 2018-06-26 | 启源(西安)大荣环保科技有限公司 | A kind of low temperature SCR denitration catalyst and its configuration method |
CN109876799A (en) * | 2019-04-08 | 2019-06-14 | 国电环境保护研究院有限公司 | Ultra-low temperature SCR denitration catalyst and preparation method thereof |
CN110508273A (en) * | 2019-07-26 | 2019-11-29 | 华侨大学 | A low-temperature vanadium-titanium-based SCR denitration catalyst and its preparation method |
-
2020
- 2020-06-23 CN CN202010583698.XA patent/CN111744468A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005144299A (en) * | 2003-11-13 | 2005-06-09 | Nippon Shokubai Co Ltd | Nitrogen oxide removal catalyst and nitrogen oxide removal method |
CN108201891A (en) * | 2017-12-28 | 2018-06-26 | 启源(西安)大荣环保科技有限公司 | A kind of low temperature SCR denitration catalyst and its configuration method |
CN108160086A (en) * | 2018-01-18 | 2018-06-15 | 华北电力大学 | A kind of flat alkali resistant metal and sulfur poisoning denitrating catalyst and preparation method thereof |
CN109876799A (en) * | 2019-04-08 | 2019-06-14 | 国电环境保护研究院有限公司 | Ultra-low temperature SCR denitration catalyst and preparation method thereof |
CN110508273A (en) * | 2019-07-26 | 2019-11-29 | 华侨大学 | A low-temperature vanadium-titanium-based SCR denitration catalyst and its preparation method |
Non-Patent Citations (1)
Title |
---|
贺媛媛等: "WO_3添加方式对V_2O_5/TiO_2催化剂性能影响", 《功能材料》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116272953A (en) * | 2023-02-28 | 2023-06-23 | 东南大学 | Catalyst for synergistic removal of nitrogen oxides and CVOCs, preparation and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107262086B (en) | SCR denitrification catalyst for low-temperature flue gas to promote decomposition of ammonium bisulfate, preparation method and application | |
CN102500358B (en) | Denitration catalyst with excellent alkali metal and alkaline-earth metal poisoning resistance | |
CN103894182B (en) | A kind of have the catalyst for denitrating flue gas in wide active temperature interval and preparation method thereof | |
CN111992203A (en) | NH (hydrogen sulfide)3-SCR low-temperature denitration catalyst and preparation method and application thereof | |
CN106902813B (en) | The manganese based denitration catalyst and preparation method of a kind of samarium doped, zirconium | |
CN108160087A (en) | A kind of alkali resistant metal poisoning SCR denitration and preparation method thereof | |
CN108160069B (en) | A kind of SCR denitration catalyst with anti-arsenic poisoning performance and preparation method thereof | |
CN105688888A (en) | High-performance vanadium, cerium and titanium composite oxide catalyst for flue gas denitration and preparation method thereof | |
CN103638939B (en) | Composite metal sulfate series flue gas denitration catalyst and preparation method thereof | |
CN105797715B (en) | The preparation method of support type manganese-cerium composite oxide nano-wire catalyst | |
CN112371134B (en) | Preparation method of expanded graphite-based carrier-loaded low-temperature denitration catalyst | |
CN108671946A (en) | Phosphorus doping cerium titanium catalyst, preparation and its application in selective-catalytic-reduction denitrified | |
CN106984349B (en) | A kind of coke oven flue gas denitrating catalyst and preparation method thereof | |
CN111545188B (en) | Amorphous aluminosilicate-based denitration catalyst and preparation method thereof | |
CN111744468A (en) | A kind of low temperature alkali metal SCR denitration catalyst and its preparation method and application | |
CN111530448A (en) | High-sulfur-resistance nonmetal-doped metal oxide denitration catalyst and preparation method thereof | |
CN110479245A (en) | A kind of molybdenum cerium support type catalyst for denitrating flue gas and its preparation method and application | |
CN107158799A (en) | A kind of composite filtering material fiber and preparation method for SCR dedusting denitrations | |
CN107261644B (en) | A kind of difunctional composite filtering material fiber of low temperature dedusting-denitration and preparation method | |
CN115121256B (en) | Load type NH3Photocatalyst for SCR denitration and preparation method thereof | |
CN112023908A (en) | Nitrogen oxide removal catalyst and preparation method thereof | |
CN115672312B (en) | A hollow structure vanadium-free rare earth-based wide temperature denitrification catalyst and preparation method thereof | |
CN115888691B (en) | A gas turbine SCR denitration catalyst and its preparation method and application | |
CN107790122A (en) | A kind of molybdenum manganese zirconium denitrating catalyst and its preparation method and application | |
CN111495377A (en) | A method for selective low-temperature catalytic reduction of NO by PH3 based on agricultural waste biochar catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201009 |
|
RJ01 | Rejection of invention patent application after publication |