CN111739951A - 一种叉指埋栅型石墨烯光电混频器芯片及制备方法 - Google Patents

一种叉指埋栅型石墨烯光电混频器芯片及制备方法 Download PDF

Info

Publication number
CN111739951A
CN111739951A CN202010533298.8A CN202010533298A CN111739951A CN 111739951 A CN111739951 A CN 111739951A CN 202010533298 A CN202010533298 A CN 202010533298A CN 111739951 A CN111739951 A CN 111739951A
Authority
CN
China
Prior art keywords
interdigital
graphene
buried gate
adopting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010533298.8A
Other languages
English (en)
Other versions
CN111739951B (zh
Inventor
顾晓文
曹正义
吴云
孔月婵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202010533298.8A priority Critical patent/CN111739951B/zh
Publication of CN111739951A publication Critical patent/CN111739951A/zh
Application granted granted Critical
Publication of CN111739951B publication Critical patent/CN111739951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种叉指埋栅型石墨烯光电混频器芯片及制备方法,芯片包括石墨烯薄膜、叉指埋栅电极、漏电极和源电极;其中栅电极为微波本振信号输入口,光载射频信号通过光纤直接照射到器件石墨烯区域,由石墨烯吸收并进行光电转换,混频后的信号由漏电极输出。本发明的石墨烯光电混频器相比传统的磷化铟基和硅基光电混频器具有更广的光吸收波长范围、更宽的电学带宽;通过设计叉指埋栅结构能够有效提高光照射面积,并避免顶栅结构栅金属对光的反射,从而有效提高光的吸收效率;器件结构简单,可实现片上单片集成的光信号处理功能单元和芯片。

Description

一种叉指埋栅型石墨烯光电混频器芯片及制备方法
技术领域
本发明属于集成微波光子信号处理技术领域,具体涉及一种叉指埋栅型石墨烯光电混频器芯片及制备方法。
背景技术
光子技术具有带宽大、传输损耗低、抗电磁干扰、可调谐等突出优势,将光子技术与射频微波技术融合交叉,产生了微波光子技术。通过将射频微波信号调制在激光上,便可在光频上实现信号产生、调制、处理、长距离低损耗传输等功能,是引领未来雷达与通信行业的关键技术。微波光子信号处理作为研究热点之一,目前已实现了众多光子信号处理功能,有光混频、光滤波、光开关、光延时、微分、积分和希尔伯特变换等。此外,作为微波光子通信链路的接收端,一般需要实现微波混频、滤波、光电转换功能。光电混频技术是微波光子系统中必不可少的一部分,是卫星天线光纤拉远系统、光载无线系统和微波光子雷达等应用系统中的功能单元之一。一般地,接收机接收到的射频信号频率是不固定的,需要将高频的信号变频到低频或者基带进行处理。传统的微波光子混频需要电光调制器与光电探测器一起实现,主要有两类,一类是InP基,采用InGaAs材料体系,工作波长为1550nm,基于UTC-PD可实现频率100GHz的混频,但器件材料结构复杂,工艺步骤繁多;另一类是硅基,有两种方案分为CMOS-APD和硅调制器-GeSi探测器,前者工作波长为850nm,后者偏数字应用。
石墨烯作为一种二维材料,其具有优异的光电特性。石墨烯在300-2500nm波段,吸收光谱平坦,覆盖了可见光和近红外光,器件的电学带宽只受限于RC常数,理论带宽可高达500GHz。此外,基于单个场效应晶体管可实现光电探测与混频功能,器件结构简单,与CMOS兼容,能够实现Si基单片光电集成。目前已有基于石墨烯场效应晶体管实现光电混频器的功能的报道,但其性能较差,主要采用的器件结构为背栅结构和顶栅结构,其应用于光电混频上具有明显的劣势。
发明内容
本发明的目的在于提供一种叉指埋栅型石墨烯光电混频器芯片及制备方法,解决石墨烯光电混频器混频效率低的问题,能够显著增强光吸收、减小寄生参数,以此来提高混频效率。
实现本发明目的的技术解决方案:一种叉指埋栅型石墨烯光电混频器芯片,包括石墨烯薄膜、叉指埋栅电极、漏电极和源电极;所述石墨烯薄膜位于叉指埋栅电极的上层,中间为栅介质层以及BCB层;所述漏电极和源电极位于石墨烯薄膜上层;所述源电极、叉指埋栅电极、漏电极交错排布;其中叉指埋栅电极为微波本振信号输入口,光载射频信号通过光纤直接照射到石墨烯薄膜区域,由石墨烯吸收并进行光电转换,混频后的信号由漏电极输出。
一种叉指埋栅型石墨烯光电混频器芯片的制备方法,包括如下步骤:
1)在单晶高阻硅衬底材料上生长氧化硅介质;
2)采用电子束光刻显影技术制备出叉指栅槽的电子束胶掩膜图形,以电子束胶为掩膜采用感应耦合等离子体刻蚀出氧化硅栅槽;
3)在栅槽刻蚀的基础上,采用电子束蒸发和剥离工艺制备栅金属电极;
4)生长一层高k绝缘材料作为栅介质,并采用涂覆工艺在栅介质表面涂覆一层BCB薄膜并固化;
5)采用湿法金转移工艺转移石墨烯薄膜到材料芯片表面,烘干后依次用丙酮、乙醇进行浸泡清洗,并采用烘箱烘烤;
6)采用平面光刻显影技术制备出石墨烯图形的光刻胶掩膜,再湿法腐蚀金并氧化完成石墨烯的图形化;
7)采用平面光刻显影技术制备出源漏电极图形,采用电子束蒸发和剥离工艺制备出源漏电极;
8)采用电子束光刻显影技术制备出叉指栅上方石墨烯的电子束胶掩膜图形,再腐金使得栅金属上方的石墨烯裸露出来;
9)清洗芯片,并烘干完成芯片的制备。
与现有技术相比,本发明的显著优点为:
1)石墨烯光电混频器相比传统的磷化铟基和硅基光电混频器具有更广的光吸收波长范围、更宽的电学带宽;
2)通过设计叉指埋栅结构能够有效提高光照射面积,并避免顶栅结构栅金属对光的反射,从而有效提高光的吸收效率;
3)器件结构简单,可实现片上单片集成的光信号处理功能单元和芯片。
附图说明
图1是芯片材料生长示意图。
图2是氧化硅栅槽刻蚀示意图。
图3是栅金属制备示意图。
图4是栅介质生长和BCB界面处理示意图。
图5是石墨烯转移和图形化示意图。
图6是源漏电极制备示意图。
图7是石墨烯光电混频器芯片投影图。
图中:1是硅基氧化硅衬底、2是石墨烯薄膜、3是叉指埋栅电极、4是漏电极、5是源电极。
具体实施方式
如图7所示,叉指埋栅型石墨烯光电混频器芯片,其衬底材料为硅基氧化硅材料,其结构包括石墨烯薄膜2、叉指埋栅电极3、漏电极4和源电极5;
所述的石墨烯薄膜2在叉指埋栅电极3的上层,中间为栅介质层以及BCB层;所述漏电极4和源电极5位于石墨烯薄膜2上层;源电极5、叉指埋栅电极3、漏电极4交错排布,起于源电极5,终于源电极5;
其中栅电极3为微波本振信号输入口,光载射频信号通过光纤直接照射到器件石墨烯2区域,由石墨烯吸收并进行光电转换,混频后的中频信号由漏电极4输出。
进一步的,所述的叉指埋栅电极3的指数大于等于6指,对应的源电极5指数大于等于4指,漏电极4大于等于3指。
本发明还提供一种上述叉指埋栅型石墨烯光电混频器芯片的制备方法,具体包括如下步骤:
1)先在单晶高阻硅衬底材料上采用热氧化法生长大于500纳米的氧化硅介质,如图1所示;
2)采用电子束光刻显影技术制备出叉指栅槽的电子束胶掩膜图形,电子束胶可采用UV 135-0.9、ZEP 520A、PMMAA11或者AR-P 6200,以电子束胶为掩膜采用感应耦合等离子体刻蚀出氧化硅栅槽,采用的气体为三氟甲烷和氩气的混合气体,刻蚀深度为420纳米,如图2所示;
3)在栅槽刻蚀的基础上,采用电子束蒸发依次蒸发20纳米钛和400纳米金,并采用剥离工艺制备栅电极,如图3所示;
4)采用原子层沉积(ALD)生长氧化铝或者氧化铪作为栅介质,厚度6-20纳米,并采用涂覆工艺在栅介质表面涂覆一层BCB薄膜并固化,BCB薄膜厚度小于5纳米,如图4所示;
5)采用湿法金转移工艺转移石墨烯薄膜到材料芯片表面,烘干后依次用丙酮、乙醇进行浸泡清洗,并采用烘箱烘烤,温度为90摄氏度,时间大于8小时;
6)采用平面光刻显影技术制备出石墨烯图形的光刻胶掩膜,再采用腐金液将石墨烯表面的金腐蚀掉,并氧化去除部分石墨烯完成石墨烯的图形化,如图5所示;
7)采用平面光刻显影技术制备出源漏电极图形,蒸发20纳米钛和400纳米金作为源漏金属,剥离制备出源漏电极,如图6所示;
8)采用电子束光刻显影技术制备出叉指栅上方石墨烯的电子束胶掩膜图形,再采用腐金液将石墨烯表面的金腐蚀掉,使得栅金属上方的石墨烯裸露出来,用于吸收光信号;
9)依次用N-甲基吡咯烷酮、丙酮、乙醇进行浸泡对芯片进行清洗,最后烘干完成芯片的制备,芯片的结构如图7所示。
下面结合实施例对本发明进行详细说明。
实施例
如图7所示,叉指埋栅型石墨烯光电混频器芯片,其衬底材料为硅基氧化硅材料,其结构包括石墨烯薄膜2、叉指埋栅电极3、漏电极4和源电极5;其中栅电极3为微波本振信号输入口,光载射频信号通过光纤直接照射到器件石墨烯2区域,由石墨烯吸收并进行光电转换,混频后的中频信号由漏电极4输出。
所述的石墨烯薄膜2在叉指埋栅电极3的上层,中间为栅介质层以及BCB层。所述的叉指埋栅电极3的指数等于6指,对应的源电极指数等于4指,漏电极等于3指。源电极5、叉指埋栅电极3、漏电极4交错排布,起于源电极5,终于源电极5。
其制备方法,具体包括如下步骤:
1)先在单晶高阻硅衬底材料上采用热氧化法生长600纳米的氧化硅介质,如图1所示;
2)采用电子束光刻显影技术制备出叉指栅槽的电子束胶掩膜图形,电子束胶采用PMMAA11,厚度为1.2微米,以电子束胶为掩膜采用感应耦合等离子体刻蚀出氧化硅栅槽,采用的气体为三氟甲烷和氩气的混合气体,刻蚀深度为420纳米,如图2所示;
3)在栅槽刻蚀的基础上,采用电子束蒸发依次蒸发20纳米钛和400纳米金,并采用剥离工艺制备栅电极,如图3所示;
4)采用原子层沉积(ALD)生长氧化铝作为栅介质,厚度为10纳米,并采用涂覆工艺在栅介质表面涂覆一层BCB薄膜并固化,BCB薄膜厚度为4纳米,如图4所示;
5)采用湿法金转移工艺转移石墨烯薄膜到材料芯片表面,烘干后依次用丙酮、乙醇进行浸泡清洗,并采用烘箱烘烤,温度为90摄氏度,时间为12小时;
6)采用平面光刻显影技术制备出石墨烯图形的光刻胶掩膜,再采用腐金液将石墨烯表面的金腐蚀掉,并氧化去除部分石墨烯完成石墨烯的图形化,如图5所示;
7)采用平面光刻显影技术制备出源漏电极图形,蒸发20纳米钛和400纳米金作为源漏金属,剥离制备出源漏电极,如图6所示;
8)采用电子束光刻显影技术制备出叉指栅上方石墨烯的电子束胶掩膜图形,再采用腐金液将石墨烯表面的金腐蚀掉,使得栅金属上方的石墨烯裸露出来,用于吸收光信号;
9)依次用N-甲基吡咯烷酮、丙酮、乙醇进行浸泡对芯片进行清洗,最后烘干完成芯片的制备,芯片的结构如图7所示。其中图2~图6为双指示意图,仅对上述工艺进行简单示意,与图7的指数并不对应。
本发明通过设计叉指埋栅结构能够有效提高光照射面积,并避免顶栅结构栅金属对光的反射,从而有效提高光的吸收效率;器件结构简单,可实现片上单片集成的光信号处理功能单元和芯片。

Claims (10)

1.一种叉指埋栅型石墨烯光电混频器芯片,其特征在于,包括石墨烯薄膜(2)、叉指埋栅电极(3)、漏电极(4)和源电极(5);所述石墨烯薄膜(2)位于叉指埋栅电极(3)的上层,中间为栅介质层以及BCB层;所述漏电极(4)和源电极(5)位于石墨烯薄膜(2)上层;所述源电极(5)、叉指埋栅电极(3)、漏电极(4)交错排布;其中叉指埋栅电极(3)为微波本振信号输入口,光载射频信号通过光纤直接照射到石墨烯薄膜(2)区域,由石墨烯吸收并进行光电转换,混频后的信号由漏电极(4)输出。
2.根据权利要求1所述的叉指埋栅型石墨烯光电混频器芯片,其特征在于,芯片的衬底材料为硅基氧化硅材料。
3.根据权利要求1所述的叉指埋栅型石墨烯光电混频器芯片,其特征在于,所述的叉指埋栅电极(3)的指数大于等于6指,对应的源电极(5)指数大于等于4指,漏电极(4)大于等于3指。
4.一种如权利要求1~3任意一项所述叉指埋栅型石墨烯光电混频器芯片的制备方法,其特征在于,包括如下步骤:
1)在单晶高阻硅衬底材料上生长氧化硅介质;
2)采用电子束光刻显影技术制备出叉指栅槽的电子束胶掩膜图形,以电子束胶为掩膜采用感应耦合等离子体刻蚀出氧化硅栅槽;
3)在栅槽刻蚀的基础上,采用电子束蒸发和剥离工艺制备栅金属电极;
4)生长一层高k绝缘材料作为栅介质,并采用涂覆工艺在栅介质表面涂覆一层BCB薄膜并固化;
5)采用湿法金转移工艺转移石墨烯薄膜到材料芯片表面,烘干后依次用丙酮、乙醇进行浸泡清洗,并采用烘箱烘烤;
6)采用平面光刻显影技术制备出石墨烯图形的光刻胶掩膜,再湿法腐蚀金并氧化完成石墨烯的图形化;
7)采用平面光刻显影技术制备出源漏电极图形,采用电子束蒸发和剥离工艺制备出源漏电极;
8)采用电子束光刻显影技术制备出叉指栅上方石墨烯的电子束胶掩膜图形,再腐金使得栅金属上方的石墨烯裸露出来;
9)清洗芯片,并烘干完成芯片的制备。
5.根据权利要求4所述的叉指埋栅型石墨烯光电混频器芯片的制备方法,其特征在于,所述步骤1)采用热氧化法生长厚度大于500纳米的氧化硅介质。
6.根据权利要求4所述的叉指埋栅型石墨烯光电混频器芯片的制备方法,其特征在于,所述步骤2)电子束光刻显影技术采用UV 135-0.9、ZEP 520A、PMMAA11或者AR-P 6200电子束正胶;
刻蚀采用的气体为三氟甲烷和氩气的混合气体,刻蚀深度为420纳米。
7.根据权利要求4所述的叉指埋栅型石墨烯光电混频器芯片的制备方法,其特征在于,所述步骤3)栅电极金属为20纳米钛和400纳米金。
8.根据权利要求4所述的叉指埋栅型石墨烯光电混频器芯片的制备方法,其特征在于,所述步骤4)采用原子层沉积生长氧化铝或者氧化铪作为栅介质,厚度6-20纳米;BCB薄膜的厚度小于5纳米。
9.根据权利要求4所述的叉指埋栅型石墨烯光电混频器芯片的制备方法,其特征在于,所述步骤5)烘箱烘烤温度为90摄氏度,时间大于8小时。
10.根据权利要求4所述的叉指埋栅型石墨烯光电混频器芯片的制备方法,其特征在于,所述步骤7)源漏电极金属为20纳米钛和400纳米金。
CN202010533298.8A 2020-06-12 2020-06-12 一种叉指埋栅型石墨烯光电混频器芯片及制备方法 Active CN111739951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010533298.8A CN111739951B (zh) 2020-06-12 2020-06-12 一种叉指埋栅型石墨烯光电混频器芯片及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010533298.8A CN111739951B (zh) 2020-06-12 2020-06-12 一种叉指埋栅型石墨烯光电混频器芯片及制备方法

Publications (2)

Publication Number Publication Date
CN111739951A true CN111739951A (zh) 2020-10-02
CN111739951B CN111739951B (zh) 2022-08-16

Family

ID=72650093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010533298.8A Active CN111739951B (zh) 2020-06-12 2020-06-12 一种叉指埋栅型石墨烯光电混频器芯片及制备方法

Country Status (1)

Country Link
CN (1) CN111739951B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415653A (zh) * 2020-10-22 2021-02-26 中国电子科技集团公司第五十五研究所 一种硅基光波导和石墨烯光电混频器集成芯片与制备方法
CN114864708A (zh) * 2022-05-06 2022-08-05 北京交通大学 多栅极石墨烯场效应晶体管型光电传感器及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931057A (zh) * 2012-11-16 2013-02-13 中国科学院上海微系统与信息技术研究所 一种基于栅介质结构的石墨烯场效应器件及其制备方法
CN108231803A (zh) * 2017-12-26 2018-06-29 中国电子科技集团公司第五十五研究所 氮化硅光波导器件和石墨烯探测器集成芯片及其制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931057A (zh) * 2012-11-16 2013-02-13 中国科学院上海微系统与信息技术研究所 一种基于栅介质结构的石墨烯场效应器件及其制备方法
CN108231803A (zh) * 2017-12-26 2018-06-29 中国电子科技集团公司第五十五研究所 氮化硅光波导器件和石墨烯探测器集成芯片及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415653A (zh) * 2020-10-22 2021-02-26 中国电子科技集团公司第五十五研究所 一种硅基光波导和石墨烯光电混频器集成芯片与制备方法
CN114864708A (zh) * 2022-05-06 2022-08-05 北京交通大学 多栅极石墨烯场效应晶体管型光电传感器及制备方法

Also Published As

Publication number Publication date
CN111739951B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN108231803B (zh) 氮化硅光波导器件和石墨烯探测器集成芯片及其制作方法
CN112415653A (zh) 一种硅基光波导和石墨烯光电混频器集成芯片与制备方法
Hamada et al. 300-GHz. 100-Gb/s InP-HEMT wireless transceiver using a 300-GHz fundamental mixer
US9590739B2 (en) High electron mobility transistor-based terahertz wave space external modulator
CN111739951B (zh) 一种叉指埋栅型石墨烯光电混频器芯片及制备方法
CN111736370A (zh) 一种薄膜铌酸锂基集成芯片及制备方法
US9341868B2 (en) Silicon-based electro-optical device
CN112764246B (zh) 一种薄膜铌酸锂电光调制器及其制备方法
CN103457669B (zh) 肖特基栅阵型太赫兹调制器及其调控方法
CN112444912A (zh) 一种高速集成可调光延时线与制备方法
CN112349803B (zh) 一种锗硅光电探测器
US20210018597A1 (en) Phased array lidar transmitting chip of mixed materials, manufacturing method thereof, and lidar device
CN110505019A (zh) 一种基于片上太赫兹倍频调制多功能芯片
CN107102453B (zh) 一种鳍线加载hemt嵌套结构的太赫兹波快速调制器
Zhou et al. Terahertz direct modulation techniques for high-speed communication systems
JP2016161890A (ja) 光デバイス
Ma et al. A wide stopband dual-band bandpass filter based on asymmetrical parallel-coupled transmission line resonator
CN209707731U (zh) 一种立体硅基模式控制器件
US10326423B1 (en) Impedance matching circuits for photonic devices
CN108508635B (zh) 基于SiGe材料的电调谐有源波导结构以及应用其的MZI结构
CN115188841B (zh) 一种GaN HEMT结构太赫兹探测器及制备方法
CN114614905B (zh) 基于光谱整形的多倍频程带宽mpl线性化采集接收芯片
CN114300820B (zh) 一种基于c型环耦合的并联拓扑片上超构太赫兹开关
CN113805364B (zh) 一种光子晶体微腔-石墨烯电光调制器
CN114389704A (zh) 一种基于mzi-mrr结构的微波光子滤波器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant