CN111738052B - 基于深度学习的多特征融合高光谱遥感地物分类方法 - Google Patents
基于深度学习的多特征融合高光谱遥感地物分类方法 Download PDFInfo
- Publication number
- CN111738052B CN111738052B CN202010283627.8A CN202010283627A CN111738052B CN 111738052 B CN111738052 B CN 111738052B CN 202010283627 A CN202010283627 A CN 202010283627A CN 111738052 B CN111738052 B CN 111738052B
- Authority
- CN
- China
- Prior art keywords
- samples
- training
- remote sensing
- neural network
- hyperspectral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000004927 fusion Effects 0.000 title claims abstract description 27
- 238000013135 deep learning Methods 0.000 title claims abstract description 16
- 238000012549 training Methods 0.000 claims abstract description 42
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 26
- 238000012360 testing method Methods 0.000 claims abstract description 16
- 238000013528 artificial neural network Methods 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 25
- 238000001228 spectrum Methods 0.000 claims description 10
- 238000003062 neural network model Methods 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000007477 logistic regression Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract 1
- 238000007781 pre-processing Methods 0.000 abstract 1
- 238000002474 experimental method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241000234276 Curculigo Species 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 240000006413 Prunus persica var. persica Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/194—Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Evolutionary Biology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010283627.8A CN111738052B (zh) | 2020-04-13 | 2020-04-13 | 基于深度学习的多特征融合高光谱遥感地物分类方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010283627.8A CN111738052B (zh) | 2020-04-13 | 2020-04-13 | 基于深度学习的多特征融合高光谱遥感地物分类方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111738052A CN111738052A (zh) | 2020-10-02 |
CN111738052B true CN111738052B (zh) | 2024-03-12 |
Family
ID=72647883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010283627.8A Active CN111738052B (zh) | 2020-04-13 | 2020-04-13 | 基于深度学习的多特征融合高光谱遥感地物分类方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111738052B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113344871B (zh) * | 2021-05-27 | 2024-08-20 | 中国农业大学 | 农业遥感图像分析方法及系统 |
CN113469099B (zh) * | 2021-07-13 | 2024-03-15 | 北京航科威视光电信息技术有限公司 | 目标检测模型的训练方法、检测方法、装置、设备及介质 |
CN113962913B (zh) * | 2021-09-26 | 2023-09-15 | 西北大学 | 一种融合光谱空间信息的深度互学习框架的构建方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102214262A (zh) * | 2010-04-02 | 2011-10-12 | 上海海洋大学 | 一种潮汐预报方法 |
CN107292343A (zh) * | 2017-06-23 | 2017-10-24 | 中南大学 | 一种基于六层卷积神经网络和光谱‑空间信息联合的高光谱遥感图像分类方法 |
CN109993220A (zh) * | 2019-03-23 | 2019-07-09 | 西安电子科技大学 | 基于双路注意力融合神经网络的多源遥感图像分类方法 |
CN110084294A (zh) * | 2019-04-18 | 2019-08-02 | 北京师范大学 | 一种基于多尺度深度特征的遥感影像分类方法 |
CN110363071A (zh) * | 2019-05-31 | 2019-10-22 | 上海海洋大学 | 一种协同主动学习和直推式支持向量机的海冰检测方法 |
CN110443302A (zh) * | 2019-08-02 | 2019-11-12 | 天津相和电气科技有限公司 | 基于特征融合与深度学习的负荷辨识方法及其应用 |
-
2020
- 2020-04-13 CN CN202010283627.8A patent/CN111738052B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102214262A (zh) * | 2010-04-02 | 2011-10-12 | 上海海洋大学 | 一种潮汐预报方法 |
CN107292343A (zh) * | 2017-06-23 | 2017-10-24 | 中南大学 | 一种基于六层卷积神经网络和光谱‑空间信息联合的高光谱遥感图像分类方法 |
CN109993220A (zh) * | 2019-03-23 | 2019-07-09 | 西安电子科技大学 | 基于双路注意力融合神经网络的多源遥感图像分类方法 |
CN110084294A (zh) * | 2019-04-18 | 2019-08-02 | 北京师范大学 | 一种基于多尺度深度特征的遥感影像分类方法 |
CN110363071A (zh) * | 2019-05-31 | 2019-10-22 | 上海海洋大学 | 一种协同主动学习和直推式支持向量机的海冰检测方法 |
CN110443302A (zh) * | 2019-08-02 | 2019-11-12 | 天津相和电气科技有限公司 | 基于特征融合与深度学习的负荷辨识方法及其应用 |
Non-Patent Citations (3)
Title |
---|
利用卷积神经网络的高光谱图像分类;赵漫丹;任治全;吴高昌;郝向阳;测绘科学技术学报;20171231;第34卷(第5期);全文 * |
基于深度学习的高光谱遥感图像分类;邢晨;CNKI;20161231;全文 * |
基于深度学习的高光谱遥感图像特征学习与分类算法研究;刘群;CNKI;20181231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111738052A (zh) | 2020-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111368896B (zh) | 基于密集残差三维卷积神经网络的高光谱遥感图像分类方法 | |
CN111414942B (zh) | 一种基于主动学习和卷积神经网络的遥感图像分类方法 | |
CN110443143B (zh) | 多分支卷积神经网络融合的遥感图像场景分类方法 | |
CN110321963B (zh) | 基于融合多尺度多维空谱特征的高光谱图像分类方法 | |
CN106203523B (zh) | 基于梯度提升决策树半监督算法融合的高光谱图像分类方法 | |
CN111738052B (zh) | 基于深度学习的多特征融合高光谱遥感地物分类方法 | |
CN107273938B (zh) | 基于双通道卷积阶梯网的多源遥感影像地物分类方法 | |
CN113159051A (zh) | 一种基于边缘解耦的遥感图像轻量化语义分割方法 | |
CN112347970B (zh) | 一种基于图卷积神经网络的遥感影像地物识别方法 | |
CN107092870A (zh) | 一种高分辨率影像语意信息提取方法及系统 | |
CN108564115A (zh) | 基于全卷积gan的半监督极化sar地物分类方法 | |
CN108229551B (zh) | 一种基于紧凑字典稀疏表示的高光谱遥感图像分类方法 | |
CN109344891A (zh) | 一种基于深度神经网络的高光谱遥感数据分类方法 | |
CN111639587B (zh) | 基于多尺度谱空卷积神经网络的高光谱图像分类方法 | |
CN107832797B (zh) | 基于深度融合残差网的多光谱图像分类方法 | |
CN110633708A (zh) | 一种基于全局模型和局部优化的深度网络显著性检测方法 | |
CN113486851A (zh) | 基于双分支光谱多尺度注意力网络的高光谱图像分类方法 | |
CN105160351B (zh) | 基于锚点稀疏图的半监督高光谱分类方法 | |
CN110414616B (zh) | 一种利用空间关系的遥感图像字典学习分类方法 | |
CN110807485B (zh) | 基于高分遥感影像二分类语义分割图融合成多分类语义图的方法 | |
CN104252625A (zh) | 样本自适应多特征加权的遥感图像分类方法 | |
Xu et al. | Feature-based constraint deep CNN method for mapping rainfall-induced landslides in remote regions with mountainous terrain: An application to Brazil | |
Xu et al. | Multi-structure joint decision-making approach for land use classification of high-resolution remote sensing images based on CNNs | |
CN113705580A (zh) | 基于深度迁移学习的高光谱图像分类方法 | |
CN106096658A (zh) | 基于无监督深度空间特征编码的航拍图像分类方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Han Yanling Inventor after: Liu Yegun Inventor after: Zhou Ruyan Inventor after: Yang Shuhu Inventor after: Wang Jing Inventor after: Zhang Yun Inventor after: Hong Zhonghua Inventor before: Han Yanling Inventor before: Liu Yekun Inventor before: Zhou Ruyan Inventor before: Yang Shuhu Inventor before: Wang Jing Inventor before: Zhang Yun Inventor before: Hong Zhonghua |
|
GR01 | Patent grant | ||
GR01 | Patent grant |