CN111736458B - Adaptive synchronization method of fractional order heterogeneous structure chaotic system - Google Patents
Adaptive synchronization method of fractional order heterogeneous structure chaotic system Download PDFInfo
- Publication number
- CN111736458B CN111736458B CN201910229144.7A CN201910229144A CN111736458B CN 111736458 B CN111736458 B CN 111736458B CN 201910229144 A CN201910229144 A CN 201910229144A CN 111736458 B CN111736458 B CN 111736458B
- Authority
- CN
- China
- Prior art keywords
- fractional
- chaotic
- fractional order
- order
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 32
- 230000004044 response Effects 0.000 claims abstract description 17
- 238000013461 design Methods 0.000 claims abstract description 4
- 230000006978 adaptation Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 abstract description 9
- 238000010587 phase diagram Methods 0.000 description 10
- 230000009471 action Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005183 dynamical system Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 241001494479 Pecora Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0205—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
- G05B13/024—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Complex Calculations (AREA)
Abstract
本发明公开一种分数阶异结构混沌系统的自适应同步方法,主要步骤为:(1)选择两个具有不同结构的、参数确定的分数阶混沌系统作为驱动系统和响应系统;(2)求得分数阶误差系统e1,e2,e3,e4;(3)在分数阶误差系统e1,e2,e3,e4中,分别加入u1(t)、u2(t)、u3(t)、u4(t)控制器;(4)设计u1(t)、u2(t)、u3(t)、u4(t)控制器和自适应定律;(5)构造Lyapunov控制函数,利用Caputo导数算子的性质结合Mittag‑Leffler稳定性理论判断出分数阶误差系统e1,e2,e3,e4是渐近稳定的,实现确定参数下不同结构混沌系统同步控制。本发明能对确定性参数的分数阶混沌系统进行有效控制,通过设计自适应控制器,将构造的Lyapunov函数与分数阶Mittag‑Leffler稳定性理论结合,有效降低了控制的复杂度,缩短了同步时间,是一种具有普适性的控制方法。
The invention discloses an adaptive synchronization method for a fractional-order heterogeneous structure chaotic system. The main steps are: (1) selecting two fractional-order chaotic systems with different structures and determined parameters as the driving system and the response system; (2) finding Obtain fractional error systems e 1 , e 2 , e 3 , e 4 ; (3) In fractional error systems e 1 , e 2 , e 3 , e 4 , add u 1 (t), u 2 (t ), u 3 (t), u 4 (t) controllers; (4) Design u 1 (t), u 2 (t), u 3 (t), u 4 (t) controllers and adaptive laws; (5) Construct the Lyapunov control function, and use the properties of the Caputo derivative operator and the Mittag-Leffler stability theory to determine that the fractional error systems e 1 , e 2 , e 3 , and e 4 are asymptotically stable, and realize different parameters under certain parameters. Synchronous control of structural chaotic systems. The invention can effectively control the fractional-order chaotic system with deterministic parameters. By designing an adaptive controller, the constructed Lyapunov function is combined with the fractional-order Mittag-Leffler stability theory, which effectively reduces the complexity of control and shortens the synchronization period. Time is a universal control method.
Description
技术领域technical field
本发明涉及的是一种分数阶异结构混沌系统的同步方法,属于自动控制方法技术领域。The invention relates to a synchronization method of a fractional-order heterogeneous structure chaotic system, and belongs to the technical field of automatic control methods.
背景技术Background technique
由于非线性混沌系统具有非常丰富的动力学特性,使得其在很多领域得到了应用,如气象学、机械学和保密通信等领域。混保密通信和相关科学领域的应用具有非常广泛的前景,而混沌同步是关键技术。自从上世纪90年代美国海军实验室Pecora和Carroll提出混沌同步概念以来,众多学者提出了很多行之有效的同步方法,如驱动-响应同步、主动-被动同步、耦合同步、自适应同步、投影同步、滑模控制同步。Because nonlinear chaotic systems have very rich dynamic characteristics, they have been applied in many fields, such as meteorology, mechanics and secure communication. The application of chaotic secure communication and related scientific fields has a very broad prospect, and chaotic synchronization is the key technology. Since the concept of chaotic synchronization was proposed by Pecora and Carroll of the US Naval Laboratory in the 1990s, many scholars have proposed many effective synchronization methods, such as drive-response synchronization, active-passive synchronization, coupled synchronization, adaptive synchronization, projection synchronization. , Sliding mode control synchronization.
自适应同步方法应用较多是整数阶混沌系统,这是因为对于同步误差系统来说所构造的李雅普诺夫函数便于求整数阶导数,而对于分数阶系统来说,由于同步误差函数也是分数阶的,对于构造的李雅普诺夫函数再求整数阶导后,其分数阶项计算困难,共有两种处理方式。文献《Adaptive feedback control and synchronization of non-identicalchaotic fractional order systems》通过寻找不等式代换方式实现了分数阶系统的自适应同步控制,文献《Finite-time synchronization between two complex-variablechaotic systems with unknown parameters via nonsingular terminal sliding modecontrol》以及文献《Synchronization of Chaotic Fractional-Order Systems viaFractional-Order Adaptive Controller》通过构造滑模控制面的方式进行转换,这两种方法数学运算过程繁琐,目前缺少针对分数阶混沌系统更具普适性的自适应同步控制方法。The adaptive synchronization method is mostly used in integer-order chaotic systems, because the Lyapunov function constructed for the synchronization error system is easy to find the integer-order derivative, and for the fractional-order system, because the synchronization error function is also a fractional-order system. However, after calculating the integer derivative of the constructed Lyapunov function, it is difficult to calculate the fractional term. There are two ways to deal with it. The literature "Adaptive feedback control and synchronization of non-identicalchaotic fractional order systems" realizes the adaptive synchronization control of fractional order systems by finding an inequality substitution method. The literature "Finite-time synchronization between two complex-variablechaotic systems with unknown parameters via nonsingular terminal" Sliding modecontrol" and the literature "Synchronization of Chaotic Fractional-Order Systems via Fractional-Order Adaptive Controller" are converted by constructing sliding mode control surfaces. These two methods are complicated in mathematical operation process, and currently lack more generalization for fractional-order chaotic systems. A unique adaptive synchronization control method.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种分数阶异结构混沌系统的自适应同步方法,能有效简化分数阶不同混沌系统之间的同步。The purpose of the present invention is to provide an adaptive synchronization method for fractional-order heterogeneous chaotic systems, which can effectively simplify the synchronization between different fractional-order chaotic systems.
本发明采用的技术方案为:The technical scheme adopted in the present invention is:
一种分数阶异结构混沌系统的自适应同步方法,其特征在于,包括以下步骤:An adaptive synchronization method for a fractional-order heterostructure chaotic system, characterized in that it comprises the following steps:
(1)选择两个具有不同结构的分数阶混沌系统,两系统参数均为确定的,并确定驱动系统状态信息量为x1,x2,x3,x4,而响应系统状态信息量为y1,y2,y3,y4;(1) Select two fractional-order chaotic systems with different structures, the parameters of both systems are determined, and the state information of the driving system is determined to be x 1 , x 2 , x 3 , x 4 , and the state information of the response system is y 1 , y 2 , y 3 , y 4 ;
(2)根据该混沌驱动系统和混沌响应系统的状态信息量求得分数阶误差系统e1,e2,e3,e4;(2) Obtain fractional-order error systems e 1 , e 2 , e 3 , e 4 according to the state information of the chaotic drive system and the chaotic response system;
(3)在分数阶误差系统e1,e2,e3,e4中,分别加入u1(t)、u2(t)、u3(t)、u4(t)控制器;(3) Add u 1 (t), u 2 (t), u 3 (t), and u 4 (t) controllers to the fractional-order error systems e 1 , e 2 , e 3 , and e 4 respectively;
(4)设计u1(t)、u2(t)、u3(t)、u4(t)控制器和自适应率;(4) Design u 1 (t), u 2 (t), u 3 (t), u 4 (t) controllers and adaptive rates;
(5)根据Mittag-Leffler稳定性理论,构造Lyapunov控制函数,利用Caputo导数算子的性质判断出Lyapunov函数的导数非正,再由Mittag-Leffler稳定性理论,得出分数阶误差系统e1,e2,e3,e4是全局渐近稳定的,得出确定参数下两不同结构混沌系统同步。(5) According to the Mittag-Leffler stability theory, the Lyapunov control function is constructed, and the properties of the Caputo derivative operator are used to determine that the derivative of the Lyapunov function is not positive, and then the fractional error system e 1 is obtained from the Mittag-Leffler stability theory, e 2 , e 3 , e 4 are globally asymptotically stable, and it is concluded that two chaotic systems with different structures are synchronized under certain parameters.
步骤(1)中,先确定分数阶微积分为Caputo定义下的分数阶微积分,其具体如下式:In step (1), first determine the fractional calculus as the fractional calculus defined by Caputo, which is as follows:
式中C表示此定义方式为Caputo分数阶定义,q为微分算子的阶次,n为大于q的最小整数,且n-1<q<n,t,a分别为定积分的上下限,Γ(·)为Gamma函数。In the formula, C indicates that the definition method is the Caputo fractional order definition, q is the order of the differential operator, n is the smallest integer greater than q, and n-1<q<n, t, a are the upper and lower limits of the definite integral, respectively, Γ(·) is a Gamma function.
若q为分数阶次,a1为系统的确定参数,根据分数阶微积分的定义选择驱动系统为:If q is a fractional order, a 1 is a definite parameter of the system, and the drive system is selected according to the definition of fractional calculus:
若q为分数阶次,a2为系统的确定参数,根据分数阶微积分的定义选择响应系统为:If q is a fractional order and a 2 is a definite parameter of the system, the response system selected according to the definition of fractional calculus is:
步骤(2)中,分数阶误差系统为:In step (2), the fractional-order error system is:
步骤(3)中,在分数阶误差系统中,分别加入控制器入u1(t)、u2(t)、u3(t)、u4(t):In step (3), in the fractional-order error system, add the controller input u 1 (t), u 2 (t), u 3 (t), u 4 (t) respectively:
根据权利要求1所述的一种分数阶异结构混沌系统的自适应同步方法,其特征在于,步骤(4)中,设计的控制器为:The self-adaptive synchronization method of a fractional-order heterostructure chaotic system according to
其中参数是对参数a1的估计,若λ为参数,估计参数的自适应律为:where parameters is the estimation of the parameter a 1. If λ is a parameter, the adaptive law of the estimated parameter is:
步骤(5)中,(a)引理1:根据Mittag-Leffler稳定性理论:In step (5), (a) Lemma 1: According to the Mittag-Leffler stability theory:
记非线性分数阶动力系统的平衡点为xeq=0,D为包含远点的区域,V(t,x(t)):[0,∞)×D→R+为连续可微函数且满足:Denote the equilibrium point of the nonlinear fractional-order dynamical system as x eq =0, D is the region including the far point, V(t,x(t)):[0,∞)×D→R + is a continuously differentiable function and Satisfy:
式中,γ(·)为K类函数,x∈D且0<α<1,则平衡点xeq=0是全局稳定的;In the formula, γ(·) is a K-type function, x∈D and 0<α<1, then the equilibrium point x eq =0 is globally stable;
(b)由引理1构造Lyapunov控制函数:(b) Construct the Lyapunov control function from Lemma 1:
其中e=[e1,e2,e3,e4]T,参数是参数a1的估计值where e=[e 1 , e 2 , e 3 , e 4 ] T , parameter is the estimated value of parameter a1
(c)引理2:Caputo导数算子的性质:(c) Lemma 2: Properties of Caputo derivative operator:
若x(t)∈R为连续可微函数,则对于任意的t≥b,有以下关系式成立:If x(t)∈R is a continuously differentiable function, then for any t≥b, the following relation holds:
(d)当λ≤0时,DqV≤0,则有引理1可知误差系统(iv)有平衡点e=0和则分数阶误差系统e1,e2,e3,e4是全局渐近稳定的,得出确定参数下两不同结构混沌系统同步。(d) When λ≤0, D q V≤0, then Lemma 1 shows that the error system (iv) has equilibrium points e=0 and Then the fractional-order error systems e 1 , e 2 , e 3 , e 4 are globally asymptotically stable, and it is concluded that two chaotic systems with different structures are synchronized under certain parameters.
本发明与现有的方法相比具有显著的优点和有益效果,具体如下:Compared with the existing method, the present invention has significant advantages and beneficial effects, and the details are as follows:
本发明依据自适应理论来设计控制函数中估计参数的自适应律,对于确定参数的分数阶混沌系统,利用分数阶Mittag-Leffler稳定性理论,简单构造李雅普诺夫函数,避开分数阶误差函数的求导,利用Caputo导数算子的性质来实现两分数阶混沌系统的异结构同步;现有的自适应同步方法主要针对整数阶混沌系统;现有的针对分数阶混沌系统的自适应同步方法需要寻找滑模面或者不等式代换才能实现同步,实现过程复杂,控制精度低;本发明所设计的分数阶自适应同步控制器具有较强的普适性,控制步骤简单,为分数阶混沌系统在更深层次的理论研究和实际工程技术奠定基础。The invention designs the self-adaptive law for estimating parameters in the control function according to self-adaptive theory. For the fractional-order chaotic system whose parameters are determined, the Lyapunov function is simply constructed by using the fractional-order Mittag-Leffler stability theory, and the fractional-order error function is avoided. The derivation of , uses the properties of the Caputo derivative operator to realize the heterostructure synchronization of two fractional-order chaotic systems; the existing adaptive synchronization methods are mainly aimed at integer-order chaotic systems; the existing adaptive synchronization methods for fractional-order chaotic systems It is necessary to find sliding mode surface or inequality substitution to realize synchronization, the realization process is complicated, and the control precision is low; the fractional-order adaptive synchronization controller designed by the present invention has strong universality, simple control steps, and is a fractional-order chaotic system. Lay a foundation for deeper theoretical research and practical engineering techniques.
附图说明Description of drawings
图1是本发明的一种分数阶异结构混沌系统的自适应同步方法驱动系统(ii)的Matlab二维吸引子投影相图。FIG. 1 is a Matlab two-dimensional attractor projection phase diagram of an adaptive synchronization method driving system (ii) of a fractional-order heterostructure chaotic system of the present invention.
图2是本发明的一种分数阶异结构混沌系统的自适应同步方法响应系统(iii)的Matlab二维吸引子投影相图。FIG. 2 is a Matlab two-dimensional attractor projection phase diagram of the adaptive synchronization method response system (iii) of a fractional-order heterostructure chaotic system of the present invention.
图3是本发明的一种分数阶异结构混沌系统的自适应同步方法在t=0时刻作用于误差系统(v)的Matlab动态建模仿函数。FIG. 3 is a Matlab dynamic modeling analog function acting on the error system (v) at time t=0 according to an adaptive synchronization method of a fractional-order heterostructure chaotic system of the present invention.
其中图1(a)为x1-x2平面相图,图1(b)为x2-x3平面相图。Figure 1(a) is the x 1 -x 2 plane phase diagram, and Figure 1(b) is the x 2 -x 3 plane phase diagram.
其中图2(a)为y1-y3平面相图,图2(b)为y1-y4平面相图。Fig. 2(a) is the y 1 -y 3 plane phase diagram, and Fig. 2(b) is the y 1 -y 4 plane phase diagram.
其中图3(a)为自适应同步控制器e1在t=0时刻作用于误差系统的时域响应曲线。Figure 3(a) is the time domain response curve of the adaptive synchronous controller e 1 acting on the error system at time t=0.
其中图3(b)为自适应同步控制器e2在t=0时刻作用于误差系统的时域响应曲线。Figure 3(b) is the time domain response curve of the adaptive synchronous controller e 2 acting on the error system at time t=0.
其中图3(c)为自适应同步控制器e3在t=0时刻作用于误差系统的时域响应曲线。Fig. 3(c) is the time domain response curve of the adaptive synchronous controller e 3 acting on the error system at time t=0.
其中图3(d)为自适应同步控制器e4在t=0时刻作用于误差系统的时域响应曲线。Fig. 3(d) is the time domain response curve of the adaptive synchronous controller e 4 acting on the error system at time t=0.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步的详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
本发明一种分数阶异结构混沌系统的自适应同步方法,具体按照如下步骤实施:The present invention is an adaptive synchronization method for a fractional-order heterostructure chaotic system, which is specifically implemented according to the following steps:
取分数阶数q=0.8,系统参数a1=a2=1,则:Taking the fractional order q=0.8 and the system parameter a 1 =a 2 =1, then:
步骤(1),选取驱动分数阶混沌系统为:Step (1), select the driving fractional-order chaotic system as:
选取响应系统为:Select the response system as:
应用matlab软件对系统(ii)和系统(iii)进行数值仿真,验证系统存在混沌行为,仿真算法采用预估-校正法,两系统仿真初始值皆为(1,2,2,3),仿真步长h=0.01,仿真点数N=4000。The system (ii) and system (iii) are numerically simulated by matlab software to verify that the system has chaotic behavior. The simulation algorithm adopts the prediction-correction method. The step size is h=0.01, and the number of simulation points is N=4000.
图1(a)示出了系统(ii)在x1-x2平面吸引子投影相图,在x1-x2平面(-25,25)和(-40,40)相空间范围内,系统(ii)的运动轨线为对称型双涡卷形状吸引子,说明系统(ii)为混沌系统。Figure 1(a) shows the attractor projected phase diagram of system (ii) in the x 1 -x 2 plane, in the x 1 -x 2 plane (-25, 25) and (-40, 40) phase space range, The motion trajectory of system (ii) is a symmetrical double scroll attractor, indicating that system (ii) is a chaotic system.
图1(b)示出了系统(ii)在x2-x3平面吸引子投影相图,在x2-x3平面(-40,40)和(20,60)相空间范围内,系统(ii)的运动轨线为对称型蝴蝶形状吸引子,证明明系统(ii)为混沌系统。Figure 1(b) shows the attractor projected phase diagram of system (ii) in the x 2 -x 3 plane. In the x 2 -x 3 planes (-40, 40) and (20, 60) phase space range, the system The motion trajectory of (ii) is a symmetrical butterfly-shaped attractor, which proves that the system (ii) is a chaotic system.
图2(a)示出了系统(iii)在y1-y3平面吸引子投影相图,在y1-y3平面(-20,25)和(6,24)相空间范围内,系统(iii)的运动轨线为典型的蝴蝶形状的混沌吸引子,说明系统(iii)存在混沌行为。Figure 2(a) shows the attractor projected phase diagram of the system (iii) in the y 1 -y 3 plane. In the y 1 -y 3 plane (-20, 25) and (6, 24) phase space range, the system The trajectory of (iii) is a typical butterfly-shaped chaotic attractor, indicating that the system (iii) has chaotic behavior.
图2(b)示出了系统(iii)在y1-y4平面吸引子投影相图,在y1-y4平面(-20,20)和(-10,10)有限空间范围,系统(iii)的运动轨线具有自相似形却用永不相交,说明系统(iii)为混沌系统。Figure 2(b) shows the attractor projected phase diagram of system (iii) on the y 1 -y 4 plane, and in the y 1 -y 4 plane (-20, 20) and (-10, 10) finite space range, the system The motion trajectory of (iii) has a self-similar shape but never intersects, indicating that the system (iii) is a chaotic system.
步骤(2),分数阶误差系统为:Step (2), the fractional order error system is:
步骤(3),在分数阶误差系统中,分别加入控制器:Step (3), in the fractional error system, add controllers respectively:
步骤(4),定理1:设计的控制器为Step (4), Theorem 1: The designed controller is
其中参数是对参数a1的估计,且估计参数的自适应律为:where parameters is an estimate of the parameter a 1 , and the adaptive law of the estimated parameter is:
若控制参数λ≤0,则误差系统存在平衡点e=0和响应系统与驱动系统全局渐近同步,即对于任意初始值有 If the control parameter λ≤0, the error system has equilibrium point e=0 and The response system is globally asymptotically synchronized with the drive system, that is, for any initial value, there is
证明:将系统(vi)代入到系统(v)中,可以得到:Proof: Substitute system (vi) into system (v), we can get:
误差动力学系统式(I)与响应系统参数a2无关,只要使误差系统稳定,就可以实现两个不同参数的异结构混沌系统同步。The error dynamic system formula (I) has nothing to do with the response system parameter a 2 , as long as the error system is stabilized, the synchronization of two heterogeneous chaotic systems with different parameters can be realized.
步骤(5),(a)引理1:根据Mittag-Leffler稳定性理论:Step (5), (a) Lemma 1: According to the Mittag-Leffler stability theory:
记非线性分数阶动力系统的平衡点为xeq=0,D为包含远点的区域,Denote the equilibrium point of the nonlinear fractional-order dynamical system as x eq =0, D is the region including the far point,
V(t,x(t)):[0,∞)×D→R+为连续可微函数且满足:V(t,x(t)):[0,∞)×D→R + is a continuously differentiable function and satisfies:
式中,γ(·)为K类函数,x∈D且0<α<1,则平衡点xeq=0是全局稳定的。In the formula, γ(·) is a K-type function, x∈D and 0<α<1, then the equilibrium point x eq =0 is globally stable.
(b)以e1、e2、e3、e4和为变量构造Lyapunov控制函数为:(b) with e 1 , e 2 , e 3 , e 4 and The Lyapunov control function is constructed for the variables as:
其中e=[e1,e2,e3,e4]T,参数是参数a1的估计值.where e=[e 1 , e 2 , e 3 , e 4 ] T , parameter is an estimate of parameter a1.
(c)引理2:Caputo导数算子的性质:(c) Lemma 2: Properties of Caputo derivative operator:
若x(t)∈R为连续可微函数,则对于任意的t≥b,有以下关系式成立:If x(t)∈R is a continuously differentiable function, then for any t≥b, the following relation holds:
根据引理2,Lyapunov控制函数(ix)的导数为:According to
由引理1的稳定性理论可知,当λ≤0时,DqV≤0,再有引理1可知,误差系统存在平衡点e=0和误差系统(iv)是渐近稳定的,所以两不同参数异结构混沌系统(ii)与(iii)同步,该非线性系统是全局渐近稳定的。According to the stability theory of
证毕。Certificate completed.
采用MATLAB R2016a对同步方法进行动态建模仿真,仿真时间Tsim=10s。MATLAB R2016a is used for dynamic modeling and simulation of the synchronization method, and the simulation time is T sim =10s.
仿真参数设置为:变步长,绝对误差和相对误差皆取10-3,λ=-1000,求解器采用ode15s,自适应律初值分数阶阶次q=0.8,驱动系统(ii)和响应系统(iii)的初值均为(1,2,2,3)。The simulation parameters are set as: variable step size, absolute error and relative error are both set to 10 -3 , λ = -1000, the solver uses ode15s, the initial value of the adaptive law The fractional order q=0.8, and the initial values of the drive system (ii) and the response system (iii) are both (1, 2, 2, 3).
图3(a)示出了同步控制器(vi)作用下的e1同步误差曲线,在最小刻度为10-4的纵坐标下,同步建立时间近似为0s。Fig. 3(a) shows the synchronization error curve of e 1 under the action of the synchronization controller (vi). Under the ordinate with the minimum scale of 10-4 , the synchronization establishment time is approximately 0s.
图3(b)示出了同步控制器(vi)作用下的e2同步误差曲线,在最小刻度为2×10-4的纵坐标下,同步建立时间近似为0.2s。Fig. 3(b) shows the synchronization error curve of e 2 under the action of the synchronization controller (vi). The synchronization establishment time is approximately 0.2s under the ordinate with the minimum scale of 2×10 -4 .
图3(c)示出了同步控制器(vi)作用下的e3同步误差曲线,在最小刻度为0.05的纵坐标下,同步建立时间近似为0.2s。Figure 3(c) shows the synchronization error curve of e3 under the action of the synchronization controller (vi). Under the ordinate with the minimum scale of 0.05, the synchronization establishment time is approximately 0.2s.
图3(d)示出了同步控制器(vi)作用下的e4同步误差曲线,在最小刻度为0.5×10-5的纵坐标下,同步建立时间近似为0.2s。Fig. 3(d) shows the synchronization error curve of e 4 under the action of the synchronization controller (vi). Under the ordinate with a minimum scale of 0.5×10 −5 , the synchronization establishment time is approximately 0.2s.
从图3的误差系统时域曲线图上可以看出,基于分数阶的不同结构的混沌系统,在所提出的自适应定律的作用方法下,系统在0.2s内收敛到0,证明本发明所提出的分数阶异结构混沌系统自适应同步方法的有效性。It can be seen from the time-domain curve diagram of the error system in Fig. 3 that the chaotic system based on fractional order with different structures, under the action method of the proposed adaptive law, the system converges to 0 within 0.2s, which proves that the present invention Effectiveness of the proposed adaptive synchronization method for fractional heterostructure chaotic systems.
以上对本发明实施所提供的一种分数阶异结构混沌系统的自适应同步方法进行了详细介绍,上述说明仅为本发明的较佳实例,并非对发明的限制,本发明也不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也属于本发明的保护范围。The self-adaptive synchronization method of a fractional-order-differentiated structure chaotic system provided by the implementation of the present invention has been described in detail above. The above description is only a preferred example of the present invention, not a limitation of the invention, and the present invention is not limited to the above example. Changes, modifications, additions or substitutions made by those skilled in the art within the essential scope of the present invention also belong to the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910229144.7A CN111736458B (en) | 2019-03-25 | 2019-03-25 | Adaptive synchronization method of fractional order heterogeneous structure chaotic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910229144.7A CN111736458B (en) | 2019-03-25 | 2019-03-25 | Adaptive synchronization method of fractional order heterogeneous structure chaotic system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111736458A CN111736458A (en) | 2020-10-02 |
CN111736458B true CN111736458B (en) | 2022-05-31 |
Family
ID=72645827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910229144.7A Active CN111736458B (en) | 2019-03-25 | 2019-03-25 | Adaptive synchronization method of fractional order heterogeneous structure chaotic system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111736458B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113777920B (en) * | 2021-08-19 | 2023-09-15 | 中国人民解放军海军航空大学 | Fractional order chaotic synchronization control method based on RBF-NN and observer |
CN114254453B (en) * | 2021-12-09 | 2022-12-02 | 中国船舶重工集团公司第七一九研究所 | Chaos control method and device for six-dimensional fractional order power system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1971070A1 (en) * | 2005-12-31 | 2008-09-17 | Huazhong University of Science and Technology | A system and method for generating the analog-digital mixed chaotic signal, a encryption communication method thereof |
CN102305926A (en) * | 2011-08-23 | 2012-01-04 | 南京航空航天大学 | Chaos radar signal source and chaos radar signal synchronization system |
CN103152163A (en) * | 2013-03-25 | 2013-06-12 | 王少夫 | Fractional order hyper chaotic system and projection synchronization method thereof |
CN103217901A (en) * | 2013-01-31 | 2013-07-24 | 王少夫 | Chaotic system tracking control method |
-
2019
- 2019-03-25 CN CN201910229144.7A patent/CN111736458B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1971070A1 (en) * | 2005-12-31 | 2008-09-17 | Huazhong University of Science and Technology | A system and method for generating the analog-digital mixed chaotic signal, a encryption communication method thereof |
CN102305926A (en) * | 2011-08-23 | 2012-01-04 | 南京航空航天大学 | Chaos radar signal source and chaos radar signal synchronization system |
CN103217901A (en) * | 2013-01-31 | 2013-07-24 | 王少夫 | Chaotic system tracking control method |
CN103152163A (en) * | 2013-03-25 | 2013-06-12 | 王少夫 | Fractional order hyper chaotic system and projection synchronization method thereof |
Non-Patent Citations (1)
Title |
---|
张昭晗 等."分数阶时滞混沌系统的自适应模糊滑模同步".《郑州大学学报( 工学版)》.2011,第32卷(第6期),第117-120,125页. * |
Also Published As
Publication number | Publication date |
---|---|
CN111736458A (en) | 2020-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107168071B (en) | A kind of nonlinear system Auto-disturbance-rejection Control based on interference observer | |
CN107121932B (en) | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System | |
CN106767780B (en) | The extension ellipsoid set-membership filtering method approached based on Chebyshev polynomial interopolations | |
CN109726465B (en) | Three-dimensional non-adhesive low-speed streaming numerical simulation method based on non-structural curved edge grid | |
CN110069800A (en) | Three-dimensional structure method of topological optimization design and equipment with smooth boundary expression | |
CN111736458B (en) | Adaptive synchronization method of fractional order heterogeneous structure chaotic system | |
CN109143871B (en) | Three-order strict feedback chaotic proportional projection synchronization method based on improved pole configuration | |
CN109858158B (en) | Parameter configuration method and system for computational fluid dynamics simulations | |
CN103116698A (en) | GM (1, 1) model prediction method based on cubic spline | |
CN109736720B (en) | An optimization method of deep-sea connector sealing structure based on improved Kriging model | |
CN109271655B (en) | An Analysis Method of Material Scale Effect Based on Asymmetric Finite Element Algorithm | |
CN113361176A (en) | Nonlinear characteristic value topology optimization method and system considering frequency-dependent material | |
CN113031434A (en) | Fractional order self-adaptive control method and device for time-lag multi-flexible swing arm system | |
CN116822189B (en) | A method for calculating the output force of a vibrator with controlled source considering ground coupling | |
CN116244894B (en) | A power system transient simulation method and system based on large step size | |
CN113900375B (en) | Improved sliding mode control method considering micro-grid mismatch interference | |
CN114690633B (en) | Photovoltaic inverter controller parameter identification method | |
CN112632825B (en) | Electrostatic field smooth finite element numerical algorithm based on finite element super-convergence | |
CN116131288A (en) | A frequency control method and system for an integrated energy system considering fluctuations in wind and light | |
CN116127746A (en) | An Efficient Time History Analysis Method for Linear Complex Structures Based on Optimizing Integral Parameters | |
CN111736457B (en) | Adaptive synchronization method based on Mittag-Leffler stability | |
CN109782589B (en) | Chaotic trajectory tracking method based on active integral sliding mode | |
CN115392068A (en) | A Mesh Adaptive Method Based on Restorative Posterior Error Estimation | |
CN114970211A (en) | A Polynomial Nonlinear Higher-Order Extended Kalman Filter System | |
CN109257948A (en) | Obtain the global linear symmetry approach of power-compensation of direct-current mains trend |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240423 Address after: 230000 B-2704, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee after: HEFEI LONGZHI ELECTROMECHANICAL TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 561000 No.25 Xueyuan Road, Xixiu District, Anshun City, Guizhou Province Patentee before: ANSHUN University Country or region before: China |