CN111735708A - 一种基于示踪技术的水-氨气复合压裂岩石的试验方法 - Google Patents

一种基于示踪技术的水-氨气复合压裂岩石的试验方法 Download PDF

Info

Publication number
CN111735708A
CN111735708A CN202010629607.1A CN202010629607A CN111735708A CN 111735708 A CN111735708 A CN 111735708A CN 202010629607 A CN202010629607 A CN 202010629607A CN 111735708 A CN111735708 A CN 111735708A
Authority
CN
China
Prior art keywords
fracturing
ammonia
water
temperature
rock sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010629607.1A
Other languages
English (en)
Other versions
CN111735708B (zh
Inventor
李学华
郑闯凯
姚强岭
夏泽
朱柳
马军强
尚晓贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202010629607.1A priority Critical patent/CN111735708B/zh
Publication of CN111735708A publication Critical patent/CN111735708A/zh
Application granted granted Critical
Publication of CN111735708B publication Critical patent/CN111735708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0044Pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0652Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors using contrasting ink, painting, staining

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种基于示踪技术的水‑氨气复合压裂岩石的试验方法,步骤是:向反应罐中注入常温水并通入常温氨气,将反应罐中常温水降至0℃,待氨气在0℃水中充分溶解后得到饱和氨水压裂液,压裂液经高压泵加压泵送至隔温压裂试验箱;在岩石试样中央钻取一钻孔,封孔后以略大于起裂压力的注射压力对岩石试样进行常规不加砂水力压裂;稳定后,通过温度调节器对岩石试样不断升温与降温,通过氨气释放、溶解过程产生气体循环致裂作用;在压裂过程中,使用电子捕获示踪检测技术对压裂裂缝扩展过程实时监测,压裂结束后,沿主裂缝平面劈开岩石试样,滴加酸碱指示剂后通过变色反应肉眼观察裂隙形成情况。本发明可以实时监测水力压裂效果,方便快捷。

Description

一种基于示踪技术的水-氨气复合压裂岩石的试验方法
技术领域
本发明涉及岩石力学试验技术领域,具体涉及一种基于示踪技术的水-氨气复合压裂岩石的试验方法。
背景技术
当前,水力压裂技术广泛应用于多个工程领域,如页岩油气资源开采、地应力水压致裂测量、煤矿水压致裂卸压、低渗煤层水压致裂增透、干热岩水压致裂换热开采等。为提高水力压裂技术的致裂效果,相关科研人员从水力裂隙萌生、扩展发育规律及与天然裂隙的互馈作用机制等方面开展了大量岩石力学试验。但目前使用较为广泛的向压裂液中加入示踪剂的手段仍存在难以实时监测水力裂缝扩展及与天然裂缝互馈作用规律的问题,且实现目标压裂效果时成本较高。
氨气是一种高水溶性气体,其在水中的溶解度会随温度的改变而产生较大的变化,而氨气溶于水后称为氨水,电离平衡导致氨水溶液中存在大量游离态的铵根离子及氢氧根离子,导致氨水溶液呈现碱性,便于压裂过程中裂隙扩展实时电子捕获示踪及压裂后的裂隙形态的酸碱指示剂肉眼观测。
发明内容
本发明的目的是提供一种基于示踪技术的水-氨气复合压裂岩石的试验方法。
为实现上述目的,本发明采用的技术方案如下:一种基于示踪技术的水-氨气复合压裂岩石的试验方法,包括以下步骤:
(1)组装压裂系统:所述压裂系统包括水力压裂控制台、氨气泵送控制台、储水箱、氨气罐、反应罐、制冷调温装置、高压泵、溢流阀、隔温压裂试验箱,所述储水箱和氨气罐分别与反应罐连接,所述反应罐依次通过高压泵、溢流阀与隔温压裂试验箱连接,所述溢流阀的溢流口与反应罐连接,所述储水箱与水力压裂控制台电连接,所述氨气罐与氨气泵送控制台电连接,所述反应罐与制冷调温装置电连接,所述隔温压裂试验箱的箱体内放置温度调节器,温度调节器上放置岩石试样;
(2)常规水力压裂:首先在岩石试样中央钻取一钻孔,封孔后以略大于起裂压力的注射压力对岩石试样进行常规不加砂水力压裂,具体步骤是:操作水力压裂控制台和氨气泵送控制台,由储水箱向反应罐注入常温水,由氨气罐向反应罐通入常温氨气,经制冷调温装置将反应罐中常温水降至0℃,待反应罐中氨气在0℃水中充分溶解后得到饱和氨水压裂液,压裂液经高压泵加压泵送至隔温压裂试验箱,由溢流阀调节泵送流量;
(3)氨气循环致裂:待常规不加砂水力压裂稳定后,关闭高压泵和溢流阀,通过温度调节器对岩石试样不断升温与降温,令饱和氨水压裂液的气体溶解度不断变化,通过氨气释放、溶解过程产生气体循环致裂作用,对岩石试样中水压裂缝、岩石内部骨架及原始微孔裂隙结构产生进一步疲劳损伤,提高压裂效果;
(4)在压裂过程中,使用电子捕获示踪检测技术对压裂裂缝扩展过程实时监测,压裂结束后,沿主裂缝平面劈开岩石试样,滴加酸碱指示剂后通过变色反应肉眼观察裂隙形成情况。
优选的,所述岩石试样的尺寸为300mm×300mm×300mm;所述钻孔直径为15~20mm,深度为180~200mm。
优选的,所述温度调节器的调温范围为0℃~100℃。
优选的,所述隔温压裂试验箱采用透明隔热玻璃制成。
进一步地,所述隔温压裂试验箱内还设置有氨气泄漏检测装置,所述氨气泄漏检测装置内盛有酸碱指示剂溶液;用以通过观察箱体内逸散氨气与酸碱指示剂的变色反应,辅助监测压裂效果。
与现有技术相比,本发明在一定程度上提高实验室岩石压裂试验的科学性及致裂效果,对工业生产现场应用等方面具有一定的参考性。这主要体现在:通过将0℃饱和氨水溶液注入到岩石试样后,利于使用电子捕获示踪检测技术对压裂裂缝扩展过程实时监测,实现压裂示踪的目的,而压裂结束沿主裂缝平面劈开岩石试样后,滴加酸碱指示剂还可以通过变色反应肉眼观察裂隙形成情况。另外不断的升温降温过程利于水压裂缝、岩石内部骨架及原始微孔裂隙结构产生进一步疲劳损伤,提高实验室岩石压裂效果。
附图说明
图1为本发明的压裂系统组装示意图;
图中,1-水力压裂控制台,2-氨气泵送控制台,3-储水箱,4-氨气罐,5-氨气溶水反应罐,6-制冷调温装置,7-高压泵,8-溢流阀,9-温度调节器,10-岩石试样,11-隔温压裂试验箱,12-氨气泄漏检测装置。
图2为1标准大气压下氨气溶解度-水温变化曲线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
本发明提供一种基于示踪技术的水-氨气复合压裂岩石的试验方法,包括以下步骤:
(1)组装压裂系统:如图1所示,所述压裂系统包括水力压裂控制台1、氨气泵送控制台2、储水箱3、氨气罐4、反应罐5、制冷调温装置6、高压泵7、溢流阀8、隔温压裂试验箱11、氨气泄漏检测装置12,所述储水箱3和氨气罐4分别与反应罐5连接,所述反应罐5依次通过高压泵7、溢流阀8与隔温压裂试验箱11连接,所述溢流阀8的溢流口与反应罐5连接,所述储水箱3与水力压裂控制台1电连接,所述氨气罐4与氨气泵送控制台2电连接,所述反应罐5与制冷调温装置6电连接,所述隔温压裂试验箱11的箱体内放置温度调节器9与氨气泄漏检测装置12,所述温度调节器9上放置岩石试样10,所述氨气泄漏检测装置12内盛有酸碱指示剂溶液;
(2)常规水力压裂:首先在尺寸为300mm×300mm×300mm的岩石试样中央钻取一直径15~20mm,深度180~200mm的钻孔,封孔后以略大于起裂压力的注射压力对岩石试样进行常规不加砂水力压裂;操作水力压裂控制台1和氨气泵送控制台2,由储水箱3向反应罐5注入常温水,由氨气罐4向反应罐5通入常温氨气,经制冷调温装置6将反应罐5中常温水降至0℃,待反应罐5中氨气在0℃水中充分溶解后得到饱和氨水压裂液,压裂液经高压泵7加压泵送至隔温压裂试验箱11,由溢流阀8调节泵送流量;
(3)氨气循环致裂:待常规不加砂水力压裂稳定后,关闭高压泵7和溢流阀8,通过温度调节器9对岩石试样10不断升温与降温,温度调节器9调温范围为0℃~100℃,令饱和氨水压裂液的气体溶解度不断变化,通过氨气释放、溶解过程产生气体循环致裂作用,对岩石试样10中水压裂缝、岩石内部骨架及原始微孔裂隙结构产生进一步疲劳损伤,提高压裂效果;
(4)饱和氨水压裂液的电离平衡反应使得其内部存在游离铵根离子及氢氧根离子,因此在压裂过程中,使用电子捕获示踪检测技术对压裂裂缝扩展过程实时监测,例如采用气相色谱-电子捕获检测器测定;压裂结束后,沿主裂缝平面劈开岩石试样,滴加酸碱指示剂后通过变色反应肉眼观察裂隙形成情况。
另外,还可以通过观察箱体内逸散氨气与酸碱指示剂的变色反应,辅助监测压裂效果,当观察到酸碱指示液变色,说明氨气逸出,岩石试样已经在某个方向上贯穿。
如图2所示,在1标准大气压下,氨气在水中的溶解度随温度的升高而降低,0℃下水中氨气的溶解量最高,当岩石试样10升温时,氨气逐渐释放,对试样进行气体致裂,当岩石试样10降温时,释放到裂缝中的氨气再次溶解到水中,如此循环。
本实施例中岩石试样10为含碳量较低的砂岩、页岩等非化石岩体,以减少不必要的化学反应危害。
为了避免外界温度对岩石试样10的影响,以及为了便于观察实验现象,所述隔温压裂试验箱11采用透明隔热玻璃制成,本实施例中隔温压裂试验箱11的尺寸为1000mm×1000mm×1000mm,便于运输。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种基于示踪技术的水-氨气复合压裂岩石的试验方法,其特征在于,包括以下步骤:
(1)组装压裂系统:所述压裂系统包括水力压裂控制台、氨气泵送控制台、储水箱、氨气罐、反应罐、制冷调温装置、高压泵、溢流阀、隔温压裂试验箱,所述储水箱和氨气罐分别与反应罐连接,所述反应罐依次通过高压泵、溢流阀与隔温压裂试验箱连接,所述溢流阀的溢流口与反应罐连接,所述储水箱与水力压裂控制台电连接,所述氨气罐与氨气泵送控制台电连接,所述反应罐与制冷调温装置电连接,所述隔温压裂试验箱的箱体内放置温度调节器,所述温度调节器上放置岩石试样;
(2)常规水力压裂:首先在岩石试样中央钻取一钻孔,封孔后以略大于起裂压力的注射压力对岩石试样进行常规不加砂水力压裂,具体步骤是:操作水力压裂控制台和氨气泵送控制台,由储水箱向反应罐注入常温水,由氨气罐向反应罐通入常温氨气,经制冷调温装置将反应罐中常温水降至0℃,待反应罐中氨气在0℃水中充分溶解后得到饱和氨水压裂液,压裂液经高压泵加压泵送至隔温压裂试验箱,由溢流阀调节泵送流量;
(3)氨气循环致裂:待常规不加砂水力压裂稳定后,关闭高压泵和溢流阀,通过温度调节器对岩石试样不断升温与降温,使饱和氨水压裂液中气体溶解度不断变化,通过氨气释放、溶解过程产生气体循环致裂作用,对岩石试样中水压裂缝、岩石内部骨架及原始微孔裂隙结构产生进一步疲劳损伤,提高压裂效果;
(4)在压裂过程中,使用电子捕获示踪检测技术对压裂裂缝扩展过程实时监测,压裂结束后,沿主裂缝平面劈开岩石试样,滴加酸碱指示剂后通过变色反应肉眼观察裂隙形成情况。
2.根据权利要求1所述的一种基于示踪技术的水-氨气复合压裂岩石的试验方法,其特征在于,所述岩石试样的尺寸为300mm×300mm×300mm;所述钻孔直径为15~20mm,深度为180~200mm。
3.根据权利要求1所述的一种基于示踪技术的水-氨气复合压裂岩石的试验方法,其特征在于,所述温度调节器的调温范围为0℃~100℃。
4.根据权利要求1所述的一种基于示踪技术的水-氨气复合压裂岩石的试验方法,其特征在于,所述隔温压裂试验箱采用透明隔热玻璃制成。
5.根据权利要求1所述的一种基于示踪技术的水-氨气复合压裂岩石的试验方法,其特征在于,所述隔温压裂试验箱内还设置有氨气泄漏检测装置,所述氨气泄漏检测装置内盛有酸碱指示剂溶液。
CN202010629607.1A 2020-07-01 2020-07-01 一种基于示踪技术的水-氨气复合压裂岩石的试验方法 Active CN111735708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010629607.1A CN111735708B (zh) 2020-07-01 2020-07-01 一种基于示踪技术的水-氨气复合压裂岩石的试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010629607.1A CN111735708B (zh) 2020-07-01 2020-07-01 一种基于示踪技术的水-氨气复合压裂岩石的试验方法

Publications (2)

Publication Number Publication Date
CN111735708A true CN111735708A (zh) 2020-10-02
CN111735708B CN111735708B (zh) 2021-08-31

Family

ID=72652614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010629607.1A Active CN111735708B (zh) 2020-07-01 2020-07-01 一种基于示踪技术的水-氨气复合压裂岩石的试验方法

Country Status (1)

Country Link
CN (1) CN111735708B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588402A (zh) * 2021-06-21 2021-11-02 中国石油大学(华东) 一种超声波检测高温高压水循环作用页岩水化微裂缝扩展特性的实验装置
CN115126458A (zh) * 2021-03-24 2022-09-30 中国石油化工股份有限公司 一种循环降温压裂模拟实验装置及实验方法
US11851989B2 (en) 2021-12-03 2023-12-26 Saudi Arabian Oil Company Cooling methodology to improve hydraulic fracturing efficiency and reduce breakdown pressure

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109945A (en) * 1979-02-19 1980-08-23 Kawasaki Steel Corp Accelerated test method for liquid ammonia crack of steel material
US4522265A (en) * 1980-02-25 1985-06-11 University Of Southern California Method for fracturing of oil shale
CN103881689A (zh) * 2014-03-14 2014-06-25 湖北菲特沃尔科技有限公司 一种提高高含量钙镁植物胶压裂液性能的方法
US20140374108A1 (en) * 2013-06-19 2014-12-25 Dri Frac Technologies Ltd. Method for fracturing subterranean rock
US20150114623A1 (en) * 2013-10-31 2015-04-30 West Virginia High Technology Consortium Foundation Pulsed fracturing method and apparatus
US20150152318A1 (en) * 2013-12-02 2015-06-04 Eog Resources, Inc. Fracturing process using liquid ammonia
CN105525901A (zh) * 2015-12-29 2016-04-27 中国矿业大学 一种基于微波辐照的煤层水力压裂强化增透方法
CN105565556A (zh) * 2014-10-11 2016-05-11 中国石油化工股份有限公司 压裂返排液的处理方法和处理得到的压裂返排液及其应用
CN106281292A (zh) * 2016-08-04 2017-01-04 西南石油大学 一种清洁泡沫压裂液及其制备方法
CN106840911A (zh) * 2017-01-05 2017-06-13 中国石油大学(华东) 一种液氮控温控压冻融损伤页岩实验装置及方法
CN107389433A (zh) * 2017-09-14 2017-11-24 国家电网公司 一种用于检测水库结冰对水利建筑冰推力以及冰拔破坏的检测箱及其检测方法
CN107687977A (zh) * 2017-07-24 2018-02-13 中国科学院力学研究所 一种岩土试样氨气饱和实验方法
CN109025945A (zh) * 2018-06-25 2018-12-18 中国石油天然气股份有限公司 一种致密油气储层二次压裂的方法和应用
CN109580451A (zh) * 2018-11-14 2019-04-05 浙江海洋大学 一种采用荧光示踪剂的冲击地压应力监测方法
CN110735632A (zh) * 2018-07-20 2020-01-31 吉奥斯普里特有限责任公司 基于示踪剂的多级水力压裂后的生产测井的方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109945A (en) * 1979-02-19 1980-08-23 Kawasaki Steel Corp Accelerated test method for liquid ammonia crack of steel material
US4522265A (en) * 1980-02-25 1985-06-11 University Of Southern California Method for fracturing of oil shale
US20140374108A1 (en) * 2013-06-19 2014-12-25 Dri Frac Technologies Ltd. Method for fracturing subterranean rock
US20150114623A1 (en) * 2013-10-31 2015-04-30 West Virginia High Technology Consortium Foundation Pulsed fracturing method and apparatus
CN105916959A (zh) * 2013-12-02 2016-08-31 埃奥格资源公司 使用液氨的压裂方法
US20150152318A1 (en) * 2013-12-02 2015-06-04 Eog Resources, Inc. Fracturing process using liquid ammonia
CN103881689A (zh) * 2014-03-14 2014-06-25 湖北菲特沃尔科技有限公司 一种提高高含量钙镁植物胶压裂液性能的方法
CN105565556A (zh) * 2014-10-11 2016-05-11 中国石油化工股份有限公司 压裂返排液的处理方法和处理得到的压裂返排液及其应用
CN105525901A (zh) * 2015-12-29 2016-04-27 中国矿业大学 一种基于微波辐照的煤层水力压裂强化增透方法
CN106281292A (zh) * 2016-08-04 2017-01-04 西南石油大学 一种清洁泡沫压裂液及其制备方法
CN106840911A (zh) * 2017-01-05 2017-06-13 中国石油大学(华东) 一种液氮控温控压冻融损伤页岩实验装置及方法
CN107687977A (zh) * 2017-07-24 2018-02-13 中国科学院力学研究所 一种岩土试样氨气饱和实验方法
CN107389433A (zh) * 2017-09-14 2017-11-24 国家电网公司 一种用于检测水库结冰对水利建筑冰推力以及冰拔破坏的检测箱及其检测方法
CN109025945A (zh) * 2018-06-25 2018-12-18 中国石油天然气股份有限公司 一种致密油气储层二次压裂的方法和应用
CN110735632A (zh) * 2018-07-20 2020-01-31 吉奥斯普里特有限责任公司 基于示踪剂的多级水力压裂后的生产测井的方法
CN109580451A (zh) * 2018-11-14 2019-04-05 浙江海洋大学 一种采用荧光示踪剂的冲击地压应力监测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P.G. RANJITH ET AL.: "Experimental study of fracturing behaviour in ultralow permeability formations: A comparison between CO2 and water fracturing", 《ENGINEERING FRACTURE MECHANICS》 *
钟昇 等: "油气田压裂液处理技术研究进展", 《安徽化工》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115126458A (zh) * 2021-03-24 2022-09-30 中国石油化工股份有限公司 一种循环降温压裂模拟实验装置及实验方法
CN113588402A (zh) * 2021-06-21 2021-11-02 中国石油大学(华东) 一种超声波检测高温高压水循环作用页岩水化微裂缝扩展特性的实验装置
CN113588402B (zh) * 2021-06-21 2023-12-26 中国石油大学(华东) 一种超声波检测水循环作用页岩水化微裂缝扩展实验装置
US11851989B2 (en) 2021-12-03 2023-12-26 Saudi Arabian Oil Company Cooling methodology to improve hydraulic fracturing efficiency and reduce breakdown pressure

Also Published As

Publication number Publication date
CN111735708B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN111735708B (zh) 一种基于示踪技术的水-氨气复合压裂岩石的试验方法
AU2015403840B2 (en) Test system and method for liquid nitrogen circle freeze-thawing permeability-increasing simulation of coal rock sample
Zhang et al. Macroscopic and microscopic experimental research on granite properties after high-temperature and water-cooling cycles
CN103266888A (zh) 可视化压裂模拟实验系统及方法
CN112951064A (zh) 一种页岩储层原位开采高温高压三维物理模拟装置及实验方法
CN114354683A (zh) 多场加载下高/低温岩体强化传热与动力扰动试验方法
Peng et al. Explosive fracturing simulation experiment for low permeability reservoirs and fractal characteristics of cracks produced
Wu et al. A study on oxygen consumption mechanism of air-foam flooding in low-temperature oil reservoir
Gan et al. Effect of coupled thermal-chemical on the mixed mode I-II fracture characteristic of sandstone
Wang et al. Experimental study on the evolution of mechanical properties of hot dry rocks under alternating temperature loads
Cheng et al. Liquid CO2 high‐pressure fracturing of coal seams and gas extraction engineering tests using crossing holes: a case study of Panji Coal Mine No. 3, Huainan, China
Ning et al. Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction
Pan et al. Experimental study on evaluation of porosity, thermal conductivity, UCS, and elastic modulus of granite after thermal and chemical treatments by using P-wave velocity
Liu et al. An experimental study on fractal pore size distribution and hydro-mechanical properties of granites after high temperature treatment
Longinos et al. Influence of subsurface temperature on cryogenic fracturing efficacy of granite rocks from Kazakhstan
Longinos et al. Cryofracturing effectiveness using liquid nitrogen on granite: Fracture toughness and Brazilian tests following freezing-thawing cycle
Zeng et al. Permeability Evolution of Anthracite Subjected to Liquid Nitrogen Treatment under Repeated Loading–Unloading Conditions
Shen et al. Effects of water and scCO2 injection on the mechanical properties of granite at high temperatures
Wu et al. Analysis of the microstructure of a failed cement sheath subjected to complex temperature and pressure conditions
Huayan et al. Experimental study on influences of chemical solutions on mechanical properties of brittle limestone under triaxial compression
Yang et al. Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment
Qin et al. Temperature evolution law and strain characteristics of rapid freeze-thaw coal impacted by liquid CO2-high temperature steam cycles
Yu et al. The Thermodynamic Change Laws of CO2-Coupled ractured Rock
Yin et al. Experimental study on microscopic characteristics of liquid-cooled granite based on mercury injection method
Zhou et al. Energy evolution analysis of heat-treated hydrated shale

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant