CN111732070B - 一种pt对称侧动微机电系统 - Google Patents

一种pt对称侧动微机电系统 Download PDF

Info

Publication number
CN111732070B
CN111732070B CN202010503760.XA CN202010503760A CN111732070B CN 111732070 B CN111732070 B CN 111732070B CN 202010503760 A CN202010503760 A CN 202010503760A CN 111732070 B CN111732070 B CN 111732070B
Authority
CN
China
Prior art keywords
capacitor
micro
electrode
loading
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010503760.XA
Other languages
English (en)
Other versions
CN111732070A (zh
Inventor
王立峰
汪金泉
张曼娜
黄庆安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010503760.XA priority Critical patent/CN111732070B/zh
Publication of CN111732070A publication Critical patent/CN111732070A/zh
Application granted granted Critical
Publication of CN111732070B publication Critical patent/CN111732070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]

Abstract

本发明公开了一种PT对称侧动微机电系统,包括衬底、第一微机电结构、第二微机电结构、第一可调阻尼电路和第二可调阻尼电路,所述第一微机电结构、第二微机电结构设置在衬底上,第一微机电结构、第二微机电结构共享衬底,且为镜像对称结构;所述第一可调阻尼电路作用于第一微机电结构的等效阻尼和第二可调阻尼电路作用于第二微机电结构的等效阻尼符号相反、大小相等。本发明能使微机电系统获得更高灵敏度的微扰响应性能。

Description

一种PT对称侧动微机电系统
技术领域
本发明涉及微电子技术领域,特别是一种PT对称侧动微机电系统。
背景技术
在1998年,美国华盛顿大学的C. M. Bender教授提出了一种PT对称的哈密顿量,该哈密顿量不具有厄米性,但也同样有实解。这里的P和T分别代表了宇称(Parity)变换和时间(Time)变换。在Bender教授提出PT对称概念后,国际上众多学者和研究机构很快加入到了这种非厄米的PT对称的研究之中。到目前为止,PT对称非厄米量子体系的理论框架已基本形成。
除了在量子体系中的研究,PT对称理论也在不同类型的经典物理系统中得到了验证,同时PT对称系统的一些特殊的性质和现象也被逐步发现。研究最早、报道最多的PT对称系统是光学系统,然后逐步扩散到电学、声学等多种系统。利用PT对称理论构造的经典物理系统获得了一些特殊性质和有趣现象,例如,单向隐身、完美吸收、磁光非互易性等;特殊性能包括:超灵敏传感、单模激光等。但目前对于PT对称系统的研究主要还是集中在光学系统和电学系统,而基于微机电的PT对称系统还未见研究报道。
发明内容
本发明所要解决的技术问题是克服现有技术的不足而提供一种PT对称侧动微机电系统,本发明的微机电系统具有更高灵敏度的微扰响应性能。
本发明为解决上述技术问题采用以下技术方案:
根据本发明提出的一种PT对称侧动微机电系统,包括衬底、第一微机电结构、第二微机电结构、第一可调阻尼电路和第二可调阻尼电路,所述第一微机电结构、第二微机电结构设置在衬底上,第一微机电结构、第二微机电结构共享衬底,且为镜像对称结构;其中,
所述第一微机电结构包括第一谐振梁、两个第一谐振梁电极、第一差分电容、第一差分电容上电极、第一差分电容下电极、第一加载电容、第一加载电容电极和第一耦合结构;
所述第二微机电结构包括第二谐振梁、两个第二谐振梁电极、第二差分电容、第二差分电容上电极、第二差分电容下电极、第二加载电容、第二加载电容电极和第二耦合结构;
第一谐振梁的一端与第一耦合结构连接, 第一谐振梁的另一端与第一差分电容、第一加载电容分别连接;两个第一谐振梁电极位于第一谐振梁的内部、并分别与第一谐振梁连接,两个第一谐振梁电极关于第一谐振梁的中心镜像对称;第一差分电容上电极和第一差分电容下电极分别位于第一差分电容两侧,并分别与第一差分电容连接;第一加载电容电极位于第一差分电容上电极和第一差分电容下电极之间,第一加载电容电极与第一加载电容连接;所述第一耦合结构和第二耦合结构正对靠近,形成静电耦合结构;
所述第一差分电容上电极和第一差分电容下电极分别与第一可调阻尼电路相连;所述第二差分电容上电极和第二差分电容下电极分别与第二可调阻尼电路相连;
所述第一可调阻尼电路作用于第一微机电结构的等效阻尼和第二可调阻尼电路作用于第二微机电结构的等效阻尼符号相反、大小相等。
作为本发明所述的一种PT对称侧动微机电系统进一步优化方案,第一可调阻尼电路和第二可调阻尼电路的电路结构相同,第一可调阻尼电路包括依次顺序连接的机电转换电路、增益控制电路、相位控制电路和电机转换电路。
作为本发明所述的一种PT对称侧动微机电系统进一步优化方案,第一加载电容为第一微扰加载电容、第一加载电容电极为第一微扰加载电容电极,第二加载电容为第二微扰加载电容、第二加载电容电极为第二微扰加载电容电极。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
(1)有利于进一步完善PT对称理论体系;
(2)能使微机电系统获得更高灵敏度的微扰响应性能;
(3)能为微机电系统的设计提供了一种新原理和新思路;
(4)可能发现微机电系统的新现象或新效应。
附图说明
图1为本发明的示意图。
图2为本发明的可调阻尼电路原理图。
图中的附图标记为:1-衬底,A-第一微机电结构,B第一微机电结构,CA-第一可调阻尼电路,CB-第二可调阻尼电路,A11-第一谐振梁,A12-第一谐振梁电极,A21-第一差分电容,A22-第一差分电容上电极,A23-第一差分电容下电极,A31-第一加载电容, A32-第一加载电容电极, A4-第一耦合结构,B11-第二谐振梁,B12-第二谐振梁电极,B21-第二差分电容,B22-第二差分电容上电极,B23-第二差分电容下电极,B31-第二加载电容,B32-第二加载电容电极,B4-第二耦合结构,C1-信号从输入端, C3-机电转换电路, C5-增益控制电路,C6-相位控制电路, C4-电机转换电路, C2-输出端。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
如图1所示,一种PT对称侧动微机电系统,包括衬底1、第一微机电结构A、第二微机电结构B、第一可调阻尼电路CA和第二可调阻尼电路CB,所述第一微机电结构A、第二微机电结构B设置在衬底上,第一微机电结构A、第二微机电结构B共享衬底1,且为镜像对称结构;其中,
所述第一微机电结构A包括第一谐振梁A11、两个第一谐振梁电极A12、第一差分电容A21、第一差分电容上电极A22、第一差分电容下电极A23、第一加载电容A31、第一加载电容电极A32和第一耦合结构A4;
所述第二微机电结构B包括第二谐振梁B11、两个第二谐振梁电极B12、第二差分电容B21、第二差分电容上电极B22、第二差分电容下电极B23、第二加载电容B31、第二加载电容电极B32和第二耦合结构B4;
第一谐振梁A11的一端与第一耦合结构A4连接, 第一谐振梁A11的另一端与第一差分电容A21、第一加载电容A31分别连接;两个第一谐振梁电极A12位于第一谐振梁A11的内部,并分别与第一谐振梁A11连接,两个第一谐振梁电极关于第一谐振梁A11的中心镜像对称;第一差分电容上电极A22和第一差分电容下电极A23分别位于第一差分电容A21两侧,并分别与第一差分电容A21连接;第一加载电容电极A32位于第一差分电容上电极A22和第一差分电容下电极A23之间,第一加载电容电极与第一加载电容A31连接。所述第一耦合结构A4和第二耦合结构B4正对靠近,形成静电耦合结构;
所述第一差分电容上电极A22和第一差分电容下电极A23分别与第一可调阻尼电路CA相连;所述第二差分电容上电极B22和第二差分电容下电极B23分别与第二可调阻尼电路CB相连;
所述第一可调阻尼电路CA作用于第一微机电结构A的等效阻尼和第二可调阻尼电路CB作用于第二微机电结构B的等效阻尼符号相反、大小相等。
第二谐振梁B11的一端与第二耦合结构B4连接,另一端与第二差分电容B21和第二加载电容B31连接。两个第二谐振梁电极B12位于第二谐振梁B11的内部,并连接到第二谐振梁B11。第二差分电容上电极B22和第二差分电容下电极B23分别位于第二差分电容B21两侧,并连接到第二差分电容B21。第二加载电容电极B32位于第二差分电容上电极B22和第二差分电容下电极B23之间,并连接到第二加载电容B31。
如图2所示,第一可调阻尼电路和第二可调阻尼电路的电路结构相同,第一可调阻尼电路包括依次顺序连接的机电转换电路、增益控制电路、相位控制电路和电机转换电路。
第一加载电容为第一微扰加载电容、第一加载电容电极为第一微扰加载电容电极,第二加载电容为第二微扰加载电容、第二加载电容电极为第二微扰加载电容电极。
本发明的一种PT对称侧动微机电系统的工作原理为:
PT对称原理:微机电结构A和微机电结构B呈镜像对称,它们具有完全相同的质量和弹性系数,同时可调阻尼电路CA作用于微机电结构A的等效阻尼和可调阻尼电路CB作用于微机电结构B的等效阻尼符号相反、大小相等。
可调阻尼电路原理: 第一谐振梁A11、第二谐振梁B11均称为谐振梁,通过机电转换电路C3将谐振梁的机械能转换成电能,然后对该电信号进行增益控制C5、相位控制C6,最后通过电机转换电路C4转换成机械能反馈到谐振梁。阻尼的正/负通过相位控制器来调整,当反馈信号与谐振梁振动信号同相时,系统体现负阻尼;当反馈信号与谐振梁振动信号反相时,系统体现正阻尼。阻尼的大小通过增益控制器和相位控制器共同调整。
本发明的一种PT对称侧动微机电系统的工作过程为:
将PT对称微机电系统置于真空环境,两个谐振梁之间采用电压进行偏置,通过调节电压可以对谐振梁之间的耦合强度进行调节。两个谐振梁都各自外接阻尼调节电路,通过调节使两个谐振梁的阻尼满足大小相等正负相反的要求。同时,将可调正/负阻尼电路中包含的谐振梁振动信号经过缓冲器后连接到信号分析仪进行分析。
系统处于PT对称时,可以通过调节耦合电压寻找系统的奇点。对系统奇点加载微扰信号可以采用以下3种方式:利用微扰电压对谐振梁加载刚度微扰;采用颗粒吸附对谐振梁加载质量微扰;调节测试环境气压对系统加载阻尼微扰。因此,本发明的直接潜在应用包括电荷敏感、质量敏感或气压敏感。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围内。

Claims (3)

1.一种PT对称侧动微机电系统,其特征在于,包括衬底、第一微机电结构、第二微机电结构、第一可调阻尼电路和第二可调阻尼电路,所述第一微机电结构、第二微机电结构设置在衬底上,第一微机电结构、第二微机电结构共享衬底,且为镜像对称结构;其中,
所述第一微机电结构包括第一谐振梁、两个第一谐振梁电极、第一差分电容、第一差分电容上电极、第一差分电容下电极、第一加载电容、第一加载电容电极和第一耦合结构;
所述第二微机电结构包括第二谐振梁、两个第二谐振梁电极、第二差分电容、第二差分电容上电极、第二差分电容下电极、第二加载电容、第二加载电容电极和第二耦合结构;
第一谐振梁的一端与第一耦合结构连接, 第一谐振梁的另一端与第一差分电容、第一加载电容分别连接;两个第一谐振梁电极位于第一谐振梁的内部、并分别与第一谐振梁连接,两个第一谐振梁电极关于第一谐振梁的中心镜像对称;第一差分电容上电极和第一差分电容下电极分别位于第一差分电容两侧,并分别与第一差分电容连接;第一加载电容电极位于第一差分电容上电极和第一差分电容下电极之间,第一加载电容电极与第一加载电容连接;所述第一耦合结构和第二耦合结构正对靠近,形成静电耦合结构;
所述第一差分电容上电极和第一差分电容下电极分别与第一可调阻尼电路相连;所述第二差分电容上电极和第二差分电容下电极分别与第二可调阻尼电路相连;
所述第一可调阻尼电路作用于第一微机电结构的等效阻尼和第二可调阻尼电路作用于第二微机电结构的等效阻尼符号相反、大小相等。
2.根据权利要求1所述的一种PT对称侧动微机电系统,其特征在于,第一可调阻尼电路和第二可调阻尼电路的电路结构相同,第一可调阻尼电路包括依次顺序连接的机电转换电路、增益控制电路、相位控制电路和电机转换电路。
3.根据权利要求1所述的一种PT对称侧动微机电系统,其特征在于,第一加载电容为第一微扰加载电容、第一加载电容电极为第一微扰加载电容电极,第二加载电容为第二微扰加载电容、第二加载电容电极为第二微扰加载电容电极。
CN202010503760.XA 2020-06-05 2020-06-05 一种pt对称侧动微机电系统 Active CN111732070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010503760.XA CN111732070B (zh) 2020-06-05 2020-06-05 一种pt对称侧动微机电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010503760.XA CN111732070B (zh) 2020-06-05 2020-06-05 一种pt对称侧动微机电系统

Publications (2)

Publication Number Publication Date
CN111732070A CN111732070A (zh) 2020-10-02
CN111732070B true CN111732070B (zh) 2023-01-17

Family

ID=72649991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010503760.XA Active CN111732070B (zh) 2020-06-05 2020-06-05 一种pt对称侧动微机电系统

Country Status (1)

Country Link
CN (1) CN111732070B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798060B (zh) * 2021-04-13 2021-06-25 南京深思微电子有限公司 一种谐振式流量传感器
CN113514666B (zh) * 2021-04-29 2022-08-02 东南大学 一种基于pt对称谐振器的微机械加速度计及其检测方法
CN112904047B (zh) * 2021-04-30 2021-07-27 东南大学 一种三阶pt对称微机械微扰敏感系统
CN112986872B (zh) * 2021-04-30 2021-07-27 东南大学 一种pt对称微机械磁场传感器
CN113900053B (zh) * 2021-09-27 2022-11-15 东南大学 一种基于pt对称原理的mems谐振式磁场传感器及其使用方法
CN114910714B (zh) * 2022-05-12 2024-02-02 东南大学 一种基于奇异点的高灵敏度电荷传感器及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239697A (zh) * 2007-02-06 2008-08-13 万长风 垂直集成微电子机械结构、实现方法及其系统
CN101319899A (zh) * 2008-07-24 2008-12-10 北京大学 一种电容式水平轴微机械音叉陀螺
WO2014207710A1 (en) * 2013-06-28 2014-12-31 Murata Manufacturing Co., Ltd. Capacitive micromechanical sensor structure and micromechanical accelerometer
CN106645999A (zh) * 2016-09-20 2017-05-10 西北工业大学 一种超高灵敏度的微机械谐振式静电计
CN110412362A (zh) * 2019-06-26 2019-11-05 中国科学院电子学研究所 压电驱动互屏蔽电极微型电场传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784530B1 (en) * 2013-03-27 2016-03-02 IMEC vzw A two axes MEMS resonant magnetometer
GB2524245A (en) * 2014-03-17 2015-09-23 Atlantic Inertial Systems Ltd Accelerometers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239697A (zh) * 2007-02-06 2008-08-13 万长风 垂直集成微电子机械结构、实现方法及其系统
CN101319899A (zh) * 2008-07-24 2008-12-10 北京大学 一种电容式水平轴微机械音叉陀螺
WO2014207710A1 (en) * 2013-06-28 2014-12-31 Murata Manufacturing Co., Ltd. Capacitive micromechanical sensor structure and micromechanical accelerometer
CN106645999A (zh) * 2016-09-20 2017-05-10 西北工业大学 一种超高灵敏度的微机械谐振式静电计
CN110412362A (zh) * 2019-06-26 2019-11-05 中国科学院电子学研究所 压电驱动互屏蔽电极微型电场传感器

Also Published As

Publication number Publication date
CN111732070A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN111732070B (zh) 一种pt对称侧动微机电系统
CN111960374B (zh) 一种pt对称垂动微机电系统
Liu et al. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers
Hodgins et al. Experimental comparison of bias elements for out-of-plane DEAP actuator system
CN109997305B (zh) 振动发电元件
Cheng et al. Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators
Kim et al. Compliant bistable mechanism for low frequency vibration energy harvester inspired by auditory hair bundle structures
CN103901227B (zh) 硅微谐振式加速度计
CN110940866B (zh) 灵敏度可调节的谐振微型电场传感器
JP2014530324A (ja) エネルギー収集装置
Xu et al. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters
Cao et al. Design and test of the MEMS coupled piezoelectric–electromagnetic energy harvester
JP2011152004A (ja) 発電ユニットおよび発電装置
CN1844933A (zh) 一种扭摆式硅mems角加速度传感器
CN112904047B (zh) 一种三阶pt对称微机械微扰敏感系统
CN103338021A (zh) 一种基于结构自激振动原理的微机电谐振器
CN114444365B (zh) 静电驱动微执行器吸合电压的计算方法、系统及存储介质
Götz et al. Lateral vibration attenuation of a beam with circular cross-section by a support with integrated piezoelectric transducers shunted to negative capacitances
Pan et al. A collision impact based energy harvester using piezoelectric polyline beams with electret coupling
Alzgool et al. Self-powered triboelectric MEMS accelerometer
US20090321232A1 (en) Electromechanical element and electronic equipment using the same
Cao et al. The effects of compliant support on the dynamics of a dielectric elastomer actuator: a parametric study
CN100491961C (zh) 静电梳状驱动mems双轴拉伸疲劳特性实验装置
Wang et al. A Mems Accelerometer with an auto-tuning system based on an electrostatic anti-spring
Hou et al. Nested folded-beam suspensions with low longitudinal stiffness for comb-drive actuators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant