CN111723504B - 一种可转位刀片周边刃端面磨削力计算方法 - Google Patents

一种可转位刀片周边刃端面磨削力计算方法 Download PDF

Info

Publication number
CN111723504B
CN111723504B CN202010531933.9A CN202010531933A CN111723504B CN 111723504 B CN111723504 B CN 111723504B CN 202010531933 A CN202010531933 A CN 202010531933A CN 111723504 B CN111723504 B CN 111723504B
Authority
CN
China
Prior art keywords
grinding
model
grinding wheel
establishing
grinding force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010531933.9A
Other languages
English (en)
Other versions
CN111723504A (zh
Inventor
姚斌
郑清
蔡思捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202010531933.9A priority Critical patent/CN111723504B/zh
Publication of CN111723504A publication Critical patent/CN111723504A/zh
Application granted granted Critical
Publication of CN111723504B publication Critical patent/CN111723504B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Computer Graphics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

一种可转位刀片周边刃端面磨削力计算方法,涉及端面磨削加工领域。搭建基于分布式计算的磨削力模型、砂轮‑主轴动力学模型和顶尖动力学模型的联合仿真平台,结合分布式计算方法与执行流程规划算法,基于砂轮‑主轴动力学模型及顶尖动力学模型,对顶尖系统变形及砂轮‑主轴系统变形进行研究,结合顶尖系统变形与砂轮‑主轴系统变形对磨削深度、磨削速度等工艺参数的影响,计算端面磨削过程中的磨削力大小。采用耦合机床系统关键子结构的动力学特性,并通过分布式计算方法和系统进程协调算法搭建运行配套接口,对系统结构和磨削工艺过程之间的交互作用进行仿真和控制,准确预算端面磨削力的方法,实时性更强,提升了磨削力计算精度和计算效率。

Description

一种可转位刀片周边刃端面磨削力计算方法
技术领域
本发明涉及端面磨削加工领域,特别是涉及可转位刀片周边磨床磨削过程中机床关键子结构处于动态变形过程中的工艺交互式磨削力智能计算的一种可转位刀片周边刃端面磨削力计算方法。
背景技术
磨削力是表征磨削性能的重要参数,影响着磨削加工的尺寸精度、工件成型表面的粗糙度和砂轮的磨损等,因此在磨削过程中,能够有效地控制磨削力对磨削加工精度具有重要意义。国内外已有许多学者对磨削力模型进行了研究,王君明考虑磨粒与工件的实际接触面积建立了磨削力模型,谢桂芝(谢桂芝,尚振涛,盛晓敏等.工程陶瓷高速深磨磨削力模型的研究[J].机械工程学报,2011,47(11):169-176)考虑材料的去除方式建立了高速深磨磨削力模型,Denkera.B(Denkena B,
Figure BDA0002535626530000011
J,Ventura C E H.Grinding of PCBNcutting inserts[J].International Journal of Refractory Metals&Hard Materials,2014,42(1):91-96)等基于实验方法测量单位面积磨削力预估整体磨削力,都未考虑工艺系统变形对磨削力的影响,在可转位刀片周边刃端面磨削过程中,磨削力对砂轮-主轴和顶尖结构等工艺系统变形均有较大影响(余肖进,贾檀等.可转位刀片周边刃磨夹具的结构分析与优化[J].制造技术与机床,2016(8):159-163;冯伟,张祥雷,吕颖.五轴数控工具磨床热变形控制策略研究[J].机械工程师,2014(01):140-141)。
端面磨削是指用碗型砂轮的端面磨削工件,其在机械加工行业中应用广泛。硬质合金可转位刀片周边刃磨即为端面磨削的一种典型范例,它是一种高硬高精复杂曲面磨削方法。由于可转位刀片后刀面表面质量受加工过程中工艺系统物理因素影响较大,加工时端面磨削力和磨削热会造成夹具变形、砂轮-主轴变形,从而影响磨削产品的质量。因此,对端面磨削力模型的研究是极其必要的。
发明内容
本发明的目的是提供考虑磨削加工过程中系统结构变形与磨削工艺参数之间的交互关系,建立动态磨削力的一种可转位刀片周边刃端面磨削力计算方法。
本发明包括以下步骤:
1)先建立砂轮三维模型和被加工工件模型,然后建立磨削力有限元仿真模型、砂轮-主轴动力学模型、顶尖动力学模型,从而搭建基于分布式计算的磨削力模型、砂轮-主轴动力学模型和顶尖动力学模型的联合仿真平台;
2)分别将磨削力有限元仿真模型、砂轮-主轴动力学模型、顶尖动力学模型置于不同终端设备A、B和C中,基于TCP/IP协议通过套接字编程方法建立仿真平台信息交互接口,建立windows任务管理系统查询程序,利用信息交互接口将系统结构变形结果传输至终端设备A的磨削力模型中,并将终端设备B和C中的动力学模型仿真进程挂起,等待终端设备A中的磨削力模型返回计算结果,进行不停迭代,计算磨削力结果,当顶尖变形和砂轮-主轴变形结果比上一次计算变化量小于0.0001mm时,停止迭代,终端设备A中的磨削力模型最后输出的磨削力即为考虑系统结构变形下的磨削力数值。
在步骤1)中,所述搭建基于分布式计算的磨削力模型、砂轮主轴动力学模型和顶尖动力学模型的联合仿真平台的具体方法可为:
(1)将砂轮磨粒的几何形状简化为顶端带有圆角的圆锥体,根据砂轮粒度号和磨粒直径正态分布规律,建立砂轮磨粒几何模型;
(2)利用电子显微镜对砂轮表面磨粒的密度进行测量,得出单位面积上的磨粒数量,接着将单位面积的磨粒数量划分为若干单元,假设每个磨粒在每个单元中随机放置,即得到磨粒的位置分布情况;基于磨粒位置分布,结合磨粒几何模型,建立砂轮三维模型;
(3)在Deform有限元仿真软件中,建立被加工工件几何模型,并导入砂轮三维模型,对砂轮和工件进行网格划分,接着根据工艺参数设置磨削深度,然后选择材料的本构方程为JC本构,对本构方程进行参数设置,建立磨削力有限元仿真模型,将磨削力有限元仿真模型置于终端设备A中;
(4)根据主轴和砂轮的结构设计图纸在SolidWorks中建立主轴-砂轮几何模型,将该主轴-砂轮几何模型模型导入到终端设备B中的Ansys有限元仿真软件中,采用六面体网格对模型进行划分、设置材料的弹性模量、泊松比和密度等参数,建立砂轮-主轴动力学模型;
(5)根据顶尖的结构设计图纸在SolidWorks中建立顶尖几何模型,将顶尖几何模型导入到终端设备C中的Ansys有限元仿真软件中,采用六面体网格对模型进行划分,设置材料的弹性模量、泊松比和密度等参数,设置顶尖与工件之间的摩擦系数,建立顶尖动力学模型。
在步骤2)中,所述考虑系统结构变形下的磨削力数值的具体计算方法可为:
(1)利用TCP/IP协议,建立终端设备A、B、C之间的信息交互接口,根据终端设备的IP地址和设立的无占用端口号,建立其信息交互所用的套接字;建立windows任务管理系统查询程序,监控模型情况,当模型运行结束后,查询指定地址,获取运行结果,并利用信息交互接口将终端设备A中的磨削力信息传输至终端设备B和C中,并将终端设备A中的磨削力仿真进程挂起,扫描本机设定端口,等待终端设备B和C中的动力学仿真返回计算结果;
(2)建立windows任务管理系统查询程序,监控终端设备B和C中的动力学仿真模型运行情况,当动力学仿真模型运行结束后,查询指定地址,获取运行结果,并利用信息交互接口将系统结构变形结果传输至终端设备A的磨削力模型中,并将终端设备B和C中的动力学模型仿真进程挂起,扫描本机设定端口,等待终端设备A中的磨削力模型返回计算结果;
(3)利用上述方法对耦合机床关键子结构的磨削力进行不停迭代计算,当顶尖变形和砂轮-主轴变形结果比上一次计算变化量小于0.0001mm时,停止迭代,终端设备A中的磨削力模型最后输出的磨削力即为考虑系统结构变形下的磨削力数值。
与现有技术相比,本发明具有如下突出的优点。
本发明结合分布式计算方法与执行流程规划算法,基于砂轮-主轴动力学模型及顶尖动力学模型,对顶尖系统变形及砂轮-主轴系统变形进行研究,结合顶尖系统变形与砂轮-主轴系统变形对磨削深度的影响,计算端面磨削过程中的磨削力大小。本发明提供一种考虑工艺系统变形的端面磨削力计算方法。该方法需要结合系统的关键子结构(砂轮-主轴系统和顶尖结构系统)的动力学特性对结构变形进行耦合仿真,并通过分布式计算方法和系统进程协调算法搭建运行配套接口,对系统结构和磨削工艺过程之间的交互作用进行控制,准确预算了端面磨削力力值。本发明方法实时性更强,计算精度可以达到5%以内,提升了磨削力计算精度及计算效率,为提高端面磨削精度奠定了基础。
附图说明
图1为简化的磨粒几何形状示意图。
图2为磨粒位置分布示意图。
图3为磨削力有限元仿真模型示意图。
图4为主轴-砂轮仿真系统模型示意图。
图5为顶尖动力学模型示意图。
图6为信息交互流程示意图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
本发明首先搭建基于分布式计算的磨削力模型、砂轮-主轴动力学模型和顶尖动力学模型的联合仿真平台,然后基于TCP/IP协议通过套接字编程方法建立仿真平台信息交互接口;利用三维建模软件,建立符合正态分布规律的三维砂轮模型,结合材料参数实验,通过有限元分析方法,计算等切深磨削过程磨削力大小。根据砂轮-主轴图纸尺寸、材料特性与顶尖图纸尺寸、材料特性,建立砂轮-主轴有限元模型与顶尖有限元模型。为了提高计算效率,分别将模型置于不同终端设备中,基于TCP/IP协议通过套接字编程方法建立模型信息交互接口,先进行磨削力仿真计算,通过套接字编程方法将仿真数据传送至砂轮-主轴有限元模型终端及顶尖有限元模型终端,进行主轴变形及顶尖变形仿真,将计算结果发回至磨削力计算模型终端中,根据变形量,改变切深,计算磨削力,不断迭代,直到变形量与上次变形量之差在设定范围内。通过windows任务管理系统,拾取并监控仿真状态,在仿真结束后,获取指定路径仿真结果,通过TCP/IP协议,采用套接字编程方法,将仿真结果发送至下一步执行终端设备的指定端口中,并将本终端设备中的仿真进程挂起,扫描本终端设备的接受信息端口,直到信息出现,根据信息改变运行参数,进行仿真。
本发明实施例具体包括以下步骤:
1)建立砂轮磨粒几何模型。将砂轮磨粒的几何形状简化为顶端带有圆角的圆锥体(冯伟.硬质合金磨削过程中的机床-工艺交互作用预测及控制研究[D].厦门大学博士毕业论文,2016),如图1所示。其中,d为磨粒直径,2θ为顶锥角,r为顶尖圆角半径。磨粒直径的平均值和最大值与砂轮粒度号之间的关系如式(1)(2)所示(吴昌林,丁和艳,陈义.材料去除深度与磨粒的关系建模方法研究[J].中国机械工程,2011(03):52-56),顶锥角和顶尖圆角半径与磨粒直径的关系如式(3)(4)所示(李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003;任敬心,华定安.磨削原理[M],北京:电子工业出版社,2011)。
dg,avg=68M-1.4 (1)
dg,max=15.2M-1 (2)
Figure BDA0002535626530000041
Figure BDA0002535626530000042
2)砂轮三维模型建立。由于磨粒破碎机理的复杂性,磨粒在砂轮基体表面的位置分布和露出高度各不相同,因此需分别对其进行研究。磨粒的露出高度符合高斯正态分布,其密度函数如式(5)(6)所示,其中σ为露出高度的方差(吴昌林,丁和艳,陈义.材料去除深度与磨粒的关系建模方法研究[J].中国机械工程,2011(03):52-56)。磨粒的位置分布是首先利用电子显微镜对砂轮表面磨粒的密度进行测量,得出单位面积上的磨粒数量,接着将单位面积的磨粒数量划分为n行n列个a×a的单元,如图2所示,假设每个磨粒在每个单元中随机放置,即可得到磨粒的位置分布情况。
Figure BDA0002535626530000051
σ=(dg,max-dg,avg)/3 (6)
3)建立磨削力有限元仿真模型。在Deform有限元仿真软件中,建立工件几何模型,并导入砂轮三维模型,对砂轮和工件进行网格划分,接着根据工艺参数设置磨削深度,一般端面磨削深度在5~14μm,然后选择材料的本构方程为JC本构,按照表1对本构方程进行参数设置。模型如图3所示,将模型置于终端设备A中。
表1 JC本构方程参数
Figure BDA0002535626530000052
4)建立砂轮-主轴动力学模型。根据主轴和砂轮的结构设计图纸在SolidWorks中建立主轴-砂轮的几何模型,将砂轮-主轴的几何模型导入到终端设备B中的Ansys有限元仿真软件中,采用六面体网格对模型进行划分,按照表2设置材料的弹性模量、泊松比和密度等参数,其模型如图4所示。
表2主轴-砂轮材料属性
Figure BDA0002535626530000061
5)建立顶尖动力学模型。根据顶尖的结构设计图纸在SolidWorks中建立顶尖几何模型,将模型导入到终端设备C中的Ansys有限元仿真软件中,采用六面体网格对模型进行划分,按照表3设置材料的弹性模量、泊松比和密度等参数,设置顶尖与工件之间的摩擦系数为0.2,其摩擦系数测量实验在CETR UMT-2M摩擦磨损试验机上进行。上试样为硬质合金球,下试样为钢盘,测量时上试样缓慢向下运动,压住下试样表面,当上试样加载力达到20N时,上试样固定不动,下试样以600r/min的速度转动30min,重复3组试验,对测量得到的摩擦系数取平均值即可。顶尖动力学模型如图5所示。
表3顶尖材料属性
Figure BDA0002535626530000062
6)利用TCP/IP协议,建立终端设备A、B、C之间的信息交互接口。根据终端设备的IP地址和设立的无占用端口号,建立其信息交互所用的套接字。建立windows任务管理系统查询程序,监控模型情况,当模型运行结束后,查询指定地址,获取运行结果,并利用信息交互接口将终端设备A中的磨削力信息传输至终端设备B和C中,并将终端设备A中的磨削力仿真进程挂起,扫描本机设定端口,等待终端设备B和C中的动力学仿真返回计算结果。
7)建立windows任务管理系统查询程序,监控终端设备B和C中的动力学仿真模型运行情况,当模型运行结束后,查询指定地址,获取运行结果,并利用信息交互接口将系统结构变形结果传输至终端设备A的磨削力模型中,并将B和C中的动力学模型仿真进程挂起,扫描本机设定端口,等待终端设备A中的磨削力模型返回计算结果。
8)利用上述方法对耦合机床关键子结构的磨削力进行不停迭代计算,当顶尖变形和砂轮-主轴变形结果比上一次计算变化量小于0.0001mm时(实际加工工件表面精度3μm内,因此迭代量小于实际量30倍,可视为无变化),停止迭代,终端设备A中的磨削力模型最后输出的磨削力即为考虑系统结构变形下的磨削力数值。上述信息交互的流程图如图6所示。
本发明结合分布式计算方法与执行流程规划算法,基于砂轮-主轴动力学模型及顶尖动力学模型,对顶尖系统变形及砂轮-主轴系统变形进行研究,结合顶尖系统变形与砂轮-主轴系统变形对磨削深度的影响,计算端面磨削过程中的磨削力大小。实验表明,本发明方法实时性更强,提升了磨削力计算精度和计算效率。

Claims (1)

1.一种可转位刀片周边刃端面磨削力计算方法,其特征在于包括以下步骤:
1)先建立砂轮三维模型和被加工工件模型,然后建立磨削力有限元仿真模型、砂轮-主轴动力学模型、顶尖动力学模型,从而搭建基于分布式计算的磨削力模型、砂轮-主轴动力学模型和顶尖动力学模型的联合仿真平台;
所述搭建基于分布式计算的磨削力模型、砂轮-主轴动力学模型和顶尖动力学模型的联合仿真平台的具体方法为:
1.1将砂轮磨粒的几何形状简化为顶端带有圆角的圆锥体,根据砂轮粒度号和磨粒直径正态分布规律,建立砂轮磨粒几何模型;
1.2利用电子显微镜对砂轮表面磨粒的密度进行测量,得出单位面积上的磨粒数量,接着将单位面积的磨粒数量划分为若干单元,假设每个磨粒在每个单元中随机放置,即得到磨粒的位置分布情况;基于磨粒位置分布,结合磨粒几何模型,建立砂轮三维模型;
1.3在Deform有限元仿真软件中,建立被加工工件几何模型,并导入砂轮三维模型,对砂轮和工件进行网格划分,接着根据工艺参数设置磨削深度,然后选择材料的本构方程为JC本构,对本构方程进行参数设置,建立磨削力有限元仿真模型,将磨削力有限元仿真模型置于终端设备A中;
1.4根据主轴和砂轮的结构设计图纸在SolidWorks中建立主轴-砂轮几何模型,将该主轴-砂轮几何模型模型导入到终端设备B中的Ansys有限元仿真软件中,采用六面体网格对模型进行划分、设置材料的弹性模量、泊松比和密度参数,建立砂轮-主轴动力学模型;
1.5根据顶尖的结构设计图纸在SolidWorks中建立顶尖几何模型,将顶尖几何模型导入到终端设备C中的Ansys有限元仿真软件中,采用六面体网格对模型进行划分,设置材料的弹性模量、泊松比和密度参数,设置顶尖与工件之间的摩擦系数,建立顶尖动力学模型;
2)分别将磨削力有限元仿真模型、砂轮-主轴动力学模型、顶尖动力学模型置于不同终端设备A、B和C中,基于TCP/IP协议通过套接字编程方法建立仿真平台信息交互接口,建立windows任务管理系统查询程序,利用信息交互接口将系统结构变形结果传输至终端设备A的磨削力模型中,并将终端设备B和C中的动力学模型仿真进程挂起,等待终端设备A中的磨削力模型返回计算结果,进行不停迭代,计算磨削力结果,当顶尖变形和砂轮-主轴变形结果比上一次计算变化量小于0.0001mm时,停止迭代,终端设备A中的磨削力模型最后输出的磨削力即为考虑系统结构变形下的磨削力数值;
所述考虑系统结构变形下的磨削力数值的具体计算方法为:
2.1利用TCP/IP协议,建立终端设备A、B、C之间的信息交互接口,根据终端设备的IP地址和设立的无占用端口号,建立其信息交互所用的套接字;建立windows任务管理系统查询程序,监控模型情况,当模型运行结束后,查询指定地址,获取运行结果,并利用信息交互接口将终端设备A中的磨削力信息传输至终端设备B和C中,并将终端设备A中的磨削力仿真进程挂起,扫描本机设定端口,等待终端设备B和C中的动力学仿真返回计算结果;
2.2建立windows任务管理系统查询程序,监控终端设备B和C中的动力学仿真模型运行情况,当动力学仿真模型运行结束后,查询指定地址,获取运行结果,并利用信息交互接口将系统结构变形结果传输至终端设备A的磨削力模型中,并将终端设备B和C中的动力学模型仿真进程挂起,扫描本机设定端口,等待终端设备A中的磨削力模型返回计算结果;
2.3利用步骤2.1、2.2的方法对耦合机床关键子结构的磨削力进行不停迭代计算,当顶尖变形和砂轮-主轴变形结果比上一次计算变化量小于0.0001mm时,停止迭代,终端设备A中的磨削力模型最后输出的磨削力即为考虑系统结构变形下的磨削力数值。
CN202010531933.9A 2020-06-11 2020-06-11 一种可转位刀片周边刃端面磨削力计算方法 Expired - Fee Related CN111723504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010531933.9A CN111723504B (zh) 2020-06-11 2020-06-11 一种可转位刀片周边刃端面磨削力计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010531933.9A CN111723504B (zh) 2020-06-11 2020-06-11 一种可转位刀片周边刃端面磨削力计算方法

Publications (2)

Publication Number Publication Date
CN111723504A CN111723504A (zh) 2020-09-29
CN111723504B true CN111723504B (zh) 2022-07-08

Family

ID=72566505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010531933.9A Expired - Fee Related CN111723504B (zh) 2020-06-11 2020-06-11 一种可转位刀片周边刃端面磨削力计算方法

Country Status (1)

Country Link
CN (1) CN111723504B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113910106B (zh) * 2021-12-16 2022-03-22 华辰精密装备(昆山)股份有限公司 一种磨削力控制方法及基于其的磨床

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113461A (en) * 1996-09-30 2000-09-05 Ntn Corporation Grinding method utilizing grinding sharpness of grinding element
CN106382886A (zh) * 2016-10-24 2017-02-08 厦门大学 一种用于可转位刀片加工在线检测装置及方法
CN107716961A (zh) * 2017-08-21 2018-02-23 厦门金鹭特种合金有限公司 一种涂层后处理的可转位刀片及其制作方法
CN110509119A (zh) * 2019-09-17 2019-11-29 上海交通大学 砂带磨削过程仿真方法
CN110524326A (zh) * 2019-07-30 2019-12-03 陕西汉江机床有限公司 可转位刀片磨削定位误差补偿方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113461A (en) * 1996-09-30 2000-09-05 Ntn Corporation Grinding method utilizing grinding sharpness of grinding element
CN106382886A (zh) * 2016-10-24 2017-02-08 厦门大学 一种用于可转位刀片加工在线检测装置及方法
CN107716961A (zh) * 2017-08-21 2018-02-23 厦门金鹭特种合金有限公司 一种涂层后处理的可转位刀片及其制作方法
CN110524326A (zh) * 2019-07-30 2019-12-03 陕西汉江机床有限公司 可转位刀片磨削定位误差补偿方法
CN110509119A (zh) * 2019-09-17 2019-11-29 上海交通大学 砂带磨削过程仿真方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于多颗磨粒随机分布的虚拟砂轮建模及磨削力预测;张祥雷 等;《航空学报》;20140422;第35卷(第12期);第3489-3498页 *

Also Published As

Publication number Publication date
CN111723504A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
Ma et al. A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic
Denkena et al. Prediction of the 3D surface topography after ball end milling and its influence on aerodynamics
Li et al. Simulation-based solid carbide end mill design and geometry optimization
Huang et al. Decoupled chip thickness calculation model for cutting force prediction in five-axis ball-end milling
CN107451382B (zh) 高速切削加工工件表面形貌的控制方法
Salisbury et al. A three-dimensional model for the surface texture in surface grinding, part 1: surface generation model
CN111723504B (zh) 一种可转位刀片周边刃端面磨削力计算方法
Cai et al. Dynamic grinding force model for carbide insert peripheral grinding based on grain element method
Zhang et al. A new tool wear estimation method based on shape mapping in the milling process
CN111008493B (zh) 一种砂轮磨削的仿真方法
Dong et al. Three dimensional shape model of TiBw mesh reinforced titanium matrix composites in rotary ultrasonic grinding
Li et al. Prediction of dynamic cutting force and regenerative chatter stability in inserted cutters milling
Jurko et al. Simulation of accompanying phenomena in the cutting zone during drilling of stainless steels
Chen et al. Modeling and simulation of the surface topography in ball-end milling based on biharmonic spline interpolation
Yang et al. Research on multi-axis CNC programming in machining large hydraulic turbine's blades based on UG
Zhuang et al. An analytical cutting force model for plunge milling of Ti6Al4V considering cutter runout
Dittrich et al. Parametric grinding wheel model for material removal simulation of tool grinding processes
Yang et al. Research on optimization of milling performance of V-groove micro-texture ball-end milling cutter
Wang et al. A high efficiency 3D surface topography model for face milling processes
CN110362038B (zh) 识别五轴联动数控机床在线检测能力的试件与检测方法
Ghafarizadeh et al. Numerical simulation of ball-end milling with SPH method
Chen et al. Study on the removal mechanism in multi-abrasive micro-grinding of nickel-based superalloy
CN112100888A (zh) 一种叶片榫齿缓进深切成形磨削残余应力预测方法
Chen et al. Modeling and simulation of high-speed cylindrical grinding based on 3D grinding wheel topography
CN113656903B (zh) 一种金刚石磨粒微元化的切削残余应力评价与控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220708