CN111709948A - 容器瑕疵检测方法和装置 - Google Patents
容器瑕疵检测方法和装置 Download PDFInfo
- Publication number
- CN111709948A CN111709948A CN202010834459.7A CN202010834459A CN111709948A CN 111709948 A CN111709948 A CN 111709948A CN 202010834459 A CN202010834459 A CN 202010834459A CN 111709948 A CN111709948 A CN 111709948A
- Authority
- CN
- China
- Prior art keywords
- container
- image sample
- training
- neural network
- generate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007547 defect Effects 0.000 title claims abstract description 132
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012549 training Methods 0.000 claims abstract description 133
- 238000001514 detection method Methods 0.000 claims abstract description 120
- 238000013528 artificial neural network Methods 0.000 claims abstract description 72
- 230000002950 deficient Effects 0.000 claims abstract description 42
- 238000012545 processing Methods 0.000 claims abstract description 25
- 238000007499 fusion processing Methods 0.000 claims abstract description 24
- 230000004927 fusion Effects 0.000 claims description 25
- 238000012795 verification Methods 0.000 claims description 21
- 238000007689 inspection Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 6
- 238000002372 labelling Methods 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- 239000003814 drug Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000007500 overflow downdraw method Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 241001292396 Cirrhitidae Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010834459.7A CN111709948B (zh) | 2020-08-19 | 2020-08-19 | 容器瑕疵检测方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010834459.7A CN111709948B (zh) | 2020-08-19 | 2020-08-19 | 容器瑕疵检测方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111709948A true CN111709948A (zh) | 2020-09-25 |
CN111709948B CN111709948B (zh) | 2021-03-02 |
Family
ID=72546931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010834459.7A Active CN111709948B (zh) | 2020-08-19 | 2020-08-19 | 容器瑕疵检测方法和装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111709948B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112365491A (zh) * | 2020-11-27 | 2021-02-12 | 上海市计算技术研究所 | 容器焊缝检测的方法、电子设备及存储介质 |
CN112884691A (zh) * | 2021-03-10 | 2021-06-01 | 深圳中科飞测科技股份有限公司 | 数据增强及装置、数据增强设备和存储介质 |
CN113095400A (zh) * | 2021-04-09 | 2021-07-09 | 安徽芯纪元科技有限公司 | 一种用于机器视觉缺陷检测的深度学习模型训练方法 |
CN113160141A (zh) * | 2021-03-24 | 2021-07-23 | 华南理工大学 | 一种钢板表面缺陷检测系统 |
CN113189109A (zh) * | 2021-01-15 | 2021-07-30 | 深圳锦绣创视科技有限公司 | 一种基于人工智能的瑕疵判定系统及瑕疵判定方法 |
CN114066809A (zh) * | 2021-10-11 | 2022-02-18 | 安庆师范大学 | 一种包装盒软边瑕疵检测的方法及装置 |
CN114092396A (zh) * | 2021-10-11 | 2022-02-25 | 安庆师范大学 | 一种包装盒撞角瑕疵检测的方法及装置 |
CN114119607A (zh) * | 2022-01-20 | 2022-03-01 | 广州易道智慧信息科技有限公司 | 基于深度神经网络的酒瓶缺陷样本生成方法及系统 |
CN116754484A (zh) * | 2023-06-19 | 2023-09-15 | 江苏省特种设备安全监督检验研究院 | 一种非金属内胆纤维缠绕容器的无损检测方法 |
CN117333467A (zh) * | 2023-10-16 | 2024-01-02 | 山东景耀玻璃集团有限公司 | 基于图像处理的玻璃瓶瓶身瑕疵识别检测方法及系统 |
CN117372275A (zh) * | 2023-11-02 | 2024-01-09 | 凯多智能科技(上海)有限公司 | 一种图像数据集扩充方法、装置及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070265743A1 (en) * | 2006-05-09 | 2007-11-15 | Omron Corporation | Inspection apparatus |
CN105869154A (zh) * | 2015-09-23 | 2016-08-17 | 长沙理工大学 | 一种250ml医药大输液可见异物与气泡的分类识别检测方法 |
CN110321891A (zh) * | 2019-03-21 | 2019-10-11 | 长沙理工大学 | 一种联合深度神经网络与聚类算法的大输液药液异物目标检测方法 |
CN111105391A (zh) * | 2019-11-20 | 2020-05-05 | 复旦大学 | 一种基于深度神经网络增广训练的表面缺陷检测方法 |
CN111145177A (zh) * | 2020-04-08 | 2020-05-12 | 浙江啄云智能科技有限公司 | 图像样本生成方法、特定场景目标检测方法及其系统 |
-
2020
- 2020-08-19 CN CN202010834459.7A patent/CN111709948B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070265743A1 (en) * | 2006-05-09 | 2007-11-15 | Omron Corporation | Inspection apparatus |
CN105869154A (zh) * | 2015-09-23 | 2016-08-17 | 长沙理工大学 | 一种250ml医药大输液可见异物与气泡的分类识别检测方法 |
CN110321891A (zh) * | 2019-03-21 | 2019-10-11 | 长沙理工大学 | 一种联合深度神经网络与聚类算法的大输液药液异物目标检测方法 |
CN111105391A (zh) * | 2019-11-20 | 2020-05-05 | 复旦大学 | 一种基于深度神经网络增广训练的表面缺陷检测方法 |
CN111145177A (zh) * | 2020-04-08 | 2020-05-12 | 浙江啄云智能科技有限公司 | 图像样本生成方法、特定场景目标检测方法及其系统 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112365491A (zh) * | 2020-11-27 | 2021-02-12 | 上海市计算技术研究所 | 容器焊缝检测的方法、电子设备及存储介质 |
CN113189109A (zh) * | 2021-01-15 | 2021-07-30 | 深圳锦绣创视科技有限公司 | 一种基于人工智能的瑕疵判定系统及瑕疵判定方法 |
CN112884691A (zh) * | 2021-03-10 | 2021-06-01 | 深圳中科飞测科技股份有限公司 | 数据增强及装置、数据增强设备和存储介质 |
CN112884691B (zh) * | 2021-03-10 | 2024-09-10 | 深圳中科飞测科技股份有限公司 | 数据增强及装置、数据增强设备和存储介质 |
CN113160141A (zh) * | 2021-03-24 | 2021-07-23 | 华南理工大学 | 一种钢板表面缺陷检测系统 |
CN113095400A (zh) * | 2021-04-09 | 2021-07-09 | 安徽芯纪元科技有限公司 | 一种用于机器视觉缺陷检测的深度学习模型训练方法 |
CN114092396A (zh) * | 2021-10-11 | 2022-02-25 | 安庆师范大学 | 一种包装盒撞角瑕疵检测的方法及装置 |
CN114066809A (zh) * | 2021-10-11 | 2022-02-18 | 安庆师范大学 | 一种包装盒软边瑕疵检测的方法及装置 |
CN114119607A (zh) * | 2022-01-20 | 2022-03-01 | 广州易道智慧信息科技有限公司 | 基于深度神经网络的酒瓶缺陷样本生成方法及系统 |
CN116754484A (zh) * | 2023-06-19 | 2023-09-15 | 江苏省特种设备安全监督检验研究院 | 一种非金属内胆纤维缠绕容器的无损检测方法 |
CN116754484B (zh) * | 2023-06-19 | 2024-01-05 | 江苏省特种设备安全监督检验研究院 | 一种非金属内胆纤维缠绕容器的无损检测方法 |
CN117333467A (zh) * | 2023-10-16 | 2024-01-02 | 山东景耀玻璃集团有限公司 | 基于图像处理的玻璃瓶瓶身瑕疵识别检测方法及系统 |
CN117333467B (zh) * | 2023-10-16 | 2024-05-14 | 山东景耀玻璃集团有限公司 | 基于图像处理的玻璃瓶瓶身瑕疵识别检测方法及系统 |
CN117372275A (zh) * | 2023-11-02 | 2024-01-09 | 凯多智能科技(上海)有限公司 | 一种图像数据集扩充方法、装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111709948B (zh) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111709948B (zh) | 容器瑕疵检测方法和装置 | |
CN110136101B (zh) | 一种基于孪生距离比对的轮胎x光病疵检测方法 | |
CN116188475B (zh) | 一种外观缺陷自动光学检测的智慧控制方法、系统及介质 | |
CN109671058B (zh) | 一种大分辨率图像的缺陷检测方法及系统 | |
CN111311542A (zh) | 一种产品质量检测方法及装置 | |
CN111861990B (zh) | 一种产品不良外观检测的方法、系统及存储介质 | |
US20240095983A1 (en) | Image augmentation techniques for automated visual inspection | |
CN117392042A (zh) | 缺陷检测方法、缺陷检测设备及存储介质 | |
US20190272627A1 (en) | Automatically generating image datasets for use in image recognition and detection | |
CN115661160B (zh) | 一种面板缺陷检测方法及系统及装置及介质 | |
CN116485779B (zh) | 自适应晶圆缺陷检测方法、装置、电子设备及存储介质 | |
CN112017154A (zh) | 基于Mask R-CNN模型的一种射线缺陷检测方法 | |
CN117635603B (zh) | 基于目标检测的中空遮阳产品在线质量检测系统及方法 | |
CN116363136B (zh) | 一种机动车部件自动化生产在线筛选方法及系统 | |
CN117495786A (zh) | 缺陷检测元模型构建方法、缺陷检测方法、设备及介质 | |
CN115601341A (zh) | Pcba板缺陷检测方法、系统、设备、介质及产品 | |
CN115222705A (zh) | 基于改进yolov5的化纤丝饼外观缺陷检测方法 | |
CN115023603A (zh) | 不良图片缺陷等级识别的方法、装置及存储介质 | |
CN112581472A (zh) | 一种面向人机交互的目标表面缺陷检测方法 | |
US20240296661A1 (en) | Method of analyzing a component, method of training a system, apparatus, computer program, and computer-readable storage medium | |
CN117495846B (zh) | 图像检测方法、装置、电子设备及存储介质 | |
CN115457034B (zh) | 一种类镜面工件表面的缺陷检测方法及装置 | |
CA2997335A1 (en) | Automatically generating image datasets for use in image recognition and detection | |
CN111724352B (zh) | 一种基于核密度估计的贴片led瑕疵标注方法 | |
CN114627114B (zh) | 产品缺陷严重程度测量方法及系统及装置及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220329 Address after: Building C, No.888, Huanhu West 2nd Road, Lingang New District, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai Patentee after: Shenlan Intelligent Technology (Shanghai) Co.,Ltd. Address before: 213000 No.103, building 4, Chuangyan port, Changzhou science and Education City, No.18, middle Changwu Road, Wujin District, Changzhou City, Jiangsu Province Patentee before: SHENLAN ARTIFICIAL INTELLIGENCE CHIP RESEARCH INSTITUTE (JIANGSU) Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240726 Address after: No. 101, Building A, 588 Shengang Road, Xinqiao Town, Songjiang District, Shanghai, 201600 Patentee after: Shenlan Xunshi Technology (Shanghai) Co.,Ltd. Country or region after: China Address before: Building C, No.888, Huanhu West 2nd Road, Lingang New District, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai Patentee before: Shenlan Intelligent Technology (Shanghai) Co.,Ltd. Country or region before: China |