CN111709942B - Zinc flotation dosing amount prediction control method based on texture degree optimization - Google Patents

Zinc flotation dosing amount prediction control method based on texture degree optimization Download PDF

Info

Publication number
CN111709942B
CN111709942B CN202010602623.1A CN202010602623A CN111709942B CN 111709942 B CN111709942 B CN 111709942B CN 202010602623 A CN202010602623 A CN 202010602623A CN 111709942 B CN111709942 B CN 111709942B
Authority
CN
China
Prior art keywords
foam
texture
value
image
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010602623.1A
Other languages
Chinese (zh)
Other versions
CN111709942A (en
Inventor
唐朝晖
李涛
张虎
张国勇
罗金
李耀国
袁鹤
戴智恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010602623.1A priority Critical patent/CN111709942B/en
Publication of CN111709942A publication Critical patent/CN111709942A/en
Application granted granted Critical
Publication of CN111709942B publication Critical patent/CN111709942B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/41Analysis of texture based on statistical description of texture
    • G06T7/45Analysis of texture based on statistical description of texture using co-occurrence matrix computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Geometry (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于纹理度优化的锌浮选加药量预测控制方法,包括以下步骤:首先提取泡沫图像特征,包括粗选泡沫图象的熵值、能量、逆差矩、泡沫尺寸和泡沫颜色特征以及精选泡沫图象的纹理特征,根据精选泡沫图象纹理参数和精矿品位关系定义纹理复杂度;其次利用提取到的特征参数,采用神经网络构建精选泡沫纹理复杂度预测模型,最后根据精选泡沫纹理复杂度预测值和期望的最佳值的差值平方为目标函数,采用寻优方法计算出药剂量调整值,完成加药控制。本发明结合了精选和粗选泡沫状态特征,使控制结果更加优良,提高了矿物的回收效率,降低了药剂消耗。

Figure 202010602623

The invention discloses a method for predicting and controlling the dosing amount of zinc flotation based on texture degree optimization. The color feature and the texture feature of the selected foam image define the texture complexity according to the texture parameters of the selected foam image and the relationship of concentrate grade; secondly, using the extracted feature parameters, a neural network is used to construct a prediction model of the selected foam texture complexity , and finally, according to the square of the difference between the predicted value of the selected foam texture complexity and the expected optimal value as the objective function, the optimization method is used to calculate the adjustment value of the dosage of medicine to complete the dosing control. The invention combines the characteristics of the selected and roughed foam states, so that the control results are more excellent, the recovery efficiency of minerals is improved, and the consumption of chemicals is reduced.

Figure 202010602623

Description

一种基于纹理度优化的锌浮选加药量预测控制方法A predictive control method for zinc flotation dosage based on texture optimization

技术领域technical field

本发明属于泡沫浮选技术领域,具体涉及一种锌浮选过程加药量预测控制的方法。The invention belongs to the technical field of froth flotation, in particular to a method for predicting and controlling the dosing amount of zinc flotation process.

背景技术Background technique

泡沫浮选是利用矿物的亲疏水性的差异将矿物从无用脉石中分离出来的过程,锌浮选过程的加药量主要由经验丰富的操作工肉眼观察浮选槽表面泡沫的颜色、大小、纹理等状态判断生产状态进行调整。然而人工观察存在很强的主观性和操作的随意性,使得浮选过程中加药操作误差大、效率低,可能由于不准确判别而导致药剂、矿物资源的严重浪费,精选槽中泡沫的纹理特征与泡沫的精矿品位密切相关,因此通过控制精选槽中的纹理复杂度在一定的范围,则能够控制好最终得到的精矿品位达到标准。Froth flotation is a process in which minerals are separated from useless gangue by using the difference in the hydrophilicity and hydrophobicity of minerals. The state of texture, etc. is judged and adjusted according to the production state. However, manual observation has strong subjectivity and randomness of operation, which makes the dosing operation error large and low in efficiency during the flotation process, which may lead to serious waste of chemicals and mineral resources due to inaccurate discrimination. The texture characteristics are closely related to the concentrate grade of the foam, so by controlling the texture complexity in the concentrating tank within a certain range, the final concentrate grade can be controlled to reach the standard.

目前现有的浮选过程加药量控制方法主要是针对浮选泡沫的尺寸特征进行研究,通过研究泡沫大小的尺寸分布概率函数(PDF),建立Hammerstein-Wiener模型对粗选槽加药6分钟后的泡沫尺寸分布曲线进行预测,通过分析泡沫尺寸判断浮选好坏,利用模型预测的泡沫尺寸分布曲线和期望的最佳尺寸分布曲线(得到精矿品位较高的粗选生产过程的泡沐尺寸分布曲线)的差值建立加药量调整计算模型,实现加药量合理预测控制。但浮选过程是个复杂的多工艺流程,经由粗选、精选和扫选过程完成,该方法仅仅针对粗选槽内的泡沫状态进行分析和判断,并未结合多个浮选槽的泡沫状态,在实际工业应用中存在生产状况无法全面监测和调节不及时的问题。At present, the existing control methods of dosing amount in the flotation process are mainly based on the research on the size characteristics of the flotation froth. By studying the size distribution probability function (PDF) of the froth size, a Hammerstein-Wiener model is established to add dosing to the roughing tank for 6 minutes. The size distribution curve of the foam is predicted, and the quality of flotation is judged by analyzing the size of the foam. The difference value of the size distribution curve) establishes a calculation model for the adjustment of the dosing amount, and realizes the reasonable prediction and control of the dosing amount. However, the flotation process is a complex multi-technical process, which is completed through roughing, beneficiation and sweeping. This method only analyzes and judges the froth state in the roughing cell, and does not combine the froth state of multiple flotation cells. , in actual industrial applications, there is a problem that the production status cannot be fully monitored and adjusted in a timely manner.

本发明主要是结合粗选和精选两个工艺流程进行锌浮选过程的加药量预测控制的研究,通过结合粗选槽泡沫的颜色、尺寸、泡沫图像的熵值、能量、逆差矩等特征信息,构建神经网络预测模型对精选槽的泡沫纹理复杂度进行预测。将预测的精选泡沫纹理度与最佳纹理复杂度之差的平方作为控制目标,建立专家经验模糊规则库,采取寻优方法进行求解,计算出达到控制目标所需要修改的药剂量的值。通过对精选槽的特征预测,从而判断未来工况,能够提前做出药剂量的调整,及时调整好生产过程。The invention mainly combines the two technological processes of roughing and selection to carry out the research on the prediction control of the dosing amount of the zinc flotation process. Feature information, build a neural network prediction model to predict the foam texture complexity of the selected slot. Taking the square of the difference between the predicted selected foam texture degree and the optimal texture complexity as the control target, an expert experience fuzzy rule base is established, and the optimization method is adopted to solve the problem, and the value of the modified drug amount required to achieve the control target is calculated. By predicting the characteristics of the selection tank, the future working conditions can be judged, the adjustment of the dosage of the medicine can be made in advance, and the production process can be adjusted in time.

发明内容SUMMARY OF THE INVENTION

本发明的目的提供一种基于纹理度优化锌浮选过程加药量预测控制的方法,首先对粗选槽泡沫的大小、颜色、熵值、能量、逆差矩等特征进行提取,然后建神经网络预测模型对精选泡沫纹理度进行预测,根据预测值和期望的最佳值之差计算出药剂量的调整值,实现药剂量的控制。The purpose of the present invention is to provide a method for optimizing the prediction control method of dosing amount in zinc flotation process based on texture degree, firstly extracting the features such as size, color, entropy value, energy, inverse moment of foam in roughing tank, and then building a neural network The prediction model predicts the texture degree of the selected foam, and calculates the adjustment value of the drug dose according to the difference between the predicted value and the expected optimal value, so as to realize the control of the drug dose.

本发明所采用的技术方案具体步骤如下:The concrete steps of the technical solution adopted in the present invention are as follows:

S1.提取锌浮选粗选槽中的泡沫图像特征,包括浮选泡沫图像的熵值、能量、逆差矩、泡沫尺寸和泡沫颜色:通过对n幅粗选泡沫图像进行特征提取,采取空间灰度共生矩阵方法,即SGLCM方法,提取泡沫图像的熵值、能量、逆差矩得到具体数据集分别为Er=[E1,E2,E3,E4...En]、Ar=[A1,A2,A3,A4,...An]、Cr=[C1,C2,C3,C4,...Cn],采用经典的分水岭算法分割并提取泡沫尺寸特征数据S=[S1,S2,S3,S4...Sn],泡沫颜色特征经由HSV颜色通道进行计算得到数据Co=[Co1,Co2,Co3,Co4...Con],将该五个特征数据构成粗选特征数据集U;S1. Extract the froth image features in the zinc flotation roughing cell, including the entropy, energy, inverse moment, froth size and froth color of the flotation froth image: By extracting the features of n rough froth images, the spatial gray The degree co-occurrence matrix method, that is, the SGLCM method, extracts the entropy, energy, and inverse moment of the foam image to obtain the specific data sets as E r = [E1, E2, E3, E4...En], A r = [A1, A2 ,A3,A4,...An], C r =[C1,C2,C3,C4,...Cn], the classical watershed algorithm is used to segment and extract the characteristic data of foam size S=[S1,S2,S3, S4...Sn], the foam color feature is calculated through the HSV color channel to obtain data Co=[Co1, Co2, Co3, Co4...Con], and the five feature data constitute a rough selection feature data set U;

S2.挑选出n幅粗选泡沫图像相对应的精选泡沫图像,采取SGLCM方法分别提取出n幅精选泡沫图像的纹理特征参数:S2. Select the selected foam images corresponding to the n rough selected foam images, and use the SGLCM method to extract the texture feature parameters of the n selected foam images:

熵值

Figure GDA0003365879750000021
entropy value
Figure GDA0003365879750000021

能量

Figure GDA0003365879750000022
energy
Figure GDA0003365879750000022

逆差矩

Figure GDA0003365879750000023
Inverse moment
Figure GDA0003365879750000023

通过分析这三个特征参数与泡沫图像纹理以及实际精矿品位之间关系,精矿品位高对应的精选泡沫图像的能量低,熵值和逆差矩高,故定义精选槽纹理复杂度:By analyzing the relationship between these three characteristic parameters and the texture of the foam image and the actual concentrate grade, the energy of the selected foam image corresponding to the high concentrate grade is low, and the entropy value and the inverse moment are high, so the texture complexity of the selection tank is defined:

Figure GDA0003365879750000024
Figure GDA0003365879750000024

对n幅精选泡沫图像分别计算纹理复杂度TC,构成精选槽纹理复杂度数据集T=[TC1,TC2,TC3,TC4...TCn],其中i,j为泡沫图像的像素值,L为图像的量化级数,pd(i,j)为空间灰度共生矩阵中第i行,第j列的元素。Calculate the texture complexity TC for n selected foam images respectively, and form the selected groove texture complexity data set T=[TC 1 , TC 2 , TC 3 , TC 4 ... TC n ], where i, j are foam The pixel value of the image, L is the quantization level of the image, and p d (i, j) is the element of the ith row and the jth column in the spatial grayscale co-occurrence matrix.

S3.构建BP神经网络预测模型进行精选泡沫图像的纹理复杂度预测:S3. Build a BP neural network prediction model to predict the texture complexity of selected foam images:

a.将提取的粗选泡沫图像的熵值Er=[E1,E2,E3,E4...En]、能量Ar=[A1,A2,A3,A4,...An]、逆差矩Cr=[C1,C2,C3,C4,...Cn]、泡沫尺寸S=[S1,S2,S3,S4...Sn]和泡沫颜色Co=[Co1,Co2,Co3,Co4...Con]作为输入层的5个输入变量;精选槽纹理复杂度TC作为神经网络的输出变量。a. Entropy value Er = [E1, E2, E3, E4...En], energy Ar = [A1, A2, A3, A4,... An] of the extracted rough foam image, inverse difference moment C r =[C1,C2,C3,C4,...Cn], foam size S=[S1,S2,S3,S4...Sn] and foam color Co=[Co1,Co2,Co3,Co4.. .Con] as the 5 input variables of the input layer; the selected slot texture complexity TC is used as the output variable of the neural network.

b.根据特征重要度对5个输入变量进行信任度分配,根据信任度得到熵值、能量、逆差矩、泡沫尺寸、泡沫颜色的权重值为w1,w2,w3,w4,w5;b. Assign the trust degree to the five input variables according to the feature importance, and obtain the weights of entropy, energy, inverse moment, foam size and foam color according to the trust degree as w1, w2, w3, w4, w5;

c.神经网络的隐含层节点确定根据经验公式:

Figure GDA0003365879750000025
其中m为隐含层节点数,g为输入层节点数,o为输出层节点数,u为常数;由于输入变量为5个,输出变量为1个,故隐含层节点数m确定在2~13之间。c. The hidden layer nodes of the neural network are determined according to the empirical formula:
Figure GDA0003365879750000025
where m is the number of hidden layer nodes, g is the number of input layer nodes, o is the number of output layer nodes, and u is a constant; since there are 5 input variables and 1 output variable, the number m of hidden layer nodes is determined to be 2 ~13.

d.将已确定权值的输入变量和输出变量输入到神经网络中训练出精选槽纹理复杂度预测模型:从步骤S1获得的特征数据集U和步骤S2获得的纹理度数据集T中选取相对应的M条数据构成神经网络的训练集,输入到构建的BP神经网络中,选取预测误差<Δ作为训练结束条件,得到预测模型。d. Input the input variables and output variables of the determined weights into the neural network to train the texture complexity prediction model of the selection slot: select from the feature data set U obtained in step S1 and the texture data set T obtained in step S2 The corresponding M pieces of data constitute the training set of the neural network, which is input into the constructed BP neural network, and the prediction error <Δ is selected as the training end condition to obtain the prediction model.

e.利用测试集检验并修正预测模型e. Use the test set to test and revise the prediction model

S4.采取统计方法统计出浮选过程得到的精矿品位52%~56%情况下对应的最佳纹理度Tb,将BP神经网络预测模型计算出的精选泡沫纹理度预测值Tp与精选泡沫最佳纹理度Tb之差的平方作为目标函数,建立专家经验模糊规则库,采取寻优方法进行求解,计算出加药量x:S4. Use statistical methods to calculate the optimal texture degree T b corresponding to the concentrate grade obtained by the flotation process at 52% to 56%, and compare the selected foam texture degree predicted value T p calculated by the BP neural network prediction model with the The square of the difference between the optimal foam texture degrees T b is selected as the objective function, the expert experience fuzzy rule base is established, and the optimization method is adopted to solve the problem, and the dosing amount x is calculated:

f(x)=min{(Tp-Tb)2}f(x)=min{(T p -T b ) 2 }

模糊规则定义为:Fuzzy rules are defined as:

if E=e0,A=a0,C=c0,S=s0,Co=Co0,Tp=y0;thenx=x0if E=e 0 , A=a 0 , C=c 0 , S=s 0 , Co=Co 0 , T p =y 0 ; thenx=x 0 ;

if E=e1,A=a1,C=c1,S=s1,Co=Co1,Tp=y1;thenx=x1if E=e 1 , A=a 1 , C=c 1 , S=s 1 , Co=Co 1 , T p =y 1 ; thenx=x 1 ;

……...

if E=en,A=an,C=cn,S=sn,Co=Con,Tp=yn;thenx=xnif E= en , A=an , C=cn , S= sn , Co= Con , Tp = yn ; thenx = xn ;

根据实际计算过程,其中e0,e1…e n,a0,a1,…an,c0,c1,…cn,s0,s1,…sn,Co0,Co1,…Con分别为提取的粗选泡沫图像的熵,取值范围为[2.0,3.0]、能量取值区间[0.2,0.4]、逆差矩区间为[0.6,0.8]、尺寸取值区间为[0.5,0.8]、颜色参数序列的取值区间落在[0.4,0.7],y0,y1,…yn为精选泡沫纹理度预测值,取值落在[0.8,1.0],x0,x1,…xn为计算的药剂调整量[2000,4500],Tb=0.85。According to the actual calculation process, among them e 0 , e 1 , ... e n , a 0 , a 1 , ... a n , c 0 , c 1 , ... c n , s 0 , s 1 , ... s n , Co 0 , Co 1 ,... Con are the entropy of the extracted rough selection foam image respectively, the value range is [2.0, 3.0], the energy value interval is [0.2, 0.4], the inverse moment interval is [0.6, 0.8], and the size value interval is [0.5, 0.8], the value range of the color parameter sequence falls within [0.4, 0.7], y 0 , y 1 , ... y n is the predicted value of the selected foam texture, and the value falls within [0.8, 1.0], x 0 , x 1 ,...x n is the calculated dose adjustment amount [2000, 4500], T b =0.85.

所述的S3内的步骤a中粗选泡沫图像各个特征所对应的权值为w1=0.1、w2=0.3、w3=0.2、w4=0.3、w5=0.1。The weights corresponding to each feature of the roughly selected foam image in step a in S3 are w1=0.1, w2=0.3, w3=0.2, w4=0.3, and w5=0.1.

所述的S3内的步骤d中预测模型误差Δ=0.01。The prediction model error in step d in S3 is Δ=0.01.

S3的c步骤中,u的大小为0<u<10,隐含层节点数m的值为7。In step c of S3, the size of u is 0<u<10, and the value of the number of hidden layer nodes m is 7.

与现有技术相比,本发明的有益效果是相比于传统浮选过程药剂量控制方法,能够考虑到多生产工艺之间的生产状态,对精选槽和粗选槽之间的泡沫状态进行分析和研究,并且针对实际生产过程进行预测,对于浮选过程的加药量控制能够及时有效的做出计算。浮选过程工艺流程长,多工序耦合情况严重,传统的药剂量控制方法中仅涉及研究单一工艺或者单一泡沫特征对浮选过程加药量的影响和作用,容易增加生产状态误判和药剂量不足或过量问题,造成矿石资源的浪费,降低企业经济效益。因此本发明考虑多个特征的重要度,建立神经网络预测模型和利用药剂量计算方法,有效的结合精选和扫选双工序,实现合理高效的药剂量预测控制。Compared with the prior art, the beneficial effect of the present invention is that compared with the traditional flotation process dosage control method, the production state between multiple production processes can be considered, and the foam state between the concentrating tank and the roughing tank can be considered. Carry out analysis and research, and predict the actual production process, and make timely and effective calculations for the dosing amount control of the flotation process. The flotation process has a long process flow, and the coupling of multiple processes is serious. The traditional drug dosage control method only involves the study of the influence and effect of a single process or a single foam feature on the dosage of the flotation process, which is easy to increase the misjudgment of the production state and the dosage of the drug. Insufficient or excessive problems cause waste of ore resources and reduce the economic benefits of enterprises. Therefore, the present invention considers the importance of multiple features, establishes a neural network prediction model and utilizes a drug dose calculation method, and effectively combines the double processes of selection and sweeping to realize reasonable and efficient drug dose prediction control.

附图说明Description of drawings

图1为本发明锌浮选过程加药量预测控制的方法的流程示意图;Fig. 1 is the schematic flow sheet of the method for the predictive control of dosing amount in zinc flotation process of the present invention;

图2为本发明的结构框图。FIG. 2 is a structural block diagram of the present invention.

具体实施方式Detailed ways

为了更加详细、具体的说明本发明的技术方案及优点,下面结合附图和实施例,对本发明进一步的详细说明。In order to describe the technical solutions and advantages of the present invention in more detail and concretely, the present invention is further described in detail below with reference to the accompanying drawings and embodiments.

S1.提取锌浮选粗选槽中的泡沫图像特征,包括浮选泡沫图像的熵值、能量、逆差矩、泡沫尺寸和泡沫颜色:通过对n幅粗选泡沫图像进行特征提取,采取空间灰度共生矩阵方法,即SGLCM方法,提取泡沫图像的熵值、能量、逆差矩得到具体数据集分别为Er=[E1,E2,E3,E4...En]、Ar=[A1,A2,A3,A4,...An]、Cr=[C1,C2,C3,C4,...Cn],采用经典的分水岭算法分割并提取泡沫尺寸特征数据S=[S1,S2,S3,S4...Sn],泡沫颜色特征经由HSV颜色通道进行计算得到数据Co=[Co1,Co2,Co3,Co4...Con],将该五个特征数据构成粗选特征数据集U;S1. Extract the froth image features in the zinc flotation roughing cell, including the entropy, energy, inverse moment, froth size and froth color of the flotation froth image: By extracting the features of n rough froth images, the spatial gray The degree co-occurrence matrix method, that is, the SGLCM method, extracts the entropy, energy, and inverse moment of the foam image to obtain the specific data sets as E r = [E1, E2, E3, E4...En], A r = [A1, A2 ,A3,A4,...An], C r =[C1,C2,C3,C4,...Cn], the classical watershed algorithm is used to segment and extract the characteristic data of foam size S=[S1,S2,S3, S4...Sn], the foam color feature is calculated through the HSV color channel to obtain data Co=[Co1, Co2, Co3, Co4...Con], and the five feature data constitute a rough selection feature data set U;

S2.挑选出n幅粗选泡沫图像相对应的精选泡沫图像,采取SGLCM方法分别提取出n幅精选泡沫图像的纹理特征参数:S2. Select the selected foam images corresponding to the n rough selected foam images, and use the SGLCM method to extract the texture feature parameters of the n selected foam images:

熵值

Figure GDA0003365879750000041
entropy value
Figure GDA0003365879750000041

能量

Figure GDA0003365879750000042
energy
Figure GDA0003365879750000042

逆差矩

Figure GDA0003365879750000043
Inverse moment
Figure GDA0003365879750000043

通过分析这三个特征参数与泡沫图像纹理以及实际精矿品位之间关系,精矿品位高对应的精选泡沫图像的能量低,熵值和逆差矩高,故定义精选槽纹理复杂度:By analyzing the relationship between these three characteristic parameters and the texture of the foam image and the actual concentrate grade, the energy of the selected foam image corresponding to the high concentrate grade is low, and the entropy value and the inverse moment are high, so the texture complexity of the selection tank is defined:

Figure GDA0003365879750000044
Figure GDA0003365879750000044

对n幅精选泡沫图像分别计算纹理复杂度TC,构成精选槽纹理复杂度数据集T=[TC1,TT2,TC3,TC4...TCn],其中i,j为泡沫图像的像素值,L为图像的量化级数,pd(i,j)为空间灰度共生矩阵中第i行,第j列的元素;Calculate the texture complexity TC for n selected foam images respectively, and form the selected groove texture complexity data set T=[TC 1 , TT 2 , TC 3 , TC 4 ... TC n ], where i, j are foam The pixel value of the image, L is the quantization level of the image, and p d (i, j) is the element of the ith row and the jth column in the spatial grayscale co-occurrence matrix;

S3:构建BP神经网络预测模型进行精选泡沫图像的纹理复杂度预测,具体步骤如下:S3: Build a BP neural network prediction model to predict the texture complexity of selected foam images. The specific steps are as follows:

步骤1.将提取的粗选泡沫图像的熵值Er=[E1,E2,E3,E4...En]、能量Ar=[A1,A2,A3,A4,...An]、逆差矩Cr=[C1,C2,C3,C4,...Cn]、泡沫尺寸S=[S1,S2,S3,S4...Sn]和泡沫颜色Co=[Co1,Co2,Co3,Co4...Con]作为输入层的5个输入变量;精选槽纹理复杂度TC作为神经网络的输出变量;Step 1. Extract the entropy value Er = [E1, E2, E3, E4...En], energy Ar = [A1, A2, A3, A4,... An], Moments Cr =[C1,C2,C3,C4,...Cn], foam size S=[S1,S2,S3,S4...Sn] and foam color Co=[Co1,Co2,Co3,Co4. ..Con] as the 5 input variables of the input layer; select the slot texture complexity TC as the output variable of the neural network;

步骤2.根据特征重要度对5个输入变量进行信任度分配,根据信任度得到熵值、能量、逆差矩、泡沫尺寸、泡沫颜色的权重值为w1,w2,w3,w4,w5;Step 2. According to the feature importance, the trust degree is assigned to the five input variables, and the weight values of the entropy value, energy, inverse difference moment, foam size, and foam color are obtained according to the trust degree. w1, w2, w3, w4, w5;

步骤3.神经网络的隐含层节点确定根据经验公式:

Figure GDA0003365879750000051
其中m为隐含层节点数,g为输入层节点数,o为输出层节点数;由于输入变量为5个,输出变量为1个,故隐含层节点数m确定在2~13之间,为了加快计算速度和降低计算误差,m选为7。Step 3. The hidden layer nodes of the neural network are determined according to the empirical formula:
Figure GDA0003365879750000051
where m is the number of hidden layer nodes, g is the number of input layer nodes, and o is the number of output layer nodes; since there are 5 input variables and 1 output variable, the number m of hidden layer nodes is determined to be between 2 and 13 , in order to speed up the calculation speed and reduce the calculation error, m is selected as 7.

步骤4:将已确定权值的输入变量和输出变量输入到神经网络中训练出精选槽纹理复杂度预测模型:从步骤S1获得的特征数据集U和步骤S2获得的纹理度数据集T中选取相对应的M条数据构成神经网络的训练集,输入到构建的BP神经网络中,选取预测误差<Δ作为训练结束条件,得到预测模型;Step 4: Input the input variables and output variables of the determined weights into the neural network to train the texture complexity prediction model of the selected slot: from the feature data set U obtained in step S1 and the texture data set T obtained in step S2 Select the corresponding M pieces of data to form the training set of the neural network, input it into the constructed BP neural network, select the prediction error <Δ as the training end condition, and obtain the prediction model;

步骤5:根据实际的精选泡沫图像纹理复杂度和预测值的误差,利用测试集检验并修正预测模型。Step 5: According to the actual selected foam image texture complexity and the error of the predicted value, use the test set to test and correct the prediction model.

S4.:采取统计方法统计出浮选过程得到的精矿品位54%左右情况下对应的最佳纹理度Tb,将BP神经网络预测模型计算出的精选泡沫纹理度预测值Tp与精选泡沫最佳纹理度Tb之差的平方作为目标函数,建立专家经验模糊规则库,采取寻优方法进行求解,计算出加药量x:S4.: Use statistical methods to calculate the optimal texture degree T b when the concentrate grade obtained by the flotation process is about 54%, and compare the selected foam texture degree predicted value T p calculated by the BP neural network prediction model with the refined ore texture degree T p . The square of the difference between the optimal foam texture degrees T b is selected as the objective function, the expert experience fuzzy rule base is established, the optimization method is adopted to solve the problem, and the dosage x is calculated:

f(x)=min{(Tp-Tb)2}f(x)=min{(T p -T b ) 2 }

模糊规则定义为:Fuzzy rules are defined as:

if E=e0,A=a0,C=c0,S=s0,Co=Co0,Tb=y0;thenx=x0if E=e 0 , A=a 0 , C=c 0 , S=s 0 , Co=Co 0 , T b =y 0 ; thenx=x 0 ;

if E=e1,A=a1,C=c1,S=s1,Co=Co1,Tb=y1;thenx=x1if E=e 1 , A=a 1 , C=c 1 , S=s 1 , Co=Co 1 , T b =y 1 ; thenx=x 1 ;

……...

if E=en,A=an,C=cn,S=sn,Co=Con,Tb=yn;thenx=xn if E= en , A=an , C=c n , S=s n , Co=Con , T b = yn ; thenx = x n

根据实际计算过程,其中e0,e1…e n,a0,a1,…an,c0,c1,…cn,s0,s1,…sn,Co0,Co1,…Con分别为提取的粗选泡沫图像的熵,取值范围为[2.0,3.0]、能量取值区间[0.2,0.4]、逆差矩区间为[0.6,0.8]、尺寸取值区间为[0.5,0.8]、颜色参数序列的取值区间落在[0.4,0.7],y0,y1,…yn为精选泡沫纹理度预测值,取值落在[0.8,1.0],x0,x1,…xn为计算的药剂调整量[2000,4500],Tb=0.85。According to the actual calculation process, among them e 0 , e 1 , ... e n , a 0 , a 1 , ... a n , c 0 , c 1 , ... c n , s 0 , s 1 , ... s n , Co 0 , Co 1 ,... Con are the entropy of the extracted rough selection foam image respectively, the value range is [2.0, 3.0], the energy value interval is [0.2, 0.4], the inverse moment interval is [0.6, 0.8], and the size value interval is [0.5, 0.8], the value range of the color parameter sequence falls within [0.4, 0.7], y 0 , y 1 , ... y n is the predicted value of the selected foam texture, and the value falls within [0.8, 1.0], x 0 , x 1 ,...x n is the calculated dose adjustment amount [2000, 4500], T b =0.85.

Claims (6)

1.一种基于纹理度优化的锌浮选加药量预测控制方法,其特征在于包括以下步骤:1. a zinc flotation dosage prediction control method based on texture degree optimization, is characterized in that comprising the following steps: S1.提取锌浮选粗选槽中的泡沫图像特征,包括浮选泡沫图像的熵值、能量、逆差矩、泡沫尺寸和泡沫颜色:通过对n幅粗选泡沫图像进行特征提取,采取空间灰度共生矩阵方法,即SGLCM方法,提取泡沫图像的熵值、能量、逆差矩得到具体数据集分别为Er=[E1,E2,E3,E4...En]、Ar=[A1,A2,A3,A4,...An]、Cr=[C1,C2,C3,C4,...Cn],采用经典的分水岭算法分割并提取泡沫尺寸特征数据S=[S1,S2,S3,S4...Sn],泡沫颜色特征经由HSV颜色通道进行计算得到数据Co=[Co1,Co2,Co3,Co4...Con],将该五个特征数据构成粗选特征数据集U;S1. Extract the froth image features in the zinc flotation roughing cell, including the entropy, energy, inverse moment, froth size and froth color of the flotation froth image: By extracting the features of n rough froth images, the spatial gray The degree co-occurrence matrix method, that is, the SGLCM method, extracts the entropy, energy, and inverse moment of the foam image to obtain the specific data sets as Er =[E1, E2, E3, E4...En], Ar=[A1, A2, A3, A4, ... An], C r = [C1, C2, C3, C4, ... Cn], using the classical watershed algorithm to segment and extract the characteristic data of foam size S = [S1, S2, S3, S4 ...Sn], the foam color feature is calculated through the HSV color channel to obtain data Co=[Co1, Co2, Co3, Co4...Con], and the five feature data constitute a rough selection feature data set U; S2.挑选出n幅粗选泡沫图像相对应的精选泡沫图像,采取SGLCM方法分别提取出n幅精选泡沫图像的纹理特征参数:S2. Select the selected foam images corresponding to the n rough selected foam images, and use the SGLCM method to extract the texture feature parameters of the n selected foam images: 熵值
Figure FDA0003365879740000011
entropy value
Figure FDA0003365879740000011
能量
Figure FDA0003365879740000012
energy
Figure FDA0003365879740000012
逆差矩
Figure FDA0003365879740000013
Inverse moment
Figure FDA0003365879740000013
通过分析这三个特征参数与泡沫图像纹理以及实际精矿品位之间关系,精矿品位高对应的精选泡沫图像的能量低,熵值和逆差矩高,故定义精选槽纹理复杂度:By analyzing the relationship between these three characteristic parameters and the texture of the foam image and the actual concentrate grade, the energy of the selected foam image corresponding to the high concentrate grade is low, and the entropy value and the inverse moment are high, so the texture complexity of the selection tank is defined:
Figure FDA0003365879740000014
Figure FDA0003365879740000014
对n幅精选泡沫图像分别计算纹理复杂度TC,构成精选槽纹理复杂度数据集T=[TC1,TC2,TC3,TC4...TCn],其中i,j为泡沫图像的像素值,L为图像的量化级数,pd(i,j)为空间灰度共生矩阵中第i行,第j列的元素;The texture complexity TC is calculated for n selected foam images respectively, and the selected groove texture complexity data set T=[TC 1 , TC 2 , TC 3 , TC 4 ... TC n ] is constructed, where i, j are foam The pixel value of the image, L is the quantization level of the image, p d (i, j) is the element of the ith row and the jth column in the spatial grayscale co-occurrence matrix; S3.构建BP神经网络预测模型进行精选泡沫图像的纹理复杂度预测:S3. Build a BP neural network prediction model to predict the texture complexity of selected foam images: a.将提取的粗选泡沫图像的熵值Er=[E1,E2,E3,E4...En]、能量Ar=[A1,A2,A3,A4,...An]、逆差矩Cr=[C1,C2,C3,C4,...Cn]、泡沫尺寸S=[S1,S2,S3,S4...Sn]和泡沫颜色Co=[Co1,Co2,Co3,Co4...Con]作为输入层的5个输入变量;精选槽纹理复杂度TC作为神经网络的输出变量;a. Entropy value Er=[E1, E2, E3, E4...En] of the extracted rough foam image, energy Ar =[A1, A2, A3, A4,...An], inverse difference moment C r = [C1, C2, C3, C4,...Cn], foam size S=[S1, S2, S3, S4...Sn] and foam color Co=[Co1, Co2, Co3, Co4... Con] as the 5 input variables of the input layer; the selected slot texture complexity TC is used as the output variable of the neural network; b.根据特征重要度对5个输入变量进行信任度分配,根据信任度得到熵值、能量、逆差矩、泡沫尺寸、泡沫颜色的权重值为w1,w2,w3,w4,w5;b. Assign the trust degree to the five input variables according to the feature importance, and obtain the weight values of entropy, energy, inverse moment, foam size and foam color according to the trust degree as w1, w2, w3, w4, w5; c.神经网络的隐含层节点确定根据经验公式:
Figure FDA0003365879740000015
其中m为隐含层节点数,g为输入层节点数,o为输出层节点数;由于输入变量为5个,输出变量为1个,选择隐含层节点数m在2~13之间;
c. The hidden layer nodes of the neural network are determined according to the empirical formula:
Figure FDA0003365879740000015
Among them, m is the number of hidden layer nodes, g is the number of input layer nodes, and o is the number of output layer nodes; since there are 5 input variables and 1 output variable, choose the number of hidden layer nodes m between 2 and 13;
d.将己确定权值的输入变量和输出变量输入到神经网络中训练出精选槽纹理复杂度预测模型:从步骤S1获得的特征数据集U和步骤S2获得的纹理度数据集T中选取相对应的M条数据构成神经网络的训练集,输入到构建的BP神经网络中,选取预测误差<Δ作为训练结束条件,得到预测模型;d. Input the input variables and output variables of the determined weights into the neural network to train the selected slot texture complexity prediction model: select from the feature data set U obtained in step S1 and the texture data set T obtained in step S2 The corresponding M pieces of data constitute the training set of the neural network, which is input into the constructed BP neural network, and the prediction error <Δ is selected as the training end condition to obtain the prediction model; e.利用测试集检验并修正预测模型e. Use the test set to test and revise the prediction model S4.采取统计方法统计出浮选过程得到的精矿品位52%~56%情况下对应的最佳纹理度Tb,将BP神经网络预测模型计算出的精选泡沫纹理度预测值Tp与精选泡沫最佳纹理度Tb之差的平方作为目标函数,建立专家经验模糊规则库,采取寻优方法进行求解,计算出加药量x:S4. Use statistical methods to calculate the optimal texture degree T b corresponding to the concentrate grade obtained by the flotation process at 52% to 56%, and compare the selected foam texture degree predicted value T p calculated by the BP neural network prediction model with the The square of the difference between the optimal foam texture degrees T b is selected as the objective function, the expert experience fuzzy rule base is established, and the optimization method is adopted to solve the problem, and the dosing amount x is calculated: f(x)=min{(Tp-Tb)2}f(x)=min{(T p -T b ) 2 } 模糊规则定义为:Fuzzy rules are defined as: if E=e0,A=a0,C=c0,S=s0,Co=Co0,Tp=y0;then x=x0if E=e 0 , A=a 0 , C=c 0 , S=s 0 , Co=Co 0 , T p =y 0 ; then x=x 0 ; if E=e1,A=a1,C=c1,S=s1,Co=Co1,Tp=y1;then x=x1if E=e 1 , A=a 1 , C=c 1 , S=s 1 , Co=Co 1 , T p =y 1 ; then x=x 1 ; ……... if E=en,A=an,C=cn,S=sn,Co=Con,Tp=yn;then x=xnif E= en , A=an, C=cn, S= sn , Co= Con , Tp = yn ; then x = xn ; 根据实际计算过程,其中e0,e1...en,a0,a1,...an,c0,c1,...cn,s0,s1,...sn,Co0,Co1,...Con分别为提取的粗选泡沫图像的熵,取值范围为[2.0,3.0]、能量取值区间[0.2,0.4]、逆差矩区间为[0.6,0.8]、尺寸取值区间为[0.5,0.8]、颜色参数序列的取值区间落在[0.4,0.7],y0,y1,...yn为精选泡沫纹理度预测值,取值落在[0.8,1.0],x0,x1,...xn为计算的药剂调整量[2000,4500],Tb=0.85。According to the actual calculation process, where e 0 , e 1 ... e n , a 0 , a 1 , ... a n , c 0 , c 1 , ... c n , s 0 , s 1 , ... s n , Co 0 , Co 1 , ... Co n are the entropy of the extracted rough selected foam image respectively, the value range is [2.0, 3.0], the energy value interval is [0.2, 0.4], and the inverse moment interval is [ 0.6, 0.8], the size range is [0.5, 0.8], the value range of the color parameter sequence is [0.4, 0.7], y 0 , y 1 , ... y n is the predicted value of the selected foam texture , the value falls in [0.8, 1.0], x 0 , x 1 , . . . x n is the calculated dose adjustment amount [2000, 4500], T b =0.85.
2.根据权利要求1所述的一种基于纹理度优化的锌浮选加药量预测控制方法,其特征在于,所述的粗选泡沫图像总数n为3000;训练集数据条数M为2000。2 . The method for predicting and controlling zinc flotation dosing dosage based on texture degree optimization according to claim 1 , wherein the total number n of the rough selection foam images is 3000; the number M of training set data is 2000. 3 . . 3.如权利要求1所述的一种基于纹理度优化的锌浮选加药量预测控制方法,其特征在于,粗选泡沫图像各个特征所对应的权值为w1=0.1、w2=0.3、w3=0.2、w4=0.3、w5=0.1。3 . The method for predicting and controlling the dosing amount of zinc flotation based on texture degree optimization according to claim 1 , wherein the weights corresponding to each feature of the rough selected froth image are w1=0.1, w2=0.3, w3=0.2, w4=0.3, w5=0.1. 4.如权利要求1所述的一种基于纹理度优化的锌浮选加药量预测控制方法,其特征在于,预测模型误差Δ=0.01。4 . The method for predicting and controlling the dosing amount of zinc flotation based on texture optimization according to claim 1 , wherein the prediction model error is Δ=0.01. 5 . 5.如权利要求1所述的一种基于纹理度优化的锌浮选加药量预测控制方法,其特征在于,S3的c步骤中,u的取值为0<u<10。5 . The method for predicting and controlling the dosing amount of zinc flotation based on texture degree optimization according to claim 1 , wherein, in step c of S3 , the value of u is 0<u<10. 6 . 6.如权利要求1所述的一种基于纹理度优化的锌浮选加药量预测控制方法,其特征在于,隐含层节点数m的值为7。6 . The method for predicting and controlling the dosing amount of zinc flotation based on texture degree optimization according to claim 1 , wherein the value of the number m of nodes in the hidden layer is 7. 7 .
CN202010602623.1A 2020-06-29 2020-06-29 Zinc flotation dosing amount prediction control method based on texture degree optimization Active CN111709942B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010602623.1A CN111709942B (en) 2020-06-29 2020-06-29 Zinc flotation dosing amount prediction control method based on texture degree optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010602623.1A CN111709942B (en) 2020-06-29 2020-06-29 Zinc flotation dosing amount prediction control method based on texture degree optimization

Publications (2)

Publication Number Publication Date
CN111709942A CN111709942A (en) 2020-09-25
CN111709942B true CN111709942B (en) 2022-04-12

Family

ID=72544266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010602623.1A Active CN111709942B (en) 2020-06-29 2020-06-29 Zinc flotation dosing amount prediction control method based on texture degree optimization

Country Status (1)

Country Link
CN (1) CN111709942B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113112466A (en) * 2021-03-30 2021-07-13 湖州霍里思特智能科技有限公司 Ore identification method, detection mechanism and mineral product sorting machine
CN113128126B (en) * 2021-04-26 2022-06-10 湖南理工学院 A Modeling Method of Flotation Dosing Process Based on Generative Adversarial Network
CN113713968A (en) * 2021-08-30 2021-11-30 东北大学 In-situ online characterization method for structural characteristics of micro-fine particle iron mineral aggregate
CN115338040B (en) * 2022-07-14 2024-09-17 安徽理工大学 Flotation control method for bubble-regulated tail coal slime, electronic equipment and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293840A (en) * 2005-05-25 2005-10-20 Hoya Corp Glass disk substrate, magnetic disk, method for manufacturing glass disk substrate for magnetic disk, and method for manufacturing magnetic disk
CN102855492A (en) * 2012-07-27 2013-01-02 中南大学 Classification method based on mineral flotation foam image
CN103839057A (en) * 2014-03-28 2014-06-04 中南大学 Antimony floatation working condition recognition method and system
CN104331714A (en) * 2014-11-28 2015-02-04 福州大学 Image data extraction and neural network modeling-based platinum flotation grade estimation method
CN105787562A (en) * 2016-03-24 2016-07-20 上海工程技术大学 Yarn dyed fabric texture type recognition method
CN106530296A (en) * 2016-11-07 2017-03-22 首都医科大学 Lung detection method and device based on PET/CT image features
CN110310286A (en) * 2019-07-02 2019-10-08 中南大学 Perceptual discrimination method for layered working conditions based on multi-features of foam images
CN110738271A (en) * 2019-07-13 2020-01-31 中南大学 Concentrate grade prediction method in zinc flotation processes
CN110918266A (en) * 2019-12-10 2020-03-27 中南大学 A control device and method for improving the quality of flotation froth

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309737A1 (en) * 2005-05-23 2011-04-13 Thomas S. Gilley Distributed scalable media environment
CN101334366B (en) * 2008-07-18 2011-05-25 中南大学 A Flotation Recovery Prediction Method Based on Image Feature Analysis
US10896535B2 (en) * 2018-08-13 2021-01-19 Pinscreen, Inc. Real-time avatars using dynamic textures
CN111324989B (en) * 2020-03-19 2024-01-30 重庆大学 Gear contact fatigue life prediction method based on GA-BP neural network

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293840A (en) * 2005-05-25 2005-10-20 Hoya Corp Glass disk substrate, magnetic disk, method for manufacturing glass disk substrate for magnetic disk, and method for manufacturing magnetic disk
CN102855492A (en) * 2012-07-27 2013-01-02 中南大学 Classification method based on mineral flotation foam image
CN103839057A (en) * 2014-03-28 2014-06-04 中南大学 Antimony floatation working condition recognition method and system
CN104331714A (en) * 2014-11-28 2015-02-04 福州大学 Image data extraction and neural network modeling-based platinum flotation grade estimation method
CN105787562A (en) * 2016-03-24 2016-07-20 上海工程技术大学 Yarn dyed fabric texture type recognition method
CN106530296A (en) * 2016-11-07 2017-03-22 首都医科大学 Lung detection method and device based on PET/CT image features
CN110310286A (en) * 2019-07-02 2019-10-08 中南大学 Perceptual discrimination method for layered working conditions based on multi-features of foam images
CN110738271A (en) * 2019-07-13 2020-01-31 中南大学 Concentrate grade prediction method in zinc flotation processes
CN110918266A (en) * 2019-12-10 2020-03-27 中南大学 A control device and method for improving the quality of flotation froth

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Color co-occurrence matrix based froth image texture extraction for mineral flotation;Weihua Gui 等;《Minerals Engineering》;20130630;第46-47卷;第60-67页 *
Machine Vision Based Production Condition Classification and Recognition for Mineral Flotation Process Monitoring;Liu Jinpng 等;《International Journal of Computational Interlligence Systems》;20130930;第6卷(第5期);第969-986页 *
基于CCHS的浮选泡沫图像纹理特征提取;陈宁 等;《中南大学学报(自然科学版)》;20131130;第44卷(第11期);第4506-4512页 *
浮选泡沫图像识别系统的设计与实现;黄胜国 等;《工业控制计算机》;20061231;第19卷(第6期);第62-63、68页 *

Also Published As

Publication number Publication date
CN111709942A (en) 2020-09-25

Similar Documents

Publication Publication Date Title
CN111709942B (en) Zinc flotation dosing amount prediction control method based on texture degree optimization
CN110378799B (en) A decision-making method for alumina comprehensive production indicators based on multi-scale deep convolutional networks
CN111144496B (en) Garbage classification method based on hybrid convolutional neural network
Moya et al. Deeponet-grid-uq: A trustworthy deep operator framework for predicting the power grid’s post-fault trajectories
CN105929689B (en) Machine Manufacture system processing energy conservation optimizing method based on particle cluster algorithm
Han et al. Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient
CN109858700A (en) BP neural network heating system energy consumption prediction technique based on similar screening sample
CN117035201A (en) Multi-target scheduling rule making method and system for plain river network water engineering cluster
CN114757104B (en) Method for constructing hydraulic real-time regulation and control model of series gate group water transfer project
CN114777192B (en) Secondary network heat supply autonomous optimization regulation and control method based on data association and deep learning
CN105260815A (en) Electric power system payment channel evaluating method based on large data
CN116892932B (en) Navigation decision method combining curiosity mechanism and self-imitation learning
CN106874568B (en) A kind of material particular diameter distribution forecasting method of mechanical milling process
CN110728329B (en) An optimized method for predicting concentrate grade in zinc flotation process based on feedback compensation mechanism
CN104375478A (en) Method and device for online predicting and optimizing product quality in steel rolling production process
CN114871000B (en) A self-adaptive control method for flotation dosing
CN103440525A (en) Urban lake and reservoir water bloom emergency treatment multiple-target multiple-layer decision-making method based on Vague value similarity measurement improved algorithm
CN114811713B (en) Two-level network inter-user balanced heat supply regulation and control method based on mixed deep learning
CN115861672A (en) A froth flotation operation performance evaluation method based on joint distribution of image features
CN116045443A (en) Prediction method of building air conditioning energy consumption based on optimal control of indoor temperature
CN104299045B (en) System and method for forecasting yield of concentrate in whole mineral dressing process
CN116823032A (en) Urban low-carbon planning and evaluation method based on energy-carbon double-control target
CN109359320A (en) Prediction method of blast furnace index based on multi-sampling rate autoregressive distributed lag model
CN114527716B (en) Sewage treatment prediction control method based on attention mechanism and behavior cloning model
CN109408896B (en) Multi-element intelligent real-time monitoring method for anaerobic sewage treatment gas production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant