CN111709160A - 一种基于卡车底盘的行驶动态性能分析优化方法及系统 - Google Patents

一种基于卡车底盘的行驶动态性能分析优化方法及系统 Download PDF

Info

Publication number
CN111709160A
CN111709160A CN202010247592.2A CN202010247592A CN111709160A CN 111709160 A CN111709160 A CN 111709160A CN 202010247592 A CN202010247592 A CN 202010247592A CN 111709160 A CN111709160 A CN 111709160A
Authority
CN
China
Prior art keywords
chassis
truck
analysis
influence
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010247592.2A
Other languages
English (en)
Other versions
CN111709160B (zh
Inventor
何水龙
许恩永
王衍学
向家伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Beijing University of Civil Engineering and Architecture
Dongfeng Liuzhou Motor Co Ltd
Original Assignee
Guilin University of Electronic Technology
Beijing University of Civil Engineering and Architecture
Dongfeng Liuzhou Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology, Beijing University of Civil Engineering and Architecture, Dongfeng Liuzhou Motor Co Ltd filed Critical Guilin University of Electronic Technology
Priority to CN202010247592.2A priority Critical patent/CN111709160B/zh
Publication of CN111709160A publication Critical patent/CN111709160A/zh
Application granted granted Critical
Publication of CN111709160B publication Critical patent/CN111709160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

本发明公开了一种基于卡车底盘的行驶动态性能分析优化方法及系统,包括,采集卡车行驶时的底盘动态参数及产生影响动态性能的影响因素;对所述底盘动态参数和所述影响因素进行标识,构建数据集并导入分析模型内;在所述分析模型内设定约束条件及特征目标,分析所述特征目标的动态性能影响因子;结合公差分析策略重新定义所述影响因子,并利用多目标优化策略设定所述特征目标的所述动态参数最优解。本发明方法在满足卡车行驶前提下调整底盘传动力和牵引力最优参数,降低卡车行驶中的振动性能,提升了乘员的舒适度。

Description

一种基于卡车底盘的行驶动态性能分析优化方法及系统
技术领域
本发明涉及汽车工程技术领域,尤其涉及一种基于卡车底盘的行驶动态性能分析优化方法及系统。
背景技术
随着生活水平的提高,人们对于卡车的行驶动能、振动和舒适性要求越来越高,为了提高车辆的舒适性,世界各大汽车公司都对卡车传动性能水平制定了严格的控制标准,卡车行驶时的剧烈振动问题是国际汽车各大整车制造业和零部件企业关注的问题之一。
对于卡车而言,剧烈振动问题是处处存在的,卡车在路面行驶过程中,会受到路面、发动机等多种因素的限制,导致整车或者是车身局部的振动问题,若振动频率超过一定标准,会严重影响到驾驶员的驾驶舒适感及卡车上装载物质的安全性,其中,问题产生的来源又可分为发动机、车身和底盘的形式动能三大部分,卡车底盘是支承、安装发动机及其各部件、总成,形成卡车的整体造型,并接受发动机的动力,使卡车产生运动,保证正常行驶,而卡车底盘的行驶动能对于卡车整体振动带来的舒适度影响是极其重要的。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述现有存在的问题,提出了本发明。
因此,本发明提供了一种基于卡车底盘的行驶动态性能分析优化方法,能够解决现有卡车行驶时底盘剧烈振动的问题。
为解决上述技术问题,本发明提供如下技术方案:包括,采集卡车行驶时的底盘动态参数及可能产生影响动态性能的影响因素;对所述底盘动态参数和所述影响因素进行标识,构建数据集并导入分析模型内;在所述分析模型内设定约束条件及特征目标,分析所述特征目标的动态性能影响因子;结合公差分析策略重新定义所述影响因子,并利用多目标优化策略设定所述特征目标的所述动态参数最优解。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化方法的一种优选方案,其中:采集所述动态参数和所述影响因素,包括,建立卡车底盘结构模型并输入至仿真模拟平台进行模拟行驶;所述仿真模拟平台运行结束,输出所述卡车行驶时的所述底盘动态参数;利用串口协议技术获取网络数据库内所述卡车行驶时可能影响所述底盘动态性能的所述影响因素。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化方法的一种优选方案,其中:所述底盘动态参数由卡车行驶时的动态性能输出,包括,接受传动轴的动力、驱动轮和路面的作用牵引力、整车质量与地面的反力、底盘振动力、转向稳控力;所述影响因素包括,车体振动因素、使用年限因素、架构材质因素、冲击磨损因素、环境腐蚀因素。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化方法的一种优选方案,其中:构建所述数据集包括,利用深度学习策略编写数据提取程序;运行所述数据提取程序,利用协议接口读取采集的所述动态参数和所述影响因素,并对其进行标注和分类;代码读取所述动态参数和所述影响因素完毕后,利用所述协议接口输出至保存好的所述分析模型内。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化方法的一种优选方案,其中:在所述分析模型内设定所述约束条件和所述特征目标,包括,读取所述动态参数,结合所述底盘在行驶时的所述动态性能设置阈值;将所述底盘的扭转刚度、弯曲刚度、车辆静载变形量、底盘承载变形量作为约束条件;将所述底盘的传动力、牵引力工作极限数值和最小质量分数作为所述特征目标。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化方法的一种优选方案,其中:分析所述影响因子,包括,利用所述分析模型构建目标函数求取所述传动力、所述牵引力在所述卡车行驶时最大极限值和所述最小质量分数;根据求取的所述最大极限值和所述最小质量分数分析所述影响因子大小对其影响,并输出分析结果和影响因子参数。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化方法的一种优选方案,其中:定义所述影响因子包括,利用所述影响因子参数找到影响所述传动力和所述牵引力的公差范围大小,并在所述目标函数中重新调整、定义合适的所述影响因子参数,直至输出的所述影响因子参数对所述传动力和所述牵引力不造成影响。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化方法的一种优选方案,其中:设定所述动态参数最优解,包括,利用所述多目标优化策略对重新定义后的所述目标函数再次进行求解;获得多组满足所述约束条件的所述动态参数可行解并加以比较,求得前沿解;提取所述前沿解中同时满足所述传动力和所述牵引力极限值最大且质量分数较小的解作为所述最优解。
作为本发明所述的一种基于卡车底盘的行驶动态性能分析优化系统的一种优选方案,其中:包括,采集模块,用于收集数据信息,获取各阶段的参数数据;数据处理中心模块连接于所述采集模块,用于接收采集的数据并存储至数据库内,其包括计算单元、检测单元和标注单元所述计算单元用于处理所述传动力、所述牵引力在所述卡车行驶时最大极限值和所述最小质量分数,计算各个参数的平均值及比较值,所述检测单元用于检测、对比所述计算单元获取的最大极限值和所述最小质量分数是否超出卡车标准的相关数值,并判断其与所述影响因子参数公差范围大小的关系,所述标注单元用于标识所述采集模块内的所述数据信息,并将其分类;输入输出管理模块与所述计算单元相连接,用于传输数据流及参数信息,管理系统内部运行参数和数据,分别存储所述计算单元处理后的数据;分析优化模块,用于分析所述检测单元内的对比结果,在所述检测单元做出判断的基础上再对所述影响因子参数公差范围大小与所述传动力和所述牵引力极限值的关系做出定论,确定需要调整优化的参数范围。
本发明的有益效果:本发明通过编写数据提取程序代码自动化运行数据集,利用有限元分析策略求解目标函数,提升解集准确性,结合公差分析手段确定影响因子公差范围,通过多目标优化策略找到最优解,在满足卡车行驶前提下调整底盘传动力和牵引力最优参数,降低卡车行驶中的振动性能,提升了乘员的舒适度,本发明方法不仅节约了制造的人力、财力和时间,使得设计人员能够有更多时间研发新的产品或开展新项目,且满足一定的公司研发需求,推动卡车市场的发展。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明第一个实施例所述的基于卡车底盘的行驶动态性能分析优化方法的流程示意图;
图2为本发明第二个实施例所述的基于卡车底盘的行驶动态性能分析优化系统的模块结构分布示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明,显然所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
同时在本发明的描述中,需要说明的是,术语中的“上、下、内和外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一、第二或第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本发明中除非另有明确的规定和限定,术语“安装、相连、连接”应做广义理解,例如:可以是固定连接、可拆卸连接或一体式连接;同样可以是机械连接、电连接或直接连接,也可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
参照图1,为本发明的第一个实施例,提供了一种基于卡车底盘的行驶动态性能分析优化方法,包括:
S1:采集卡车行驶时的底盘动态参数及可能产生影响动态性能的影响因素。其中需要说明的是,采集动态参数和影响因素,包括:
建立卡车底盘结构模型并输入至仿真模拟平台进行模拟行驶;
仿真模拟平台运行结束,输出卡车行驶时的底盘动态参数;
利用串口协议技术获取网络数据库内卡车行驶时可能影响底盘动态性能的影响因素。
具体的,底盘动态参数由卡车行驶时的动态性能输出,包括:
接受传动轴的动力、驱动轮和路面的作用牵引力、整车质量与地面的反力、底盘振动力、转向稳控力。
影响因素包括:
车体振动因素、使用年限因素、架构材质因素、冲击磨损因素、环境腐蚀因素。
S2:对底盘动态参数和影响因素进行标识,构建数据集并导入分析模型内。本步骤需要说明的是,构建数据集包括:
利用深度学习策略编写数据提取程序;
运行数据提取程序,利用协议接口读取采集的动态参数和影响因素,并对其进行标注和分类;
代码读取动态参数和影响因素完毕后,利用协议接口输出至保存好的分析模型内。
具体的,数据提取程序部分代码如下:
Figure BDA0002434348970000051
Figure BDA0002434348970000061
Figure BDA0002434348970000071
S3:在分析模型内设定约束条件及特征目标,分析特征目标的动态性能影响因子。其中还需要说明的是:
读取动态参数,结合底盘在行驶时的动态性能设置阈值;
将底盘的扭转刚度、弯曲刚度、车辆静载变形量、底盘承载变形量作为约束条件;
将底盘的传动力、牵引力工作极限数值和最小质量分数作为特征目标。
进一步的,分析影响因子,包括:
利用分析模型构建目标函数求取传动力、牵引力在卡车行驶时最大极限值和最小质量分数;
根据求取的最大极限值和最小质量分数分析影响因子大小对其影响,并输出分析结果和影响因子参数。
S4:结合公差分析策略重新定义影响因子,并利用多目标优化策略设定特征目标的动态参数最优解。本步骤还需要说明的是,定义影响因子包括:
利用影响因子参数找到影响传动力和牵引力的公差范围大小,并在目标函数中重新调整、定义合适的影响因子参数,直至输出的影响因子参数对传动力和牵引力不造成影响。
设定动态参数最优解,包括:
利用多目标优化策略对重新定义后的目标函数再次进行求解;
获得多组满足约束条件的动态参数可行解并加以比较,求得前沿解;
提取前沿解中同时满足传动力和牵引力极限值最大且质量分数较小的解作为最优解。
需要说明的是,本实施例中的分析模型是采用现有的有限元模型结合有限元分析策略构建的有限元分析模型,其不受空间和时间尺度的限制进行压缩和延伸,并利用计算机进行模拟处理,具有广泛的适用性;在有限元分析模型内能够选择网格种类、定义分析类型、施加约束条件,普通的分析模型不能同时具有计算处理和施加约束条件的功能,需要再建立新的约束模型对其进行约束,操作繁琐且易出现误差,不符合本发明方案初衷,故本发明方法采用有限元分析模型进行分析研究。
进一步说明的是,卡车在路面行驶过程中,会受到路面、发动机等多种因素的限制,导致整车或者是车身局部的振动问题,若振动频率超过一定标准,会严重影响到驾驶员的驾驶舒适感及卡车上装载物质的安全性,而目前关于卡车行驶中产生剧烈振动的克服方法是通过增加卡车承载重量和安装振动探测仪进行解决,然而,这两种解决方法并不能很好地从卡车本体考虑,且对于技术的研发增加了经济压力、对于制造提升了难度。
针对于此,为了对本发明方法中采用的技术效果加以验证说明,本实施例选择以传统公差分析协同优化方法与本发明方法进行测试对比,以科学论证的手段对比试验结果,以验证本发明方法所具有的真实效果,传统的公差分析协同优化方法适用范围小,仅优化质量分数而不考虑动能参数和可能产生影响振动的影响因素,不能降低卡车行驶时的剧烈振动,为验证本发明方法相对于传统方法具有较低车体传动振动性、较高的舒适性,本实施例中将采用传统优化方法和本发明方法分别对凯迪威某一型号的卡车进行实时测量对比,获取不同速度下车辆的振动程度,其中,1~3级为轻微振动,4~6级为人体感官不舒适程度振动,7~10级为剧烈振动,测试数据如下表所示:
表1:测试结果对比表。
速度km/h 振动度(传统方法) 振动度(本发明方法)
40 3 1
60 5 2
100 7 4
120 9 6
参照表1,传统的公差协同优化方法对于测试车辆的振动性并未起到很好地优化作用,在相同的速度行驶下,本发明方法所对应的振动程度远远低于传统方法优化的振动程度,其主要原因是本发明方法是针对于卡车底盘传动力和牵引力的优化,在调整可能影响动态性能的参数上进行重新定义,使得优化后的底盘传动力和牵引力最大限度的保障卡车行驶时的平顺舒适性,降低影响因素带来的剧烈振动,如表1所示,验证了本发明方法所具有的超低振动性和较高舒适性。
实施例2
参照图2,为本发明的第二个实施例,该实施例不同于第一个实施例的是,提供了一种基于卡车底盘的行驶动态性能分析优化系统,包括:
采集模块100,用于收集数据信息,获取各阶段的参数数据。
数据处理中心模块200连接于采集模块100,用于接收采集的数据并存储至数据库内,其包括计算单元201、检测单元202和标注单元203计算单元201用于处理传动力、牵引力在卡车行驶时最大极限值和最小质量分数,计算各个参数的平均值及比较值,检测单元202用于检测、对比计算单元201获取的最大极限值和最小质量分数是否超出卡车标准的相关数值,并判断其与影响因子参数公差范围大小的关系,标注单元203用于标识采集模块100内的数据信息,并将其分类。
输入输出管理模块300与计算单元201相连接,用于传输数据流及参数信息,管理系统内部运行参数和数据,分别存储计算单元201处理后的数据。
分析优化模块400,用于分析检测单元202内的对比结果,在检测单元202做出判断的基础上再对影响因子参数公差范围大小与传动力和牵引力极限值的关系做出定论,确定需要调整优化的参数范围。
进一步的,本系统还包括其包含:
DPU,用于执行系统逻辑、运算并发出指令;
I/O模件,用于收集现场一次设备、元件的参数,硬件线实现,分模拟量和开关量;
数字交换机,用于联系上位机和下位机的枢纽。
具体的,优化处理模块400对于经典优化问题(一般不涉及任何多物理模型),在空白模型中添加稳态研究和优化研究(建立目标函数、控制变量、上下限和约束),并在全局定义下定义参数和助变量;对于多物理场优化分析,需建立正演模型(几何、物理场),在全局定义下定义参数或在优化接口下添加控制变量,优化处理设计变量。
应当认识到,本发明的实施例可以由计算机硬件、硬件和软件的组合、或者通过存储在非暂时性计算机可读存储器中的计算机指令来实现或实施。所述方法可以使用标准编程技术-包括配置有计算机程序的非暂时性计算机可读存储介质在计算机程序中实现,其中如此配置的存储介质使得计算机以特定和预定义的方式操作——根据在具体实施例中描述的方法和附图。每个程序可以以高级过程或面向对象的编程语言来实现以与计算机系统通信。然而,若需要,该程序可以以汇编或机器语言实现。在任何情况下,该语言可以是编译或解释的语言。此外,为此目的该程序能够在编程的专用集成电路上运行。
此外,可按任何合适的顺序来执行本文描述的过程的操作,除非本文另外指示或以其他方式明显地与上下文矛盾。本文描述的过程(或变型和/或其组合)可在配置有可执行指令的一个或多个计算机系统的控制下执行,并且可作为共同地在一个或多个处理器上执行的代码(例如,可执行指令、一个或多个计算机程序或一个或多个应用)、由硬件或其组合来实现。所述计算机程序包括可由一个或多个处理器执行的多个指令。
进一步,所述方法可以在可操作地连接至合适的任何类型的计算平台中实现,包括但不限于个人电脑、迷你计算机、主框架、工作站、网络或分布式计算环境、单独的或集成的计算机平台、或者与带电粒子工具或其它成像装置通信等等。本发明的各方面可以以存储在非暂时性存储介质或设备上的机器可读代码来实现,无论是可移动的还是集成至计算平台,如硬盘、光学读取和/或写入存储介质、RAM、ROM等,使得其可由可编程计算机读取,当存储介质或设备由计算机读取时可用于配置和操作计算机以执行在此所描述的过程。此外,机器可读代码,或其部分可以通过有线或无线网络传输。当此类媒体包括结合微处理器或其他数据处理器实现上文所述步骤的指令或程序时,本文所述的发明包括这些和其他不同类型的非暂时性计算机可读存储介质。当根据本发明所述的方法和技术编程时,本发明还包括计算机本身。计算机程序能够应用于输入数据以执行本文所述的功能,从而转换输入数据以生成存储至非易失性存储器的输出数据。输出信息还可以应用于一个或多个输出设备如显示器。在本发明优选的实施例中,转换的数据表示物理和有形的对象,包括显示器上产生的物理和有形对象的特定视觉描绘。
如在本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种基于卡车底盘的行驶动态性能分析优化方法,其特征在于:包括,
采集卡车行驶时的底盘动态参数及产生影响动态性能的影响因素;
对所述底盘动态参数和所述影响因素进行标识,构建数据集并导入保存好的分析模型内;
在所述分析模型内设定约束条件及特征目标,分析所述特征目标的动态性能影响因子;
结合公差分析策略重新定义所述影响因子,并利用多目标优化策略设定所述特征目标的所述动态参数最优解。
2.如权利要求1所述的基于卡车底盘的行驶动态性能分析优化方法,其特征在于:采集所述动态参数和所述影响因素,包括,
建立卡车底盘结构模型并输入至仿真模拟平台进行模拟行驶;
所述仿真模拟平台运行结束,输出所述卡车行驶时的所述底盘动态参数;
利用串口协议技术获取网络数据库内所述卡车行驶时可能影响所述底盘动态性能的所述影响因素。
3.如权利要求1或2所述的基于卡车底盘的行驶动态性能分析优化方法,其特征在于:所述底盘动态参数由卡车行驶时的动态性能输出,包括,接受传动轴的动力、驱动轮和路面的作用牵引力、整车质量与地面的反力、底盘振动力、转向稳控力;
所述影响因素包括,车体振动因素、使用年限因素、架构材质因素、冲击磨损因素、环境腐蚀因素。
4.如权利要求3所述的基于卡车底盘的行驶动态性能分析优化方法,其特征在于:构建所述数据集包括,
利用深度学习策略编写数据提取程序;
运行所述数据提取程序,利用协议接口读取采集的所述动态参数和所述影响因素,并对其进行标注和分类;
代码读取所述动态参数和所述影响因素完毕后,利用所述协议接口输出至保存好的所述元分析模型内。
5.如权利要求1或4所述的基于卡车底盘的行驶动态性能分析优化方法,其特征在于:在所述分析模型内设定所述约束条件和所述特征目标,包括,
读取所述动态参数,结合所述底盘在行驶时的所述动态性能设置阈值;
将所述底盘的扭转刚度、弯曲刚度、车辆静载变形量、底盘承载变形量作为约束条件;
将所述底盘的传动力、牵引力工作极限数值和最小质量分数作为所述特征目标。
6.如权利要求5所述的基于卡车底盘的行驶动态性能分析优化方法,其特征在于:分析所述影响因子,包括,
利用所述分析模型构建目标函数求取所述传动力、所述牵引力在所述卡车行驶时最大极限值和所述最小质量分数;
根据求取的所述最大极限值和所述最小质量分数分析所述影响因子大小对其影响,并输出分析结果和影响因子参数。
7.如权利要求1或6所述的基于卡车底盘的行驶动态性能分析优化方法,其特征在于:定义所述影响因子包括,利用所述影响因子参数找到影响所述传动力和所述牵引力的公差范围大小,并在所述目标函数中重新调整、定义合适的所述影响因子参数,直至输出的所述影响因子参数对所述传动力和所述牵引力不造成影响。
8.如权利要求7所述的基于卡车底盘的行驶动态性能分析优化方法,其特征在于:设定所述动态参数最优解,包括,
利用所述多目标优化策略对重新定义后的所述目标函数再次进行求解;
获得多组满足所述约束条件的所述动态参数可行解并加以比较,求得前沿解;
提取所述前沿解中同时满足所述传动力和所述牵引力极限值最大且质量分数较小的解作为所述最优解。
9.一种基于卡车底盘的行驶动态性能分析优化系统,其特征在于:包括,
采集模块(100),用于收集数据信息,获取各阶段的参数数据;
数据处理中心模块(200)连接于所述采集模块(100),用于接收采集的数据并存储至数据库内,其包括计算单元(201)、检测单元(202)和标注单元(203)所述计算单元(201)用于处理所述传动力、所述牵引力在所述卡车行驶时最大极限值和所述最小质量分数,计算各个参数的平均值及比较值,所述检测单元(202)用于检测、对比所述计算单元(201)获取的最大极限值和所述最小质量分数是否超出卡车标准的相关数值,并判断其与所述影响因子参数公差范围大小的关系,所述标注单元(203)用于标识所述采集模块(100)内的所述数据信息,并将其分类;
输入输出管理模块(300)与所述计算单元(201)相连接,用于传输数据流及参数信息,管理系统内部运行参数和数据,分别存储所述计算单元(201)处理后的数据;
分析优化模块(400),用于分析所述检测单元(202)内的对比结果,在所述检测单元(202)做出判断的基础上再对所述影响因子参数公差范围大小与所述传动力和所述牵引力极限值的关系做出定论,确定需要调整优化的参数范围。
CN202010247592.2A 2020-03-31 2020-03-31 一种基于卡车底盘的行驶动态性能分析优化方法及系统 Active CN111709160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010247592.2A CN111709160B (zh) 2020-03-31 2020-03-31 一种基于卡车底盘的行驶动态性能分析优化方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010247592.2A CN111709160B (zh) 2020-03-31 2020-03-31 一种基于卡车底盘的行驶动态性能分析优化方法及系统

Publications (2)

Publication Number Publication Date
CN111709160A true CN111709160A (zh) 2020-09-25
CN111709160B CN111709160B (zh) 2023-08-11

Family

ID=72536592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010247592.2A Active CN111709160B (zh) 2020-03-31 2020-03-31 一种基于卡车底盘的行驶动态性能分析优化方法及系统

Country Status (1)

Country Link
CN (1) CN111709160B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449436A (zh) * 2021-07-22 2021-09-28 中铁二院工程集团有限责任公司 一种复杂运营环境下机车牵引特性曲线获取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120016639A1 (en) * 2009-03-20 2012-01-19 Xidian University Optimization design method for the chassis structure of an electronic device based on mechanical, electrical and thermal three-field coupling
CN102945307A (zh) * 2012-11-27 2013-02-27 北京汽车股份有限公司 汽车底盘关键结构件结构优化设计方法
JP2015040762A (ja) * 2013-08-21 2015-03-02 トヨタ自動車株式会社 車両の運動性能評価のためのシミュレーション装置
CN107220405A (zh) * 2017-04-21 2017-09-29 南京航空航天大学 一种基于改进细胞膜优化算法的汽车底盘系统集成多目标优化方法
CN109933887A (zh) * 2019-03-11 2019-06-25 桂林电子科技大学 一种基于牵引车平顺性的悬架非线性特性优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120016639A1 (en) * 2009-03-20 2012-01-19 Xidian University Optimization design method for the chassis structure of an electronic device based on mechanical, electrical and thermal three-field coupling
CN102945307A (zh) * 2012-11-27 2013-02-27 北京汽车股份有限公司 汽车底盘关键结构件结构优化设计方法
JP2015040762A (ja) * 2013-08-21 2015-03-02 トヨタ自動車株式会社 車両の運動性能評価のためのシミュレーション装置
CN107220405A (zh) * 2017-04-21 2017-09-29 南京航空航天大学 一种基于改进细胞膜优化算法的汽车底盘系统集成多目标优化方法
CN109933887A (zh) * 2019-03-11 2019-06-25 桂林电子科技大学 一种基于牵引车平顺性的悬架非线性特性优化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李佳圣;谢润;周元春;汤日佳;: "轮式越野车辆行驶动力学特性建模仿真", 系统仿真技术, no. 04, pages 304 - 309 *
杜锡滔;熊锐;吴坚;曾繁武;朱敏思;: "基于车辆操纵稳定性及平顺性的底盘多目标优化", 现代制造工程, no. 05, pages 98 - 101 *
赵晶;李家林;钟建华;熊锐;: "基于有限元法的车辆桁架式底盘动态分析与优化设计", 制造业自动化, no. 10, pages 147 - 151 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449436A (zh) * 2021-07-22 2021-09-28 中铁二院工程集团有限责任公司 一种复杂运营环境下机车牵引特性曲线获取方法
CN113449436B (zh) * 2021-07-22 2022-03-25 中铁二院工程集团有限责任公司 一种复杂运营环境下机车牵引特性曲线获取方法

Also Published As

Publication number Publication date
CN111709160B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CN107544290B (zh) 一种新能源汽车性能评估分析和优化系统及方法
CN111581859B (zh) 一种悬架耦合非线性商用车的平顺性建模分析方法及系统
CN111707351B (zh) 一种基于卡车底盘噪音振源的异常位置定位方法及系统
CN112685836A (zh) 一种车身焊点疲劳度评估方法、存储介质及设备
CN109033643B (zh) 基于灵敏度分析的汽车操稳性瞬态性能参数优化方法
CN111444623B (zh) 一种阻尼非线性商用车悬架动力学的协同优化方法及系统
Johannesson et al. Laplace distribution models for road topography and roughness
CN114329921A (zh) 一种整车可靠性性能的评估方法、装置、设备和介质
CN116049989A (zh) 转向架数字孪生模型构建方法、系统、电子设备及介质
CN111709160A (zh) 一种基于卡车底盘的行驶动态性能分析优化方法及系统
CN113449376B (zh) 列车车下吊挂设备减振器的选取方法、系统及设备
CN106932206A (zh) 路谱处理方法及装置
CN105956318A (zh) 基于改进分裂 h-k 聚类方法的风电场机群划分方法
CN106780049B (zh) 一种车辆金融授信方法及装置
CN109063313B (zh) 基于机器学习的列车牵引能耗计算方法
CN106446443A (zh) 一种轨道扣件系统共振频率的识别方法及装置
CN113806977B (zh) 汽车冷却风扇的噪声振动分析方法及系统
CN113435061B (zh) 一种电驱动系统可靠性目标载荷快速构建方法
CN114741806A (zh) 一种悬架优化方法、系统、装置、设备及介质
CN114998075A (zh) 一种交通运输碳排放计算方法、系统及可存储介质
Xiong et al. Study on NVH robustness evaluation method of high-mileage automobile based on systematic sampling
CN109543273A (zh) 电动汽车的车身优化方法及系统
CN115270584B (zh) 适用于新能源电动汽车电池托架的轻量化方法
Zhang et al. Serial combinational optimization method for double wishbone suspension’s pseudo damage improvement
CN111444653B (zh) 一种基于工艺处理的卡车底盘设计方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant