CN111708093B - A multi-mode submarine cable buried depth detection method and detection system - Google Patents
A multi-mode submarine cable buried depth detection method and detection system Download PDFInfo
- Publication number
- CN111708093B CN111708093B CN202010441672.1A CN202010441672A CN111708093B CN 111708093 B CN111708093 B CN 111708093B CN 202010441672 A CN202010441672 A CN 202010441672A CN 111708093 B CN111708093 B CN 111708093B
- Authority
- CN
- China
- Prior art keywords
- submarine cable
- axis
- watertight
- axis fluxgate
- fluxgate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000004364 calculation method Methods 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 6
- 239000013535 sea water Substances 0.000 claims description 5
- 230000035699 permeability Effects 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 14
- 238000009933 burial Methods 0.000 abstract 2
- 239000000523 sample Substances 0.000 description 8
- 230000006698 induction Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/15—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
- G01V3/165—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat operating with magnetic or electric fields produced or modified by the object or by the detecting device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/26—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring depth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/083—Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/088—Aspects of digital computing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/02—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明海缆运行与维护领域,涉及一种多模式海缆埋深探测方法及探测系统,用于提高海缆埋深测量的效率。The invention relates to the field of submarine cable operation and maintenance, and relates to a multi-mode submarine cable buried depth detection method and detection system, which are used to improve the efficiency of submarine cable buried depth measurement.
背景技术Background technique
海缆埋深探测是海缆运行与维护的一个不可缺少的环节。当海缆发生故障时,海缆埋深数据的准确性和测量效率,将会影响维修的时间成本与经济成本。目前,海缆埋深通过接收线圈仪器接收海缆在空间中产生的磁场变化,从而确定海缆的埋深。常见的有,探棒测海缆埋深和多线圈测埋深。Submarine cable depth detection is an indispensable link in the operation and maintenance of submarine cables. When the submarine cable fails, the accuracy and measurement efficiency of the buried depth data of the submarine cable will affect the time cost and economic cost of maintenance. At present, the buried depth of the submarine cable is determined by receiving the magnetic field changes generated by the submarine cable in space through the receiving coil instrument. Commonly used probes to measure the buried depth of submarine cables and multi-coils to measure the buried depth.
探棒测海缆埋深如专利号为CN105044784A公开的双探棒式海缆探测系统,包括探棒感应模块、滤除干扰信号模块、峰值信号提取模块、核心处理器模块、键盘模块、液晶显示模块和电源模块;探棒感应模块采用双探棒结构,两个探棒之间通过固定长度的连接杆相连,两个探棒的轴线方向相互平行,且轴线方向均垂直于连接杆,探测方法包括探测海缆的位置、走向和埋深。Probes for detecting the buried depth of submarine cables are as disclosed in the patent number CN105044784A. The double-probe submarine cable detection system includes a probe induction module, a module for filtering out interference signals, a peak signal extraction module, a core processor module, a keyboard module, and a liquid crystal display. Module and power module; the probe induction module adopts a double probe structure. The two probes are connected by a connecting rod of a fixed length. The axis directions of the two probes are parallel to each other, and the axis directions are perpendicular to the connecting rod. The detection method Including the detection of the position, direction and buried depth of the submarine cable.
多线圈测埋深如专利号为CN110850484A公开的一种线圈海缆探测装置及其探测方法,所述探测装置包括用于探测海缆的感应电动势三组感应线圈,三组感应线圈相互正交且每组感应线圈均为环形线圈,所述探测装置还包括数据传输模块和上位机,三组感应线圈、数据传输模块和上位机顺次通信连接;三组感应线圈将获取到对应的感应电动势传输至数据传输模块,数据传输模块进行处理将最大感应电动势的信息传输至上位机。Multi-coil buried depth measurement as disclosed in the patent number CN110850484A is a coil submarine cable detection device and a detection method. The detection device includes three sets of induction coils for detecting the induced electromotive force of the submarine cable. Each group of induction coils is a toroidal coil, and the detection device further includes a data transmission module and a host computer, three groups of induction coils, data transmission modules and the host computer are connected in sequence for communication; the three groups of induction coils will acquire the corresponding induced electromotive force transmission To the data transmission module, the data transmission module processes and transmits the information of the maximum induced electromotive force to the upper computer.
采用上述两种方式测量海缆的埋深只适用于海缆在通交流电情况下,对海缆通直流电情况不适用,海缆埋深测量适用范围单一;当采用多线圈测埋深时,线圈的结构还会影响其最佳工作频率的选择,线圈结构的确定,意味着其最佳工作频率的确定;一般选择25Hz、50Hz、133Hz中的一种进行测量,测量频率不连续。Using the above two methods to measure the buried depth of the submarine cable is only applicable to the case where the submarine cable is connected to alternating current, and is not applicable to the case that the submarine cable is connected to direct current. The structure also affects the selection of its optimal operating frequency. The determination of the coil structure means the determination of its optimal operating frequency; generally, one of 25Hz, 50Hz, and 133Hz is selected for measurement, and the measurement frequency is discontinuous.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术中海缆埋深测量适用范围单一,测量频率不连续等缺陷,提供一种多模式海缆埋深探测方法及探测系统。The purpose of the present invention is to provide a multi-mode submarine cable buried depth detection method and detection system in view of the defects of single application range and discontinuous measurement frequency in the prior art for submarine cable buried depth measurement.
为了达到目的,本发明提供的技术方案为:In order to achieve the purpose, the technical scheme provided by the invention is:
本发明涉及一种多模式海缆埋深探测方法,包括以下步骤:The invention relates to a multi-mode submarine cable buried depth detection method, comprising the following steps:
1)通过电流源向海缆输入交流电或直流电;1) Input alternating current or direct current to the submarine cable through the current source;
2)采用水密电缆将内部设有第一三轴磁通门、第二三轴磁通门、高度计、姿态仪和下位机的水密拖体与测量船上的上位机进行连接;2) Use watertight cables to connect the watertight tow body with the first three-axis fluxgate, the second three-axis fluxgate, an altimeter, an attitude indicator and a lower computer to the upper computer on the surveying ship;
3)将水密拖体置于海水中,测量船通过水密电缆拖曳水密拖体并对海域进行扫测,直至海缆位于测量船的正下方,测量船悬停于海缆上方;3) Place the watertight tow body in the sea water, and the survey ship drags the watertight tow body through the watertight cable and scans the sea area until the submarine cable is located directly below the survey ship, and the survey ship hovers above the submarine cable;
4)第一三轴磁通门采集其位置E1处的磁场三分量,第二三轴磁通门采集其位置E2的磁场三分量,高度计采集第一三轴磁通门与海床的距离h0、姿态仪采集X、Y、Z轴方向上的欧拉角,采集到的数据通过下位机和水密电缆传输给上位机;4) The first three-axis fluxgate collects the three - component magnetic field at its position E1, the second three-axis fluxgate collects the three-component magnetic field at its position E2 , and the altimeter collects the first three-axis fluxgate and the seabed. Distance h 0 , the attitude meter collects Euler angles in the directions of X, Y, and Z axes, and the collected data is transmitted to the upper computer through the lower computer and the watertight cable;
5)上位机根据向海缆输入的电流类型及采集到的数据计算海缆的埋深。5) The host computer calculates the buried depth of the submarine cable according to the type of current input to the submarine cable and the collected data.
本发明步骤1)所述的电流源目的是向海缆输入交流电或直流电,既可以指海缆自带的电流源,也可以是另外设置的电流源,具体可以采用交变电流源或直流电流源。The purpose of the current source described in step 1) of the present invention is to input alternating current or direct current to the submarine cable, which may refer to either the current source that comes with the submarine cable or a current source provided separately. Specifically, an alternating current source or a direct current can be used. source.
优选地,所述的步骤2)中,第二三轴磁通门位于第一三轴磁通门的正下方,高度计与第一三轴磁通门等高,第一三轴磁通门、第二三轴磁通门、高度计和姿态仪均与下位机通信连接,下位机通过水密电缆与上位机通信连接。Preferably, in the described step 2), the second three-axis fluxgate is located directly below the first three-axis fluxgate, the altimeter is at the same height as the first three-axis fluxgate, the first three-axis fluxgate, The second three-axis fluxgate, the altimeter and the attitude meter are all connected to the lower computer, and the lower computer is connected to the upper computer through a watertight cable.
优选地,所述的步骤1)中通过电流源输入的是交流电,在海缆输出稳定频率ω的正弦电流信号后记载电流值I,所述的步骤5)中计算海缆的埋深的具体步骤包括:Preferably, in the step 1), what is input through the current source is alternating current, and the current value I is recorded after the submarine cable outputs the sinusoidal current signal of the stable frequency ω. In the step 5), the specific details of the buried depth of the submarine cable are calculated. Steps include:
5.1)根据采集到的X、Y、Z轴方向上的欧拉角,形成欧拉旋转矩阵RX(α)、RY(β)、RZ(γ),欧拉旋转矩阵RX(α)、RY(β)、RZ(γ)的计算方式为:5.1) According to the collected Euler angles in the directions of X, Y, and Z axes, form Euler rotation matrices R X (α), R Y (β), R Z (γ), and Euler rotation matrix R X (α ), R Y (β), R Z (γ) are calculated as:
其中,α、β、γ分别为X轴欧拉角、Y轴欧拉角和Z轴欧拉角;Among them, α, β, γ are the Euler angle of the X axis, the Euler angle of the Y axis and the Euler angle of the Z axis;
5.2)通过欧拉旋转矩阵对第一三轴磁通门和第二三轴磁通门处的磁场三分量进行修正,修正的计数方式为:5.2) Correct the three components of the magnetic field at the first three-axis fluxgate and the second three-axis fluxgate through the Euler rotation matrix, and the corrected counting method is:
其中,Bx1、BY1、BZ1为第一三轴磁通门采集到的磁场三分量,Bx2、BY2、BZ2为第二三轴磁通门采集到的磁场三分量,Bx1’、BY1’、BZ1’、Bx2’、BY2’、BZ2’为修正后的磁场三分量;Among them, B x1 , B Y1 , and B Z1 are the three components of the magnetic field collected by the first three-axis fluxgate, B x2 , B Y2 , and B Z2 are the three components of the magnetic field collected by the second three-axis fluxgate, and B x1 ', B Y1 ', B Z1 ', B x2 ', B Y2 ', B Z2 ' are the three components of the corrected magnetic field;
5.3)分别对修正后的磁场三分量进行傅里叶变换,并分别取固定频率ω上两个三轴磁通门的X、Y、Z轴磁场矢量的幅值Ax1、AY1、AZ1、Ax2、AY2、AZ2;5.3) Perform Fourier transform on the three components of the corrected magnetic field respectively, and take the amplitudes A x1 , A Y1 , and A Z1 of the X, Y, and Z-axis magnetic field vectors of the two three-axis fluxgates at the fixed frequency ω respectively. , A x2 , A Y2 , A Z2 ;
5.4)计算第一三轴磁通门与海缆的距离,距离的计算方式为:5.4) Calculate the distance between the first three-axis fluxgate and the submarine cable. The calculation method of the distance is:
R1=R2+d0 (7);R 1 =R 2 +d 0 (7);
其中μ0为真空磁导率,R1为第一三轴磁通门与海缆的距离,R2为第二三轴磁通门与海缆的距离,d0为第一三轴磁通门和第二三轴磁通门之间的距离;where μ 0 is the vacuum permeability, R 1 is the distance between the first three-axis fluxgate and the submarine cable, R 2 is the distance between the second three-axis fluxgate and the submarine cable, and d 0 is the first three-axis magnetic flux the distance between the gate and the second three-axis fluxgate;
5.5)计算海缆的埋深h,计算公式为:5.5) Calculate the buried depth h of the submarine cable, and the calculation formula is:
h=R1-h0 (8);h=R 1 -h 0 (8);
其中,h0为第一三轴磁通门与海床的距离,即高度计的输出。Among them, h 0 is the distance between the first three-axis fluxgate and the seabed, that is, the output of the altimeter.
优选地,所述的步骤1)中通过电流源输入的是直流电,步骤5)中计算海缆的埋深的具体步骤包括:Preferably, in the step 1), the input through the current source is direct current, and the specific steps of calculating the buried depth of the submarine cable in the step 5) include:
5.1)根据采集到的X、Y、Z轴方向上的欧拉角,形成欧拉旋转矩阵RX(α)、RY(β)、RZ(γ),欧拉旋转矩阵RX(α)、RY(β)、RZ(γ)的计算方式为:5.1) According to the collected Euler angles in the directions of X, Y, and Z axes, form Euler rotation matrices R X (α), R Y (β), R Z (γ), and Euler rotation matrix R X (α ), R Y (β), R Z (γ) are calculated as:
其中,α、β、γ分别为X轴欧拉角、Y轴欧拉角和Z轴欧拉角;Among them, α, β, γ are the Euler angle of the X axis, the Euler angle of the Y axis and the Euler angle of the Z axis;
5.2)通过欧拉旋转矩阵对第一三轴磁通门和第二三轴磁通门处的磁场三分量进行修正,修正的计数方式为:5.2) Correct the three components of the magnetic field at the first three-axis fluxgate and the second three-axis fluxgate through the Euler rotation matrix, and the corrected counting method is:
其中,Bx1、BY1、BZ1为第一三轴磁通门采集到的磁场三分量,Bx2、BY2、BZ2为第二三轴磁通门采集到的磁场三分量,Bx1’、BY1’、BZ1’、Bx2’、BY2’、BZ2’为修正后的磁场三分量;Among them, B x1 , B Y1 , and B Z1 are the three components of the magnetic field collected by the first three-axis fluxgate, B x2 , B Y2 , and B Z2 are the three components of the magnetic field collected by the second three-axis fluxgate, and B x1 ', B Y1 ', B Z1 ', B x2 ', B Y2 ', B Z2 ' are the three components of the corrected magnetic field;
5.3)根据修正后的磁场三分量计算总磁场B1、B2,计算公式为:5.3) Calculate the total magnetic fields B 1 and B 2 according to the three components of the corrected magnetic field, and the calculation formula is:
5.4)根据总磁场B1、B2计算第一三轴磁通门与海缆的距离,计算公式为:5.4) Calculate the distance between the first three-axis fluxgate and the submarine cable according to the total magnetic fields B 1 and B 2 , the calculation formula is:
R1=R2+d0 (13);R 1 =R 2 +d 0 (13);
其中,k为比例系数,R1为第一三轴磁通门与海缆的距离,R2为第二三轴磁通门与海缆的距离,d0为第一三轴磁通门和第二三轴磁通门之间的距离;Among them, k is the proportional coefficient, R 1 is the distance between the first three-axis fluxgate and the submarine cable, R 2 is the distance between the second three-axis fluxgate and the submarine cable, and d 0 is the first three-axis fluxgate and the submarine cable. The distance between the second and third axis fluxgates;
5.5)计算海缆的埋深h,计算公式为:5.5) Calculate the buried depth h of the submarine cable, and the calculation formula is:
h=R1-h0 (8);h=R 1 -h 0 (8);
h0为第一三轴磁通门与海床的距离,即高度计的输出。h 0 is the distance between the first three-axis fluxgate and the seabed, that is, the output of the altimeter.
优选地,所述的步骤3)中测量船通过水密电缆拖曳水密拖体并采用S型路线对海域进行快速扫测,扫测过程中三轴磁通门持续侧量X轴磁场,并通过水密电缆传输至上位机,上位机根据持续侧量的X轴磁场生成X轴磁场波形,当X轴磁场波形出现峰值时,表明海缆位于测量船的正下方。Preferably, in the step 3), the measuring vessel drags the watertight tow body through the watertight cable and uses the S-shaped route to quickly scan the sea area. During the scanning process, the three-axis fluxgate continuously measures the X-axis magnetic field, and passes the watertight The cable is transmitted to the host computer, and the host computer generates the X-axis magnetic field waveform according to the continuously measured X-axis magnetic field. When the X-axis magnetic field waveform has a peak value, it indicates that the submarine cable is located directly under the measuring vessel.
优选地,当向海缆输入的是交流电时,还包括步骤6),步骤6)为:调节电流的频率ω,重复步骤1)~5),获得连续频率下的海缆埋深。Preferably, when alternating current is input to the submarine cable, step 6) is further included, and step 6) is: adjusting the frequency ω of the current, repeating steps 1) to 5) to obtain the buried depth of the submarine cable at continuous frequencies.
本发明还涉及一种多模式海缆埋深探测系统,包括测量船、上位机、水密拖体和水密电缆;所述的上位机设置于测量船上;所述的水密拖体通过水密电缆与测量船连接,水密拖体内部设有用于采集磁场三分量的第一三轴磁通门和第二三轴磁通门、用于采集第一三轴磁通门与海床的距离h0的高度计、用于采集X、Y、Z轴方向上的欧拉角的姿态仪和用于接收和传输数据的下位机,第一三轴磁通门、第二三轴磁通门、高度计和姿态仪均与下位机通信连接,下位机通过水密电缆与上位机通信连接。The invention also relates to a multi-mode submarine cable buried depth detection system, comprising a survey vessel, a host computer, a watertight tow body and a watertight cable; the host computer is arranged on the survey vessel; the watertight tow body communicates with the measurement vessel through the watertight cable. The ship is connected, and the watertight tow body is provided with a first three-axis fluxgate and a second three-axis fluxgate for collecting the three components of the magnetic field, and an altimeter for collecting the distance h 0 between the first three-axis fluxgate and the seabed , an attitude meter for collecting Euler angles in the X, Y, and Z axis directions and a lower computer for receiving and transmitting data, the first three-axis fluxgate, the second three-axis fluxgate, an altimeter and an attitude meter They are all connected to the lower computer for communication, and the lower computer communicates with the upper computer through a watertight cable.
优选地,所述的第二三轴磁通门位于第一三轴磁通门的正下方,高度计与第一三轴磁通门等高。Preferably, the second three-axis fluxgate is located directly below the first three-axis fluxgate, and the height of the altimeter is the same as that of the first three-axis fluxgate.
优选地,所述的水密拖体包括非金属水密仓,所述的第一三轴磁通门、第二三轴磁通门、高度计、姿态仪和下位机均固定于非金属水密仓内。Preferably, the watertight drag body includes a non-metallic watertight bin, and the first three-axis fluxgate, the second three-axis fluxgate, the altimeter, the attitude indicator and the lower computer are all fixed in the non-metallic watertight bin.
优选地,其还包括用于向海缆输入电流的电流源,所述的电流源为交变电流源或直流电流源。Preferably, it also includes a current source for inputting current to the submarine cable, and the current source is an alternating current source or a direct current source.
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:Adopting the technical scheme provided by the present invention, compared with the prior art, has the following beneficial effects:
1、本发明针对向海缆输入的电流类型,选择对应的算法,并根据采集到的数据计算海缆的埋深,对于海缆通交流电和直流电,都可测量出海缆埋深,适用范围更广。1. The present invention selects the corresponding algorithm according to the type of current input to the submarine cable, and calculates the buried depth of the submarine cable according to the collected data. For the AC and DC currents of the submarine cable, the buried depth of the submarine cable can be measured, and the scope of application is wider. wide.
2、当向海缆输入交流电时,通过调节电流的频率ω,反复测量海缆埋深,可获得连续频率下的海缆埋深。2. When AC power is input to the submarine cable, the buried depth of the submarine cable can be obtained by adjusting the frequency ω of the current and repeatedly measuring the buried depth of the submarine cable.
3、本发明仅需操作大功率交变电流源、水密拖体和上位机即可,操作简单。3. The present invention only needs to operate the high-power alternating current source, the watertight drag body and the upper computer, and the operation is simple.
附图说明Description of drawings
图1是实施例一涉及的多模式海缆埋深探测系统的结构框图;1 is a structural block diagram of a multi-mode submarine cable buried depth detection system involved in
图2是实施例二和实施例三涉及的多模式海缆埋深探测系统的结构框图;2 is a structural block diagram of a multi-mode submarine cable buried depth detection system involved in
图3是水面拖体的结构框图;Fig. 3 is the structural block diagram of the water surface drag body;
图4是本发明测量船、海缆、两个磁通门相对位置示意图。FIG. 4 is a schematic diagram of the relative positions of the measuring vessel, the submarine cable and the two fluxgates of the present invention.
标注说明:1-电流源,2-水密拖体,3-第一三轴磁通门,4-第二三轴磁通门,5-高度计,6-姿态仪,7-下位机,8-水密电缆,9-上位机,10-测量船,11-海缆。Notes: 1-current source, 2-watertight drag body, 3-first three-axis fluxgate, 4-second three-axis fluxgate, 5-altimeter, 6-attitude meter, 7-lower computer, 8- Watertight cable, 9-host computer, 10-measurement vessel, 11-submarine cable.
具体实施方式Detailed ways
为了加深对本发明的理解,对本发明的实施例作详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述的实施例。In order to deepen the understanding of the present invention, the embodiments of the present invention are described in detail. The following examples are implemented on the premise of the technical solutions of the present invention, and provide detailed implementations, but the protection scope of the present invention is not limited to the following Example.
实施例一Example 1
参照图1和3所示,本实施例涉及一种多模式海缆埋深探测系统,包括测量船10、上位机9、水密拖体2和水密电缆8;所述的上位机9设置于测量船10上;所述的水密拖体2通过水密电缆8与测量船连接,水密拖体2包括非金属水密仓,水密拖体2内部设有用于采集磁场三分量的第一三轴磁通门3和第二三轴磁通门4、用于采集第一三轴磁通门与海床的距离h0的高度计5、用于采集X、Y、Z轴方向上的欧拉角的姿态仪6和用于接收和传输数据的下位机7,所述的第二三轴磁通门4位于第一三轴磁通门3的正下方,高度计5与第一三轴磁通门3等高,第一三轴磁通门3、第二三轴磁通门4、高度计5和姿态仪6均与下位机7通信连接,下位机7通过水密电缆8与上位机9通信连接,第一三轴磁通门3、第二三轴磁通门4、高度计5、姿态仪6和下位机7均固定于非金属水密仓内。1 and 3, the present embodiment relates to a multi-mode submarine cable buried depth detection system, including a
第一三轴磁通门3和第二三轴磁通门4采用英国Bartington公司生产的型号为Mag-13三轴磁通门;姿态仪6采用三维姿态仪;非金属水密舱由碳纤维材料构成;水密电缆8采用多芯凯夫拉缆;高度计5使用Valeport公司的VA500海底高度计。The first three-
本实施例采用上述多模式海缆埋深探测系统对正常工作的海缆的埋深进行探测,正常工作下海缆内部为交流电,多模式海缆埋深探测方法包括以下步骤:In this embodiment, the above-mentioned multi-mode submarine cable buried depth detection system is used to detect the buried depth of the submarine cable in normal operation. Under normal operation, the interior of the submarine cable is AC current, and the multi-mode submarine cable buried depth detection method includes the following steps:
1)本实施例中海缆正常工作,无需再向海缆11另外输入电流,记录正常工作时的电流值I;1) In this embodiment, the submarine cable works normally, and there is no need to additionally input current to the
2)采用水密电缆8将内部设有第一三轴磁通门3、第二三轴磁通门4、高度计5、姿态仪6和下位机7的水密拖体2与测量船10上的上位机9进行连接;2) Use
3)将水密拖体2置于海水中,测量船10通过水密电缆8拖曳水密拖体2并采用S型路线对海域进行快速扫测,扫测过程中三轴磁通门持续侧量X轴磁场,并通过水密电缆传输至上位机,上位机根据持续侧量的X轴磁场生成X轴磁场波形,当X轴磁场波形出现峰值时,表明海缆11位于测量船10的正下方,海缆11位于测量船10的正下方后,测量船10悬停于海缆11上方,此时,测量船10、第一三轴磁通门3、第二三轴磁通门4和海缆11的位置关系如图4所示,测量船10、第一三轴磁通门3、第二三轴磁通门4和海缆11位于同一垂直直线上,且第二三轴磁通门4位于海缆11的正上方,第一三轴磁通门3位于第二三轴磁通门4的正上方,测量船10位于第一三轴磁通门3的正上方;3) The
4)第一三轴磁通门3采集其位置E1处的磁场三分量,第二三轴磁通门4采集其位置E2的磁场三分量,高度计5采集第一三轴磁通门3与海床的距离h0、姿态仪6采集X、Y、Z轴方向上的欧拉角,采集到的数据通过下位机7和水密电缆8传输给上位机9;4) The first three-
5)本实施例中海缆11内部电流为交流电。根据电流类型、采集到的数据以及所记载的电流值I计算得到海缆11的埋深,埋深的计算步骤包括:5) In this embodiment, the internal current of the
5.1)根据采集到的X、Y、Z轴方向上的欧拉角,形成欧拉旋转矩阵RX(α)、RY(β)、RZ(γ),欧拉旋转矩阵RX(α)、RY(β)、RZ(γ)的计算方式为:5.1) According to the collected Euler angles in the directions of X, Y, and Z axes, form Euler rotation matrices R X (α), R Y (β), R Z (γ), and Euler rotation matrix R X (α ), R Y (β), R Z (γ) are calculated as:
其中,α、β、γ分别为X轴欧拉角、Y轴欧拉角和Z轴欧拉角;Among them, α, β, γ are the Euler angle of the X axis, the Euler angle of the Y axis and the Euler angle of the Z axis;
5.2)通过欧拉旋转矩阵对第一三轴磁通门3和第二三轴磁通门4处的磁场三分量进行修正,即将交流磁场三分量转换到地理坐标系下,修正的计数方式为:5.2) Correct the three components of the magnetic field at the first three-
其中,Bx1、BY1、BZ1为第一三轴磁通门3采集到的磁场三分量,Bx2、BY2、BZ2为第二三轴磁通门4采集到的磁场三分量,Bx1’、BY1’、BZ1’、Bx2’、BY2’、BZ2’为修正后的磁场三分量;Among them, B x1 , B Y1 , and B Z1 are the three components of the magnetic field collected by the first three-
5.3)分别对修正后的磁场三分量进行傅里叶变换,并分别取固定频率ω上两个三轴磁通门的X、Y、Z轴磁场矢量的幅值Ax1、AY1、AZ1、Ax2、AY2、AZ2;5.3) Perform Fourier transform on the three components of the corrected magnetic field respectively, and take the amplitudes A x1 , A Y1 , and A Z1 of the X, Y, and Z-axis magnetic field vectors of the two three-axis fluxgates at the fixed frequency ω respectively. , A x2 , A Y2 , A Z2 ;
5.4)计算第一三轴磁通门3与海缆11的距离,距离的计算方式为:5.4) Calculate the distance between the first three-
R1=R2+d0 (7);R 1 =R 2 +d 0 (7);
其中μ0为真空磁导率,R1为第一三轴磁通门3与海缆11的距离,R2为第二三轴磁通门4与海缆11的距离,d0为第一三轴磁通门3和第二三轴磁通门4之间的距离,d0在安装水密拖体2时经过测量所得;Wherein μ 0 is the vacuum permeability, R 1 is the distance between the first three-
5.5)计算海缆11的埋深h,计算公式为:5.5) Calculate the buried depth h of the
h=R1-h0 (8);h=R 1 -h 0 (8);
其中,h0为第一三轴磁通门3与海床的距离,即高度计6的输出;Wherein, h 0 is the distance between the first three-
最终计算得出海缆11的埋深h,显示在上位机9中。The buried depth h of the
实施例二
参照图2和3所示,本实施例涉及一种多模式海缆埋深探测系统,包括电流源1、测量船10、上位机9、水密拖体2和水密电缆8,所述的电流源1与海缆连接,电流源1为交变电流源或直流电流源,用于向海缆11输入交变电流或直流电;所述的上位机9设置于测量船10上;所述的水密拖体2通过水密电缆8与测量船连接,水密拖体2包括非金属水密仓,水密拖体2内部设有用于采集磁场三分量的第一三轴磁通门3和第二三轴磁通门4、用于采集第一三轴磁通门与海床的距离h0的高度计5、用于采集X、Y、Z轴方向上的欧拉角的姿态仪6和用于接收和传输数据的下位机7,所述的第二三轴磁通门4位于第一三轴磁通门3的正下方,高度计5与第一三轴磁通门3等高,第一三轴磁通门3、第二三轴磁通门4、高度计5和姿态仪6均与下位机7通信连接,下位机7通过水密电缆8与上位机9通信连接,第一三轴磁通门3、第二三轴磁通门4、高度计5、姿态仪6和下位机7均固定于非金属水密仓内。2 and 3, the present embodiment relates to a multi-mode submarine cable buried depth detection system, including a
第一三轴磁通门3和第二三轴磁通门4采用英国Bartington公司生产的型号为Mag-13三轴磁通门;姿态仪6采用三维姿态仪;非金属水密舱由碳纤维材料构成;水密电缆8采用多芯凯夫拉缆;高度计5使用Valeport公司的VA500海底高度计。The first three-
本实施例采用上述多模式海缆埋深探测系统对非正常工作的海缆的埋深进行探测,多模式海缆埋深探测方法包括以下步骤:In this embodiment, the above-mentioned multi-mode submarine cable buried depth detection system is used to detect the buried depth of an abnormally working submarine cable, and the multi-mode submarine cable buried depth detection method includes the following steps:
1)本实施例通过电流源1向海缆11输入交流电,电流源为大功率交变电流源,电流源1采用全天科技的可编程交流电源,该电流源既能输出交变电流,也能够输出直流电,本实施例只输出交变电流,在海缆输出稳定频率ω的正弦电流信号后记载电流值I;1) In this embodiment, the
2)采用水密电缆8将内部设有第一三轴磁通门3、第二三轴磁通门4、高度计5、姿态仪6和下位机7的水密拖体2与测量船10上的上位机9进行连接;2) Use
3)将水密拖体2置于海水中,测量船10通过水密电缆8拖曳水密拖体2并采用S型路线对海域进行快速扫测,扫测过程中三轴磁通门持续侧量X轴磁场,并通过水密电缆传输至上位机,上位机根据持续侧量的X轴磁场生成X轴磁场波形,当X轴磁场波形出现峰值时,表明海缆11位于测量船10的正下方,海缆11位于测量船10的正下方后,测量船10悬停于海缆上方,此时,测量船10、第一三轴磁通门3、第二三轴磁通门4和海缆11的位置关系如图4所示,测量船10、第一三轴磁通门3、第二三轴磁通门4和海缆11位于同一垂直直线上,且第二三轴磁通门4位于海缆11的正上方,第一三轴磁通门3位于第二三轴磁通门4的正上方,测量船10位于第一三轴磁通门3的正上方;3) The
4)第一三轴磁通门3采集其位置E1处的磁场三分量,第二三轴磁通门4采集其位置E2的磁场三分量,高度计5采集第一三轴磁通门3与海床的距离h0、姿态仪6采集X、Y、Z轴方向上的欧拉角,采集到的数据通过下位机7和水密电缆8传输给上位机9;4) The first three-
5)本实施例中海缆11内部电流为交流电,根据电流类型、采集到的数据以及所记载的电流值I计算海缆11的埋深,埋深的计算步骤包括:5) In the present embodiment, the internal current of the
5.1)根据采集到的X、Y、Z轴方向上的欧拉角,形成欧拉旋转矩阵RX(α)、RY(β)、RZ(γ),欧拉旋转矩阵RX(α)、RY(β)、RZ(γ)的计算方式为:5.1) According to the collected Euler angles in the directions of X, Y, and Z axes, form Euler rotation matrices R X (α), R Y (β), R Z (γ), and Euler rotation matrix R X (α ), R Y (β), R Z (γ) are calculated as:
其中,α、β、γ分别为X轴欧拉角、Y轴欧拉角和Z轴欧拉角;Among them, α, β, γ are the Euler angle of the X axis, the Euler angle of the Y axis and the Euler angle of the Z axis;
5.2)通过欧拉旋转矩阵对第一三轴磁通门3和第二三轴磁通门4处的磁场三分量进行修正,即将交流磁场三分量转换到地理坐标系下,修正的计数方式为:5.2) Correct the three components of the magnetic field at the first three-
其中,Bx1、BY1、BZ1为第一三轴磁通门3采集到的磁场三分量,Bx2、BY2、BZ2为第二三轴磁通门4采集到的磁场三分量,Bx1’、BY1’、BZ1’、Bx2’、BY2’、BZ2’为修正后的磁场三分量;Among them, B x1 , B Y1 , and B Z1 are the three components of the magnetic field collected by the first three-
5.3)分别对修正后的磁场三分量进行傅里叶变换,并分别取固定频率ω上两个三轴磁通门的X、Y、Z轴磁场矢量的幅值Ax1、AY1、AZ1、Ax2、AY2、AZ2;5.3) Perform Fourier transform on the three components of the corrected magnetic field respectively, and take the amplitudes A x1 , A Y1 , and A Z1 of the X, Y, and Z-axis magnetic field vectors of the two three-axis fluxgates at the fixed frequency ω respectively. , A x2 , A Y2 , A Z2 ;
5.4)计算第一三轴磁通门3与海缆11的距离,距离的计算方式为:5.4) Calculate the distance between the first three-
R1=R2+d0 (7);R 1 =R 2 +d 0 (7);
其中μ0为真空磁导率,R1为第一三轴磁通门3与海缆11的距离,R2为第二三轴磁通门4与海缆11的距离,d0为第一三轴磁通门3和第二三轴磁通门4之间的距离,d0在安装水密拖体2时经过测量所得;Wherein μ 0 is the vacuum permeability, R 1 is the distance between the first three-
5.5)计算海缆11的埋深h,计算公式为:5.5) Calculate the buried depth h of the
h=R1-h0 (8);h=R 1 -h 0 (8);
其中,h0为第一三轴磁通门与海床的距离,即高度计的输出;Among them, h 0 is the distance between the first three-axis fluxgate and the seabed, that is, the output of the altimeter;
6)调节电流的频率ω,重复步骤1)~5),获得连续频率下的海缆埋深;6) Adjust the frequency ω of the current, and repeat steps 1) to 5) to obtain the buried depth of the submarine cable under the continuous frequency;
最终计算得出海缆11的埋深h,显示在上位机9中。The buried depth h of the
实施例三
本实施例中多模式海缆埋深探测系统的结构与实施例二相同,本实施例不再阐述,本实施例采用上述多模式海缆埋深探测系统对非正常工作的海缆的埋深进行探测,多模式海缆埋深探测方法包括以下步骤:The structure of the multi-mode submarine cable buried depth detection system in this embodiment is the same as that of the second embodiment, and this embodiment will not be described again. For detection, the multi-mode submarine cable buried depth detection method includes the following steps:
1)本实施例通过电流源1向海缆11输入直流电,电流源为大功率直流电流源,电流源1采用全天科技的可编程交流电源,该电流源既能输出交变电流,也能够输出直流电,本实施例只输出直流电;1) In this embodiment, direct current is input to the
2)采用水密电缆8将内部设有第一三轴磁通门3、第二三轴磁通门4、高度计5、姿态仪6和下位机7的水密拖体2与测量船10上的上位机9进行连接;2) Use
3)将水密拖体2置于海水中,测量船10通过水密电缆8拖曳水密拖体2并采用S型路线对海域进行快速扫测,扫测过程中三轴磁通门持续侧量X轴磁场,并通过水密电缆传输至上位机,上位机根据持续侧量的X轴磁场生成X轴磁场波形,当X轴磁场波形出现峰值时,表明海缆11位于测量船10的正下方,海缆11位于测量船10的正下方后,测量船10悬停于海缆上方,此时,测量船10、第一三轴磁通门3、第二三轴磁通门4和海缆11的位置关系如图4所示,测量船10、第一三轴磁通门3、第二三轴磁通门4和海缆11位于同一垂直直线上,且第二三轴磁通门4位于海缆11的正上方,第一三轴磁通门3位于第二三轴磁通门4的正上方,测量船10位于第一三轴磁通门3的正上方;3) The
4)第一三轴磁通门3采集其位置E1处的磁场三分量,第二三轴磁通门4采集其位置E2的磁场三分量,高度计5采集第一三轴磁通门3与海床的距离h0、姿态仪6采集X、Y、Z轴方向上的欧拉角,采集到的数据通过下位机7和水密电缆8传输给上位机9;4) The first three-
5)本实施例中海缆11内部电流为直流电,根据电流类型以及采集到的数据计算海缆11的埋深,埋深的计算步骤包括:5) In this embodiment, the internal current of the
5.1)根据采集到的X、Y、Z轴方向上的欧拉角,形成欧拉旋转矩阵RX(α)、RY(β)、RZ(γ),欧拉旋转矩阵RX(α)、RY(β)、RZ(γ)的计算方式为:5.1) According to the collected Euler angles in the directions of X, Y, and Z axes, form Euler rotation matrices R X (α), R Y (β), R Z (γ), and Euler rotation matrix R X (α ), R Y (β), R Z (γ) are calculated as:
其中,α、β、γ分别为X轴欧拉角、Y轴欧拉角和Z轴欧拉角;Among them, α, β, γ are the Euler angle of the X axis, the Euler angle of the Y axis and the Euler angle of the Z axis;
5.2)通过欧拉旋转矩阵对第一三轴磁通门3和第二三轴磁通门4处的磁场三分量进行修正,修正的计数方式为:5.2) Correct the three components of the magnetic field at the first three-
其中,Bx1、BY1、BZ1为第一三轴磁通门3采集到的磁场三分量,Bx2、BY2、BZ2为第二三轴磁通门4采集到的磁场三分量,Bx1’、BY1’、BZ1’、Bx2’、BY2’、BZ2’为修正后的磁场三分量;Among them, B x1 , B Y1 , and B Z1 are the three components of the magnetic field collected by the first three-
5.3)根据修正后的磁场三分量计算总磁场B1、B2,计算公式为:5.3) Calculate the total magnetic fields B 1 and B 2 according to the three components of the corrected magnetic field, and the calculation formula is:
5.4)根据总磁场B1、B2计算第一三轴磁通门3与海缆11的距离,计算公式为:5.4) Calculate the distance between the first three-
R1=R2+d0 (13);R 1 =R 2 +d 0 (13);
其中,k为比例系数,R1为第一三轴磁通门3与海缆11的距离,R2为第二三轴磁通门4与海缆11的距离,d0为第一三轴磁通门3和第二三轴磁通门4之间的距离,d0在安装水密拖体2时经过测量所得;Among them, k is the proportional coefficient, R 1 is the distance between the first three-
5.5)计算海缆的埋深h,计算公式为:5.5) Calculate the buried depth h of the submarine cable, and the calculation formula is:
h=R1-h0 (8);h=R 1 -h 0 (8);
h0为第一三轴磁通门3与海床的距离,即高度计6的输出;h 0 is the distance between the first three-
最终计算得出海缆11的埋深h,显示在上位机9中。The buried depth h of the
通过上述三个实施例,总结本发明的工作原理为:Through the above-mentioned three embodiments, the working principle of the present invention is summarized as follows:
交流测埋深时,若海缆正常工作,实时记录电流值I;若海缆不正常工作,将海缆的一端与电流源连接,调节大功率电流源使其输出稳定频率ω的正弦电流信号,实时记录电流值I,两个三轴磁通门磁力仪测量磁场三分量,通过姿态仪提供的角度数据将交流磁场三分量转换到地理坐标系下,再经过傅里叶变换,得到三轴磁通门的三分量,最后代入交流海缆埋深方程,计算出海缆埋深,海缆正常工作测埋深工作机理与交流测埋深基本相同,只是获取电流值的方式不同;When measuring the buried depth by AC, if the submarine cable is working normally, the current value I will be recorded in real time; if the submarine cable is not working normally, connect one end of the submarine cable to the current source, and adjust the high-power current source to output a sinusoidal current signal with a stable frequency ω. Record the current value I, two three-axis fluxgate magnetometers measure the three components of the magnetic field, convert the three-component AC magnetic field to the geographic coordinate system through the angle data provided by the attitude meter, and then go through Fourier transformation to obtain the three-axis magnetic flux The three components of the door are finally substituted into the AC submarine cable buried depth equation to calculate the submarine cable buried depth. The working mechanism of the submarine cable's normal working buried depth measurement is basically the same as the AC buried depth measurement, but the method of obtaining the current value is different;
直流测埋深时,将海缆的一端与电流源连接,调节大功率电流源使其输出稳定的直流电流信号,两个三轴磁通门磁力仪测量磁场三分量,通过姿态仪提供的角度数据将交流磁场三分量转换到地理坐标系下,得到三轴磁通门的三分量,最后代入直流海缆埋深方程,计算出海缆埋深。When measuring the buried depth with DC, connect one end of the submarine cable to the current source, adjust the high-power current source to output a stable DC current signal, and two three-axis fluxgate magnetometers measure the three components of the magnetic field, and use the angle provided by the attitude meter. The data converts the three components of the AC magnetic field into the geographic coordinate system, and obtains the three components of the three-axis fluxgate. Finally, it is substituted into the buried depth equation of the DC submarine cable to calculate the buried depth of the submarine cable.
以上结合实施例对本发明进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍属于本发明的专利涵盖范围之内。The present invention has been described in detail above with reference to the embodiments, but the above contents are only preferred embodiments of the present invention and cannot be considered to limit the implementation scope of the present invention. All equivalent changes and improvements made according to the scope of the application of the present invention should still fall within the scope of the patent of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010441672.1A CN111708093B (en) | 2020-05-22 | 2020-05-22 | A multi-mode submarine cable buried depth detection method and detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010441672.1A CN111708093B (en) | 2020-05-22 | 2020-05-22 | A multi-mode submarine cable buried depth detection method and detection system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111708093A CN111708093A (en) | 2020-09-25 |
CN111708093B true CN111708093B (en) | 2022-09-20 |
Family
ID=72537238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010441672.1A Active CN111708093B (en) | 2020-05-22 | 2020-05-22 | A multi-mode submarine cable buried depth detection method and detection system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111708093B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113589390B (en) * | 2021-08-18 | 2024-04-19 | 国网福建省电力有限公司莆田供电公司 | Submarine cable route coordinate positioning method based on weak magnetic signals |
CN113960632B (en) * | 2021-09-18 | 2022-10-14 | 浙江舟山海洋输电研究院有限公司 | A submarine umbilical buried underwater positioning system and its working method |
CN114325849A (en) * | 2021-12-30 | 2022-04-12 | 上海中车艾森迪海洋装备有限公司 | Method, system, equipment and storage medium for positioning submarine metal equipment |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644237A (en) * | 1995-09-27 | 1997-07-01 | At&T | Method and apparatus for precisely locating a buried utility conveyance |
CN105044784A (en) * | 2015-08-14 | 2015-11-11 | 河海大学 | Dual-probe-rod submarine cable detection system and detection method thereof |
CN108181552B (en) * | 2018-01-17 | 2020-09-29 | 武汉科技大学 | Underground cable fault detection system and fault detection method thereof |
CN108535751B (en) * | 2018-03-06 | 2024-11-12 | 上海瑞洋船舶科技有限公司 | Underwater positioning device and positioning method |
CN110687338B (en) * | 2018-07-06 | 2022-01-28 | 中国石油化工股份有限公司 | Detection method for alternating current and direct current stray current of buried pipeline |
CN110618462B (en) * | 2019-09-29 | 2021-07-30 | 上海中车艾森迪海洋装备有限公司 | Method and device for detecting submarine cable |
CN110941017B (en) * | 2019-11-29 | 2021-11-09 | 国网浙江省电力有限公司舟山供电公司 | Submarine cable three-dimensional route measuring method and measuring instrument based on magnetic vector data |
-
2020
- 2020-05-22 CN CN202010441672.1A patent/CN111708093B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111708093A (en) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021103697A1 (en) | Submarine cable three-dimensional routing measurement method and measurement instrument based on magnetic vector data | |
CN111708093B (en) | A multi-mode submarine cable buried depth detection method and detection system | |
CN103837900B (en) | A kind of buried cable localization method based on Vector Magnetic Field detection and device | |
CN110927802B (en) | Submarine cable fault accurate positioning method based on magnetic vector data and positioner | |
CN104280780B (en) | Nuclear magnetic resonance and transient electromagnetic combined instrument and method of work | |
CN108828471B (en) | Multi-component submarine magnetic field measurement method and device | |
CN102520455A (en) | Aviation geomagnetic vector detection apparatus | |
CN106873037A (en) | A kind of offshore earthquake electromagnetic data harvester and method | |
CN103852796A (en) | Method for measuring magnetic anomaly intensity of underwater small targets | |
CN110737029A (en) | underwater cable electromagnetic detection device and positioning method | |
CN106959470A (en) | A kind of marine electromagnetic data harvester | |
CN103852795A (en) | Method for extracting magnetic anomaly signals of underwater small targets | |
CN112987112A (en) | Submarine cable searching and positioning method based on magnetic induction coil cross combination mode | |
CN110927801B (en) | Submarine cable route self-navigation line patrol method based on magnetic vector data and navigation detector | |
CN206557401U (en) | A kind of offshore earthquake electromagnetic data harvester | |
CN102854536A (en) | Five-rod type side-length-adjustable type submarine cable detection antenna array and detection method thereof | |
CN114264299B (en) | A routing and positioning method for AC transmission submarine cable based on scalar magnetic field data | |
CN203164435U (en) | Four rod type length adjustable submarine cable detection antenna array | |
CN112987110B (en) | Submarine cable searching and positioning method based on magnetic induction coil claw-shaped combination mode | |
CN114460505A (en) | Low-noise induction type magnetometer for weak alternating magnetic field magnitude transmission | |
CN113687428A (en) | Accurate electromagnetic calibration method for ultra-deep underground pipeline position | |
CN118131093A (en) | Ocean magnetic gradient tensor measurement system and control method thereof | |
CN201583670U (en) | Data collecting system for inland and offshore water magnetic prospecting | |
CN110687338B (en) | Detection method for alternating current and direct current stray current of buried pipeline | |
CN110261914A (en) | A kind of underwater electromagnetic detector in distinguishable orientation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |