CN111706481A - 一种基于电离与加速过程解耦的离子风推力装置 - Google Patents

一种基于电离与加速过程解耦的离子风推力装置 Download PDF

Info

Publication number
CN111706481A
CN111706481A CN202010564374.1A CN202010564374A CN111706481A CN 111706481 A CN111706481 A CN 111706481A CN 202010564374 A CN202010564374 A CN 202010564374A CN 111706481 A CN111706481 A CN 111706481A
Authority
CN
China
Prior art keywords
ionization
electrode
power supply
acceleration
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010564374.1A
Other languages
English (en)
Other versions
CN111706481B (zh
Inventor
魏立秋
唐井峰
周德胜
周立伟
于达仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010564374.1A priority Critical patent/CN111706481B/zh
Publication of CN111706481A publication Critical patent/CN111706481A/zh
Application granted granted Critical
Publication of CN111706481B publication Critical patent/CN111706481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0087Electro-dynamic thrusters, e.g. pulsed plasma thrusters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

本发明涉及一种基于电离与加速过程解耦的离子风推力装置。离子风推力装置包括电离电极、中间电极、集电极、电离电源和加速电源,电离电极与电离电源连接,中间电极与加速电源连接,电离电极与中间电极之间形成电离区,中间电极与集电极之间形成加速区,通过调整电离电源输出电压的大小或电离区的距离改变电离区的带电粒子浓度,实现了电离区的单独控制,通过调整加速电源输出电压的大小或加速区的距离改变加速区的电场强度,实现了加速区的单独控制,即实现了电离与加速的解耦;并且通过电离区与加速区的控制匹配,使带电粒子在加速区的运动过程中完全与中性气体分子发生碰撞并进行能量交换,提高了离子风推力器的电‑动能转换效率。

Description

一种基于电离与加速过程解耦的离子风推力装置
技术领域
本发明涉及临近空间电推进领域,特别是涉及一种基于电离与加速过程解耦的离子风推力装置。
背景技术
离子风推力器具有结构简单、可靠性高、无需自携带推进剂等特点,在临近空间电推进领域具有广泛的应用价值。离子风推力器工作包含粒子的电离过程及加速过程。然而,离子风推力器存在电离过程与加速过程无法分开控制、电-动能转换效率低的问题,该问题限制了离子风推力器的性能与应用。
发明内容
本发明的目的是提供一种基于电离与加速过程解耦的离子风推力装置,实现了电离区与加速区的解耦控制,并提高了离子风推力器的电-动能转换效率。
为实现上述目的,本发明提供了如下方案:
一种基于电离与加速过程解耦的离子风推力装置,所述推力装置包括:电离电极、中间电极、集电极、电离电源和加速电源;
所述电离电极、所述中间电极和所述集电极沿着临近空间气体的流动方向依次设置;所述电离电极与所述中间电极之间的区域为电离区,所述中间电极与所述集电极之间的区域为加速区;所述电离区和所述加速区的距离均可调;
所述电离电极与所述电离电源连接,所述中间电极与所述加速电源连接,所述集电极接地;
所述电离电源的电压高于所述加速电源的电压,所述电离电极的针尖曲率半径小于所述中间电极的针尖曲率半径;
通过调整所述电离电源输出电压的大小或所述电离区的距离提高所述电离区的带电粒子浓度;通过调整所述加速电源输出电压的大小或所述加速区的距离改变所述加速区的电场强度,从而使所述带电粒子在加速区的运动过程中完全与所述加速电场所在区域的中性气体分子发生碰撞并进行能量交换,形成离子风。
可选的,所述电离电极和所述中间电极均为单针结构;
所述电离电极与所述中间电极位于同一直线上。
可选的,所述电离电极为第一多针结构,所述中间电极为第二多针结构;
所述第一多针结构和所述第二多针结构位于同一平面上,所述第一多针结构中的针电极平行排列,所述第二多针结构中的针电极平行排列,所述第一多针结构中的针电极与所述第二多针结构中的针电极分别一一对应设置。
可选的,所述电离电极为第一多针结构,所述中间电极为第二多针结构;
所述第一多针结构中的针电极平行排列构成第一正三角形结构,所述第二多针结构中的针电极平行排列构成第二正三角形结构,所述第一正三角形结构的中心线与所述第二正三角形结构的中心线重合。
可选的,所述集电极为网电极结构;
所述中间电极垂直于所述网电极结构所在平面。
可选的,所述集电极为环电极结构;
所述中间电极的中心线与所述环电极结构的中心线重合。
可选的,所述电离区可电离成带电粒子的气体为氮气、氧气、二氧化碳、臭氧中的一种或几种组合。
可选的,所述电离电源为高压直流电源、高压交流电源、高压脉冲电源中的一种或几种组合。
可选的,所述加速电源为正直流电源、正极性脉冲电源中的一种或几种组合。
可选的,所述推力装置还包括:电流互感器和示波器;
所述电流互感器的一次侧分别与所述集电极和地连接,所述电流互感器的二次侧与所述示波器连接;
所述示波器用于显示所述电流互感器的二次侧的电流。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明将电离电极与电离电源连接,中间电极与加速电源连接,电离电极与中间电极之间形成电离区,中间电极与集电极之间形成加速区,通过调整电离电源输出电压的大小或电离区的距离改变电离区的带电粒子浓度,实现了电离区的单独控制,通过调整加速电源输出电压的大小或加速区的距离改变加速区的电场强度,实现了加速区的单独控制,即实现了电离与加速的解耦;并且通过电离区与加速区的控制匹配,使带电粒子在加速区的运动过程中完全与加速电场所在区域的中性气体分子发生碰撞并进行能量交换,提高了离子风推力器的电-动能转换效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种基于电离与加速过程解耦的离子风推力装置的原理结构示意图;
图2为本发明提供的多针-多针-环结构的示意图;
图3为本发明提供的三角多针-三角多针-环结构的示意图;
图4为本发明提供的单针-单针-网结构的示意图;
图5为本发明提供的多针-多针-网结构的示意图;
图6为本发明提供的三角多针-三角多针-网结构的示意图;
符号说明:1-电离电源,2-加速电源,3-电离电极,4-中间电极,5-集电极,6-示波器,7-电流互感器,8-风速仪,9-高压探头。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种离子风推力装置,克服了传统离子风推力器电离密度极限对离子风推力器性能的限制性,提高了离子风推力器的带电离子密度,进而提高了离子风推力器的性能。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明提供的一种基于电离与加速过程解耦的离子风推力装置的原理结构示意图。如图1所示,一种基于电离与加速过程解耦的离子风推力装置包括:电离电极3、中间电极4、集电极5、电离电源1和加速电源2。
电离电极3、中间电极4和集电极5沿着临近空间气体的流动方向依次设置。电离电极3与中间电极4之间的区域为电离区,中间电极4与集电极5之间的区域为加速区。电离区和加速区的距离均可调。电离区处于加速区上游位置。
电离电极3与电离电源1的高压端连接,中间电极4与加速电源2的高压端连接,集电极5接地。电离电源1的低压端与加速电源2的低压端均接地。
电离电源1的电压高于加速电源2的电压,电离电极3的针尖曲率半径小于中间电极4的针尖曲率半径,使得电离过程产生的带电粒子能够输运至中间电极4区域。
通过增大电离电源1输出电压的大小或增加电离区的距离提高电离区的带电粒子浓度。由于针尖曲率半径的改变,能够改变电离区电场强度;在相同放电电压条件下,针尖曲率半径越大(针尖越尖锐),电场强度越强,放电产生的带电粒子浓度也有所不同,因此,还可以通过改变电离电极3的针尖曲率或者中间电极4的针尖曲率提高电离区的带电粒子浓度,实现了电离区带电粒子浓度的单独控制。
通过调整加速电源2输出电压的大小或加速区的距离改变加速区的电场强度,带电粒子在加速区的电场作用下受到库仑力的作用,从而使带电粒子在加速区的运动过程中完全与加速电场所在区域的中性气体分子发生碰撞并进行能量交换,形成离子风。还可以通过调整中间电极4的结构或者集电极5的结构改变加速区的电场强度的分布,实现了加速区的单独控制,进而实现了电离与加速过程的解耦控制。
为了优化电-动能传递过程,提高离子风推力器电-动能转换效率,需要进行电离区与加速区的匹配,匹配主要包含带电粒子浓度的匹配优化以及时间尺度的匹配优化。在带电粒子浓度上,需要保证电离过程产生的带电粒子能够在加速过程被完全利用;在时间尺度上,需要保证电离过程与加速过程之间无时间间隔,电离过程产生带电粒子后就能够被加速过程立刻利用上,不存在时间差。
本发明提供了以下几种电离电极3、中间电极4和集电极5的结构:
1)如图1所示,电离电极3和中间电极4均为单针结构,集电极5为环电极结构,即单针-单针-环结构。电离电极3与中间电极4位于同一直线上。中间电极4的中心线与环电极结构的中心线重合。
2)如图2所示,电离电极3为第一多针结构,中间电极4为第二多针结构,集电极5为环电极结构,即多针-多针-环结构。第一多针结构和第二多针结构位于同一平面上,第一多针结构中的针电极平行排列,第二多针结构中的针电极平行排列,第一多针结构中的针电极与第二多针结构中的针电极分别一一对应设置。中间电极4的中心线与环电极结构的中心线重合。
3)如图3所示,电离电极3为第一多针结构,中间电极4为第二多针结构,集电极5为环电极结构,即三角多针-三角多针-环结构。第一多针结构中的针电极平行排列构成第一正三角形结构,第二多针结构中的针电极平行排列构成第二正三角形结构,第一正三角形结构的中心线与第二正三角形结构的中心线重合。中间电极4的中心线与环电极结构的中心线重合。
4)如图4所示,电离电极3和中间电极4均为单针结构,集电极5为网电极结构,即单针-单针-网结构。中间电极4垂直于网电极结构所在平面。
5)如图5所示,电离电极3为第一多针结构,中间电极4为第二多针结构,集电极5为网电极结构,即多针-多针-网结构。第一多针结构和第二多针结构位于同一平面上,第一多针结构中的针电极平行排列,第二多针结构中的针电极平行排列,第一多针结构中的针电极与第二多针结构中的针电极分别一一对应设置。中间电极4垂直于网电极结构所在平面。
6)如图6所示,电离电极3为第一多针结构,中间电极4为第二多针结构,集电极5为网电极结构,即三角多针-三角多针-网结构。第一多针结构中的针电极平行排列构成第一正三角形结构,第二多针结构中的针电极平行排列构成第二正三角形结构,第一正三角形结构的中心线与第二正三角形结构的中心线重合。中间电极4垂直于网电极结构所在平面。
电离区可电离成带电粒子的气体为氮气、氧气、二氧化碳、臭氧中的一种或几种组合。
电离电源1为高压直流电源(正高压、负高压)、高压交流电源、高压脉冲电源中的一种或几种组合。
加速电源2为正直流电源或正极性脉冲电源中的一种或几种组合,保证带电离子的定向加速。
推力装置还包括:电流互感器7和示波器6。电流互感器7的一次侧分别与集电极5和地连接,电流互感器7的二次侧与示波器6连接。示波器6用于显示电流互感器7的二次侧的电流。示波器6的两个高压探头9分别用于测量电离电极3的电压和中间电极4的电压。
推力装置还可以包括电流测量装置,电流测量装置连接在电离电源1和示波器6之间。由于电离电源1可以为多种形式的电源,针对电离电源1采用不同的电源,电流测量装置相应的选择合适的电流测量装置进行电流的测量,并在示波器6上显示电流测量值。
推力装置还包括:风速仪8。风速仪8用于测量离子风的风速。
本发明将电离电极与电离电源连接,中间电极与加速电源连接,电离电极与中间电极之间形成电离区,中间电极与集电极之间形成加速区,通过调整电离电源输出电压的大小或电离区的距离改变电离区的带电粒子浓度,实现了电离区的单独控制,通过调整加速电源输出电压的大小或加速区的距离改变加速区的电场强度,实现了加速区的单独控制,即实现了电离与加速的解耦;并且通过电离区与加速区的控制匹配,使带电粒子在加速区的运动过程中完全与加速电场所在区域的中性气体分子发生碰撞并进行能量交换,提高了离子风推力器的电-动能转换效率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种基于电离与加速过程解耦的离子风推力装置,其特征在于,所述推力装置包括:电离电极、中间电极、集电极、电离电源和加速电源;
所述电离电极、所述中间电极和所述集电极沿着临近空间气体的流动方向依次设置;所述电离电极与所述中间电极之间的区域为电离区,所述中间电极与所述集电极之间的区域为加速区;所述电离区和所述加速区的距离均可调;
所述电离电极与所述电离电源连接,所述中间电极与所述加速电源连接,所述集电极接地;
所述电离电源的电压高于所述加速电源的电压,所述电离电极的针尖曲率半径小于所述中间电极的针尖曲率半径;
通过调整所述电离电源输出电压的大小或所述电离区的距离提高所述电离区的带电粒子浓度;通过调整所述加速电源输出电压的大小或所述加速区的距离改变所述加速区的电场强度,从而使所述带电粒子在加速区的运动过程中完全与所述加速电场所在区域的中性气体分子发生碰撞并进行能量交换,形成离子风。
2.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述电离电极和所述中间电极均为单针结构;
所述电离电极与所述中间电极位于同一直线上。
3.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述电离电极为第一多针结构,所述中间电极为第二多针结构;
所述第一多针结构和所述第二多针结构位于同一平面上,所述第一多针结构中的针电极平行排列,所述第二多针结构中的针电极平行排列,所述第一多针结构中的针电极与所述第二多针结构中的针电极分别一一对应设置。
4.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述电离电极为第一多针结构,所述中间电极为第二多针结构;
所述第一多针结构中的针电极平行排列构成第一正三角形结构,所述第二多针结构中的针电极平行排列构成第二正三角形结构,所述第一正三角形结构的中心线与所述第二正三角形结构的中心线重合。
5.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述集电极为网电极结构;
所述中间电极垂直于所述网电极结构所在平面。
6.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述集电极为环电极结构;
所述中间电极的中心线与所述环电极结构的中心线重合。
7.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述电离区可电离成带电粒子的气体为氮气、氧气、二氧化碳、臭氧中的一种或几种组合。
8.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述电离电源为高压直流电源、高压交流电源、高压脉冲电源中的一种或几种组合。
9.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述加速电源为正直流电源、正极性脉冲电源中的一种或几种组合。
10.根据权利要求1所述的基于电离与加速过程解耦的离子风推力装置,其特征在于,所述推力装置还包括:电流互感器和示波器;
所述电流互感器的一次侧分别与所述集电极和地连接,所述电流互感器的二次侧与所述示波器连接;
所述示波器用于显示所述电流互感器的二次侧的电流。
CN202010564374.1A 2020-06-19 2020-06-19 一种基于电离与加速过程解耦的离子风推力装置 Active CN111706481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010564374.1A CN111706481B (zh) 2020-06-19 2020-06-19 一种基于电离与加速过程解耦的离子风推力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010564374.1A CN111706481B (zh) 2020-06-19 2020-06-19 一种基于电离与加速过程解耦的离子风推力装置

Publications (2)

Publication Number Publication Date
CN111706481A true CN111706481A (zh) 2020-09-25
CN111706481B CN111706481B (zh) 2021-06-22

Family

ID=72542159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010564374.1A Active CN111706481B (zh) 2020-06-19 2020-06-19 一种基于电离与加速过程解耦的离子风推力装置

Country Status (1)

Country Link
CN (1) CN111706481B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357109A (zh) * 2021-06-30 2021-09-07 哈尔滨工业大学 一种射频离子推力器点火装置
CN113464390A (zh) * 2021-07-21 2021-10-01 中国电子科技集团公司第十八研究所 一种组合解耦式电流体推力器

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489249A (zh) * 2002-10-08 2004-04-14 陶正钰 一种负离子风发生装置
CN1178560C (zh) * 1998-06-26 2004-12-01 汤姆森管电子有限公司 等离子体加速器装置
DE102009035298A1 (de) * 2009-07-30 2010-04-08 Hannes Dr.-Ing. Schulze Horn Kernfusionseinrichtung mit Aggregat zur Erzeugung von Elektroenergie
CN102711354A (zh) * 2012-05-28 2012-10-03 哈尔滨工业大学 一种应用于双级霍尔推力器耦合磁场的解耦合控制方法
CN103368077A (zh) * 2013-07-01 2013-10-23 海信容声(广东)冰箱有限公司 一种负离子器、负离子风装置及冰箱除臭装置
CN103606499A (zh) * 2013-10-25 2014-02-26 北京卫星环境工程研究所 卫星场致发射电推进器的发射体制备方法
CN105116435A (zh) * 2015-07-13 2015-12-02 兰州空间技术物理研究所 一种基于法拉第探针阵列的离子推力器束流测试方法
CN106014899A (zh) * 2016-05-10 2016-10-12 中国人民解放军国防科学技术大学 螺旋波等离子体感应式推力器
CN107809061A (zh) * 2017-10-09 2018-03-16 青岛海尔空调器有限总公司 离子风发生装置及空调室内机
CN107842478A (zh) * 2017-11-13 2018-03-27 中国人民解放军国防科技大学 透射式激光‑电磁场耦合推力器
CN108204651A (zh) * 2016-12-20 2018-06-26 青岛海尔智能技术研发有限公司 离子送风设备
CN109246987A (zh) * 2018-09-27 2019-01-18 国网湖南省电力有限公司 一种离子风散热器
CN110373766A (zh) * 2019-06-27 2019-10-25 东华大学 一种等离子风消静电的装置及操作方法
CN110617186A (zh) * 2019-09-05 2019-12-27 上海空间推进研究所 一种新型放电室结构
CN110637352A (zh) * 2017-04-03 2019-12-31 珀金埃尔默健康科学股份有限公司 从电子电离源的离子传输
CN111146049A (zh) * 2019-12-25 2020-05-12 兰州空间技术物理研究所 一种碳纳米管场发射阴极的小型离子源
CN111173698A (zh) * 2018-11-09 2020-05-19 哈尔滨工业大学 一种基于微波增强的液体工质等离子体推力器
CN111219308A (zh) * 2019-04-02 2020-06-02 哈尔滨工业大学 一种电离和加速分离的双阴极霍尔推力器

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178560C (zh) * 1998-06-26 2004-12-01 汤姆森管电子有限公司 等离子体加速器装置
CN1489249A (zh) * 2002-10-08 2004-04-14 陶正钰 一种负离子风发生装置
DE102009035298A1 (de) * 2009-07-30 2010-04-08 Hannes Dr.-Ing. Schulze Horn Kernfusionseinrichtung mit Aggregat zur Erzeugung von Elektroenergie
CN102711354A (zh) * 2012-05-28 2012-10-03 哈尔滨工业大学 一种应用于双级霍尔推力器耦合磁场的解耦合控制方法
CN103368077A (zh) * 2013-07-01 2013-10-23 海信容声(广东)冰箱有限公司 一种负离子器、负离子风装置及冰箱除臭装置
CN103606499A (zh) * 2013-10-25 2014-02-26 北京卫星环境工程研究所 卫星场致发射电推进器的发射体制备方法
CN105116435A (zh) * 2015-07-13 2015-12-02 兰州空间技术物理研究所 一种基于法拉第探针阵列的离子推力器束流测试方法
CN106014899A (zh) * 2016-05-10 2016-10-12 中国人民解放军国防科学技术大学 螺旋波等离子体感应式推力器
CN108204651A (zh) * 2016-12-20 2018-06-26 青岛海尔智能技术研发有限公司 离子送风设备
CN110637352A (zh) * 2017-04-03 2019-12-31 珀金埃尔默健康科学股份有限公司 从电子电离源的离子传输
CN107809061A (zh) * 2017-10-09 2018-03-16 青岛海尔空调器有限总公司 离子风发生装置及空调室内机
CN107842478A (zh) * 2017-11-13 2018-03-27 中国人民解放军国防科技大学 透射式激光‑电磁场耦合推力器
CN109246987A (zh) * 2018-09-27 2019-01-18 国网湖南省电力有限公司 一种离子风散热器
CN111173698A (zh) * 2018-11-09 2020-05-19 哈尔滨工业大学 一种基于微波增强的液体工质等离子体推力器
CN111219308A (zh) * 2019-04-02 2020-06-02 哈尔滨工业大学 一种电离和加速分离的双阴极霍尔推力器
CN110373766A (zh) * 2019-06-27 2019-10-25 东华大学 一种等离子风消静电的装置及操作方法
CN110617186A (zh) * 2019-09-05 2019-12-27 上海空间推进研究所 一种新型放电室结构
CN111146049A (zh) * 2019-12-25 2020-05-12 兰州空间技术物理研究所 一种碳纳米管场发射阴极的小型离子源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李和平等: "大气压放电等离子体研究进展综述", 《高电压技术》 *
霍明英等: "等离子推进无人机的电空气动力学研究", 《飞控与探测》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357109A (zh) * 2021-06-30 2021-09-07 哈尔滨工业大学 一种射频离子推力器点火装置
CN113464390A (zh) * 2021-07-21 2021-10-01 中国电子科技集团公司第十八研究所 一种组合解耦式电流体推力器

Also Published As

Publication number Publication date
CN111706481B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN111706481B (zh) 一种基于电离与加速过程解耦的离子风推力装置
JP5816810B2 (ja) 電気集塵装置
Podlinski et al. Electrohydrodynamic secondary flow and particle collection efficiency in a one-sided spike-plate type electrostatic precipitator
Zhou et al. Effects of magnetic field intensity on ionic wind characteristics
CN108684131A (zh) 用于甲烷干重整的高频交流旋转滑动弧放电等离子体发生系统
Moon et al. An EHD gas pump utilizing a ring/needle electrode
Wang et al. Influence of AC voltage on the positive DC corona current pulses in a wire-cylinder gap
CN2174002Y (zh) 静电式高效负离子风发生器
CN208113045U (zh) 一种用于离子源等离子体测试实验装置的电磁铁系统
Wenzheng et al. Study of generation characteristics of glow-type atmospheric-pressure plasma jet based on DC discharge in air
EP3438855B1 (en) Ion air supply module needle net layout method and ion air supply module
Xu et al. Study of magnetically enhanced corona pre-charger
CN111706479A (zh) 一种基于磁场的离子风推力装置
CN111720282A (zh) 一种基于针-环-网结构的离子风推力装置
CN111706478B (zh) 一种离子风推力装置
CN108204651B (zh) 离子送风设备
Wenzheng et al. Study of ionic wind based on dielectric barrier discharge of carbon fiber spiral electrode
CN213349300U (zh) 荷电磁电分级凝并装置
CN111706480A (zh) 一种基于电场加速的离子风推力装置
EP0124623A1 (en) Method of generating ionized gas
Palkovic et al. Measurements on a Gabor lens for neutralizing and focusing a 30 keV proton beam
CN107869770B (zh) 离子风发生装置及空调室内机
CN111706482A (zh) 一种与微波协同的离子风推力装置
US5231824A (en) Ion beam and ion jet stream motor
CN113464390B (zh) 一种组合解耦式电流体推力器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant