CN111705112B - 一种基于硅量子点、荧光素标记的dna、剪切酶的汞离子荧光检测方法 - Google Patents

一种基于硅量子点、荧光素标记的dna、剪切酶的汞离子荧光检测方法 Download PDF

Info

Publication number
CN111705112B
CN111705112B CN202010382371.6A CN202010382371A CN111705112B CN 111705112 B CN111705112 B CN 111705112B CN 202010382371 A CN202010382371 A CN 202010382371A CN 111705112 B CN111705112 B CN 111705112B
Authority
CN
China
Prior art keywords
solution
dna
fluorescence
silicon quantum
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010382371.6A
Other languages
English (en)
Other versions
CN111705112A (zh
Inventor
由天艳
李文佳
刘�东
李玉叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010382371.6A priority Critical patent/CN111705112B/zh
Publication of CN111705112A publication Critical patent/CN111705112A/zh
Application granted granted Critical
Publication of CN111705112B publication Critical patent/CN111705112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于荧光生物检测技术领域,公开了一种基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法。本发明中,我们利用硅量子点带正电并可以猝灭荧光素(Rox)的荧光信号的性质,将可以与汞离子特异性结合成双链的DNA连接在Rox上,结合exonuclease III酶剪切双链DNA,达到信号放大的目的,实现了对汞离子的高灵敏检测。本发明提出的基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法对汞离子检测的线性范围宽(2×10‑11–1×10 8mol/L),检测限低(6.67×10‑12mol/L),并且具有良好的选择性。通过标准加入法,对镇江古运河水和农田土壤中的汞离子进行分析,获得了满意的回收率。具有良好的实际应用前景。

Description

一种基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光 检测方法
技术领域
本发明属于荧光生物检测技术领域,具体涉及一种基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法。
背景技术
汞(Hg2+)污染多年来一直被认为是一个重要的世界性问题,因为它在低浓度下仍具有很高的毒性,并且可以在人体中产生生物累积效应。因此,痕量Hg2+的检测十分必要。荧光法由于分析速度快、成本效益好、操作方便等优点,已被广泛应用于汞离子(Hg2+)的检测。为了避免其它潜在物质的干扰,科研工作者利用Hg2+与胸腺嘧啶碱基之间的配位相互作用来提高检测的选择性,具体来说,胸腺嘧啶-胸腺嘧啶(T-T)在DNA双链中的错配会吸引水溶液中的Hg2+与胸腺嘧啶(T)配对形成稳定的胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)DNA双链。
为了提高荧光传感器对Hg2+检测的灵敏度,杂交链式反应(HCR)、滚动圆扩增(RCA)和酶辅助扩增等扩增策略被广泛应用于Hg2+检测中。其中,酶辅助扩增策略主要采用外切酶III(ExoIII)能有效地降解dsDNA的平末端和5’-突出末端,而对ssDNA或dsDNA的3’-突出末端的活性较低的性质。由于其不需要特定的识别序列而成为信号放大策略的理想候选。
发明内容
本发明旨在发展一种基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法。具体通过如下技术方案实现:利用硅量子点带正电并可以猝灭荧光素(Rox)的荧光信号的性质,将可以与汞离子特异性结合成双链的DNA连接在Rox(Rox-DNA)上,无汞离子存在时,硅量子点通过静电吸附猝灭Rox的荧光信号;当汞离子存在时,Rox-DNA通过T-Hg2+-T结构形成双链结构,Exo III剪切双链DNA,释放Rox和Hg2+达到信号放大的目的,实现了对汞离子的高灵敏检测。
一种基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法,包括如下步骤:
(1)将制备的SiQDs溶液与Rox-DNA溶液加入到一定体积的Tris-HCl溶液中,并在特定温度下孵育一定时间;
(2)向步骤(1)制备混合溶液中加入已知浓度的Hg2+溶液混合,并在特定温度下孵育一定时间;
(3)向步骤(2)制备混合溶液中加入ExoIII溶液混合,在特定温度下作用一段时间,然后在高温下灭活ExoIII,待混合液冷却后用荧光分光光度计在室温下分别检测溶液在414nm和607nm处的荧光强度I414和I607,得出荧光强度I607/I414比值与汞离子浓度对数的标准曲线;
(4)按照步骤(1)~(3)的操作,将上述已知浓度的Hg2+溶液用待测的Hg2+溶液替换,用荧光分光光度计在室温下分别检测溶液在414nm和607nm处的荧光强度I414和I607,计算此时I607/I414比值并代入步骤(3)中的标准曲线,得出待测溶液中汞离子的浓度。
步骤(1)中,合成SiQDs的具体方法为:将6.665mL 60mM的还原剂L-谷胱甘肽(L-GSH)和13.135mL去离子水加入100mL烧杯中,通入氮气10min后,加入0.2mL硅源N-[3-(三甲氧基硅基)丙基]乙二胺(DAMO),继续通氮气10min,得到混合溶液。将装有混合溶液的烧杯放入美的家用微波炉中,在微波功率为700W的条件下,微波反应8min,得到棕黄色固体。向烧杯中加10mL去离子水溶解得到的固体物质,接着将溶液转移到离心管中放入离心机离心10min,离心过程的离心速率为10000rpm,取上清液,转移到透析袋透析处理24h。提纯后的量子点溶液经冷冻干燥、研磨得到略带黄色的硅量子点粉末,置于4℃下保存。所述透析袋的截留分子量为1000。
步骤(1)中,SiQDs溶液浓度为0.5mg/mL,Rox-DNA溶液的浓度为1μM,SiQDs溶液,Rox-DNA溶液及Tris-HCl的体积比为10:10:53;孵育条件为:37℃下孵育15min。
步骤(2)中,Hg2+溶液的浓度为2×10-11–1×10-8mol/L;SiQDs溶液:Hg2+溶液体积比5:2;孵育条件为:37℃下孵育40min。
步骤(3)中,ExoIII溶液的浓度为2U/μL,SiQDs溶液:ExoIII溶液体积比10:3;37℃下孵育65min;ExoIII在80℃下放置10min灭活。
步骤(3)、(4)中,所述荧光分光光度计的激发波长分别设置为350nm和550nm,激发狭缝宽度为3nm,发射狭缝宽度为3nm。
所述的Tris-HCl浓度均为10mM,pH=7.0,10mM MgCl2
本发明的有益效果:
(1)本发明应用酶剪切放大策略实现荧光检测方法的信号放大;
(2)本发明引入富含T碱基的DNA,与Hg2+结合形成T-Hg2+-T双链结构实现对Hg2+的特异性检测;
(3)所提出的检测方法对Hg2+表现出令人满意的分析性能,检测限低6.67×10- 12mol/L(S/N=3),线性范围宽2×10-11–1×10-8mol/L。
附图说明
图1是本发明荧光方法用于检测汞离子的原理示意图。
图2是SiQDs的荧光激发和发射光谱图。
图3A是SiQDs、Rox-DNA和SiQDs+Rox-DNA的Zeta电势图;B是本发明荧光方法可行性分析中不同溶液的荧光光谱图。
图4A是不同浓度Hg2+标准溶液存在时溶液的荧光光谱图;B是Hg2+浓度对数与荧光强度比值间的线性关系图。
图5是各种干扰物存在时溶液的荧光比值变化图。
具体实施方式
下面结合说明书附图和实施例对本发明内容进行详细说明:
该检测方法的检测过程如图1所示,基本原理是:
首先合成了SiQDs,其最大激发波长为350nm,最大发射波长为414nm,如图2所示。硅量子点带正电与带负电的Rox-DNA通过静电作用相吸附(如图3A所示),并猝灭荧光素(Rox)的荧光信号,当汞离子存在时,Rox-DNA通过T-Hg2+-T结构形成双链结构,Exo III剪切双链DNA,释放Rox和Hg2+达到信号放大的目的,实现了对汞离子的高灵敏检测。
该检测方法的可行性分析如下:
为了进一步验证方案的可行性,对SiQDs溶液和Rox-DNA溶液中加入各种物质前后的荧光变化情况进行考察。如图3B所示,SiQDs在414nm处有强荧光信号,Rox-DNA在607nm处有强荧光信号;当两者混合后,SiQDs在414nm处的荧光信号强度不变,Rox-DNA在607nm处的荧光信号会被SiQDs猝灭;单独加入汞离子,Rox-DNA在607nm处的荧光信号不会恢复,当继续加入Exo III后,Exo III剪切双链DNA,释放Rox,导致Rox在607nm处的荧光信号得到恢复。证明本发明的方法可用于汞离子的检测。
实施例1
(1)将制备的SiQDs配制成0.5mg/mL溶液待用;
(2)将50μL步骤(1)SiQDs溶液和50μL Rox-DNA(1μM)的溶液加入到265μLTris-HCl溶液中,37℃下孵育15min;
(3)向步骤(2)制备的若干份混合溶液中分别加入20μL的Hg2+标准溶液,浓度分别为2×10-11、5×10-11、1×10-10、3×10-10、5×10-10、1×10-9、3×10-9、5×10-9、1×10-8mol/L,在37℃下孵育40min;
(4)向步骤(3)制备混合溶液中加入15μL ExoIII(2U/μL)溶液混合,在37℃下孵育65min。然后在80℃下放置10min使ExoIII灭活。
(5)待混合液冷却后用荧光分光光度计在室温下分别检测溶液在414nm和607nm处的荧光强度,所得的谱图如图4A所示;同时获得荧光强度I607/I414比值与汞离子浓度对数的标准曲线如图4B所示;线性方程为:I607/I414=0.64128Log CHg2++7.50114,相关系数R2=0.99504,检测限为6.67×10-12mol/L(S/N=3),线性范围2×10-11–1×10-8mol/L。
(6)按照步骤(1)~(5)的操作,将上述已知浓度的Hg2+溶液用待测的Hg2+溶液替换,用荧光分光光度计在室温下分别检测溶液在414nm和607nm处的荧光强度,计算I607/I414比值为1.49569,代入步骤(5)中的标准曲线,得出待测溶液中汞离子的浓度为4.31735×10-10mol/L。
其中,所述荧光分光光度计的激发波长分别设置为350nm和550nm,激发狭缝宽度为3nm,发射狭缝宽度为3nm。
所述的Tris-HCl浓度均为10mM,pH=7.0,10mM MgCl2
Hg2+检测选择性的考察:
为了研究本发明检测Hg2+的特异性,对Hg2+和其它金属离子进行检测。具体步骤如下:在1.5mL离心管中,将50μL(0.5mg/mL)SiQDs溶液和50μL Rox-DNA(1μM)溶液加入到265μL Tris-HCl溶液中,37℃下孵育15min;然后分别加入20μL Hg2+(浓度为5×10-10mol/L)或K+、Ca2+、Na+、Mg2+、Fe2+、Fe3+、Cu2+、Pb2+、Ni2+、Mn2+、Cd2+和所有金属离子的混合溶液(其它金属离子浓度均为5×10-8mol/L),在37℃下孵育40min;最后加入15μL ExoIII(2U/μL)溶液混合,在37℃下孵育65min。然后在80℃下放置10min使ExoIII灭活。待混合液冷却后用荧光分光光度计在室温下分别检测溶液在414nm和607nm处的荧光强度。如图5所示,K+、Ca2+、Na+、Mg2+、Fe2+、Fe3+、Cu2+、Pb2+、Ni2+、Mn2+、Cd2+对荧光强度I607/I414比值基本无影响,只有加入Hg2+会使荧光强度I607/I414比值明显降低。以上结果说明该荧光传感方法可以实现Hg2+的特异性检测。
其中,所述荧光分光光度计的激发波长分别设置为350nm和550nm,激发狭缝宽度为3nm,发射狭缝宽度为3nm。

Claims (6)

1.一种基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法,其特征在于,包括如下步骤:
(1)将制备的SiQDs溶液与Rox-DNA溶液加入到一定体积的Tris-HCl溶液中,并在37℃孵育15min;其中,DNA为富含T碱基的DNA;
(2)向步骤(1)制备混合溶液中加入已知浓度的Hg2+溶液混合,并在37℃孵育40min;
(3)向步骤(2)制备混合溶液中加入ExoIII溶液混合,在37℃孵育65min,然后在高温下灭活ExoIII,待混合液冷却后用荧光分光光度计在室温下分别检测溶液在414nm和607nm处的荧光强度I414和I607,得出荧光强度I607/I414比值与汞离子浓度对数的标准曲线;
(4)按照步骤(1)~(3)的操作,将上述已知浓度的Hg2+溶液用待测的Hg2+溶液替换,用荧光分光光度计在室温下分别检测溶液在414nm和607nm处的荧光强度I414和I607,计算此时I607/I414比值并代入步骤(3)中的标准曲线,得出待测溶液中汞离子的浓度。
2.如权利要求1所述的基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法,其特征在于,步骤(1)中,SiQDs溶液浓度为0.5mg/mL,Rox-DNA溶液的浓度为1μM,SiQDs溶液,Rox-DNA溶液及Tris-HCl的体积比为10:10:53。
3.如权利要求1所述的基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法,其特征在于,步骤(2)中,Hg2+溶液的浓度为2×10-11–1×10-8mol/L;SiQDs溶液:Hg2+溶液体积比5:2。
4.如权利要求1所述的基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法,其特征在于,步骤(3)中,ExoIII溶液的浓度为2U/μL,SiQDs溶液:ExoIII溶液体积比10:3;ExoIII在80℃下放置10min灭活。
5.如权利要求1所述的基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法,其特征在于,步骤(3)、(4)中,所述荧光分光光度计的激发波长分别设置为350nm和550nm,激发狭缝宽度为3nm,发射狭缝宽度为3nm。
6.如权利要求1所述的基于硅量子点、荧光素标记的DNA、剪切酶的汞离子荧光检测方法,其特征在于,所述的Tris-HCl浓度均为10mM,pH=7.0,10mM MgCl2
CN202010382371.6A 2020-05-08 2020-05-08 一种基于硅量子点、荧光素标记的dna、剪切酶的汞离子荧光检测方法 Active CN111705112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010382371.6A CN111705112B (zh) 2020-05-08 2020-05-08 一种基于硅量子点、荧光素标记的dna、剪切酶的汞离子荧光检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010382371.6A CN111705112B (zh) 2020-05-08 2020-05-08 一种基于硅量子点、荧光素标记的dna、剪切酶的汞离子荧光检测方法

Publications (2)

Publication Number Publication Date
CN111705112A CN111705112A (zh) 2020-09-25
CN111705112B true CN111705112B (zh) 2023-07-18

Family

ID=72536889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010382371.6A Active CN111705112B (zh) 2020-05-08 2020-05-08 一种基于硅量子点、荧光素标记的dna、剪切酶的汞离子荧光检测方法

Country Status (1)

Country Link
CN (1) CN111705112B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088564B (zh) * 2021-04-29 2022-06-21 长江大学 一种基于pcr检测汞离子的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087791A (zh) * 2015-08-11 2015-11-25 清华大学 基于t-t错配原理的汞离子的荧光检测方法及其应用
CN107703112A (zh) * 2017-10-05 2018-02-16 福建医科大学 基于碳量子点猝灭的荧光标记dna的比例性荧光方法检测肝素钠
CN108251506A (zh) * 2018-01-23 2018-07-06 吉林化工学院 一种痕量检测汞离子的荧光生物传感器试剂盒及检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087791A (zh) * 2015-08-11 2015-11-25 清华大学 基于t-t错配原理的汞离子的荧光检测方法及其应用
CN107703112A (zh) * 2017-10-05 2018-02-16 福建医科大学 基于碳量子点猝灭的荧光标记dna的比例性荧光方法检测肝素钠
CN108251506A (zh) * 2018-01-23 2018-07-06 吉林化工学院 一种痕量检测汞离子的荧光生物传感器试剂盒及检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling;Minghua Lu等;《Biosensors and Bioelectronics》;20160507;第85卷;第268页方案1,右栏第2段至第269页左栏第1段 *
Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells;Yanan Zhang等;《Anal.Chem.》;20180717;第90卷;摘要 *
Sensitive and selective amplified fluorescence DNA detection based on Exonuclease III-Aided target recycling;Xiaolei Zuo等;《JACS》;20100121;第132卷;第1816页左栏第三段、图1 *

Also Published As

Publication number Publication date
CN111705112A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
Chen et al. Carbon-based dots for electrochemiluminescence sensing
Wang et al. A reliable and facile fluorescent sensor from carbon dots for sensing 2, 4, 6-trinitrophenol based on inner filter effect
Wu et al. Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic (III)
CN108359714B (zh) 一种检测汞离子的生物传感器
Qi et al. Amplified fluorescence detection of mercury (II) ions (Hg 2+) using target-induced DNAzyme cascade with catalytic and molecular beacons
Tian et al. A new label-free and turn-on strategy for endonuclease detection using a DNA–silver nanocluster probe
Guo et al. A sensitive biosensor with a DNAzyme for lead (II) detection based on fluorescence turn-on
Li et al. Label-free fluorescence turn-on detection of Pb 2+ based on AIE-active quaternary ammonium salt of 9, 10-distyrylanthracene
Huang et al. An electrochemical biosensor for the highly sensitive detection of Staphylococcus aureus based on SRCA-CRISPR/Cas12a
Zhang et al. Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu (III) ion using carbon dots as reference
Xue et al. A novel label-free cascade amplification strategy based on dumbbell probe-mediated rolling circle amplification-responsive G-quadruplex formation for highly sensitive and selective detection of NAD+ or ATP
CN110205123B (zh) 一种碳量子点材料及其在汞离子检测中的应用
Jia et al. Real-time fluorescence detection of Hg 2+ ions with high sensitivity by exponentially isothermal oligonucleotide amplification
CN107941797B (zh) 一种检测汞离子的目视比色传感器
Fu et al. A superquenched DNAzyme–perylene complex: a convenient, universal and low-background strategy for fluorescence catalytic biosensors
CN111705112B (zh) 一种基于硅量子点、荧光素标记的dna、剪切酶的汞离子荧光检测方法
Zhan et al. Sensitive fluorescent assay for copper (II) determination in aqueous solution using copper-specific ssDNA and Sybr Green I
Chen et al. Pt–DNA complexes as peroxidase mimetics and their applications in colorimetric detection of H 2 O 2 and glucose
Pan et al. An enzyme-free DNA circuit for the amplified detection of Cd 2+ based on hairpin probe-mediated toehold binding and branch migration
Ma et al. A reversible metal ion fueled DNA three-way junction molecular device for “turn-on and-off” fluorescence detection of mercury ions (II) and biothiols respectively with high selectivity and sensitivity
Zhang et al. A rapid label-and enzyme-free G-quadruplex-based fluorescence strategy for highly-sensitive detection of HIV DNA
Guo et al. Label-free and enzyme-free sensitive fluorescent detection of human immunodeficiency virus deoxyribonucleic acid based on hybridization chain reaction
Li et al. Engineering DNAzyme strategies for fluorescent detection of lead ions based on RNA cleavage-propelled signal amplification
Wang et al. A fluorescence turn-on detection of copper (II) based on the template-dependent click ligation of oligonucleotides
CN112175950B (zh) 一种稳定的环状DNAzyme的制备方法及其在Pb2+检测中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant