CN111702809A - A robot track self-checking device and method thereof - Google Patents
A robot track self-checking device and method thereof Download PDFInfo
- Publication number
- CN111702809A CN111702809A CN202010595229.XA CN202010595229A CN111702809A CN 111702809 A CN111702809 A CN 111702809A CN 202010595229 A CN202010595229 A CN 202010595229A CN 111702809 A CN111702809 A CN 111702809A
- Authority
- CN
- China
- Prior art keywords
- robot
- track
- signal
- partition
- interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005192 partition Methods 0.000 claims abstract description 59
- 238000007689 inspection Methods 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 230000002159 abnormal effect Effects 0.000 claims description 23
- 230000005856 abnormality Effects 0.000 abstract description 7
- 230000003044 adaptive effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0095—Means or methods for testing manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
- B25J19/022—Optical sensing devices using lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/02—Manipulators mounted on wheels or on carriages travelling along a guideway
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manipulator (AREA)
Abstract
本发明涉及一种机器人轨道自检装置及其方法,该方法包括:根据预设的检测间隔,采集机器人位置信号;将机器人位置信号与分区位置RFID标记信息进行比对,判断机器人是否处于弯道或斜坡位段,若判断为是,则重新采集机器人位置信号,否则根据预设的信号采集间隔,完成一个分区的信号采集;根据一个分区内的信号采集数据,判断该分区内轨道状态是否正常,并得到轨道异常区间。与现有技术相比,本发明融合巡检机器人位置信号和当前位置激光接收器采集的光束信号、机器人行走速度,能够自动、准确地完成轨道状态的检测和轨道异常区间定位,具有判别准确率高、自适应能力强、可靠性好的优点,能够有效提升机器人巡检的可靠性和安全性。
The invention relates to a robot track self-checking device and a method thereof. The method includes: collecting a robot position signal according to a preset detection interval; Or the slope segment, if it is judged to be yes, then collect the robot position signal again, otherwise, according to the preset signal collection interval, complete the signal collection of a partition; according to the signal collection data in a partition, judge whether the track status in the partition is normal or not , and get the orbital anomaly interval. Compared with the prior art, the present invention integrates the position signal of the inspection robot, the beam signal collected by the laser receiver at the current position, and the walking speed of the robot, and can automatically and accurately complete the detection of the track state and the positioning of the track abnormality interval, and has the accuracy of discrimination. It has the advantages of high performance, strong adaptive ability and good reliability, which can effectively improve the reliability and safety of robot inspection.
Description
技术领域technical field
本发明涉及机器人巡检技术领域,尤其是涉及一种机器人轨道自检装置及其方法。The invention relates to the technical field of robot inspection, in particular to a robot track self-inspection device and a method thereof.
背景技术Background technique
随着我国智慧城市的深入推进,机器人巡检已成为城市综合管廊和电力电缆隧道智能运检的重要组成部分,对管廊或隧道内设备的安全运行起到至关重要的作用。相对于地面行走的轮式或履带式机器人,轨道式机器人具有行走控制简单、视野开阔、耗能少和能够适应地下管廊或隧道空间相对狭窄或地面路况复杂的情况,成为管廊或隧道机器人巡检的主流方式。With the in-depth advancement of smart cities in my country, robot inspection has become an important part of the intelligent inspection of urban comprehensive pipe corridors and power cable tunnels, and plays a vital role in the safe operation of equipment in pipe corridors or tunnels. Compared with wheeled or crawler robots that walk on the ground, orbital robots have simple walking control, wide field of vision, less energy consumption, and can adapt to the relatively narrow underground pipe gallery or tunnel space or complex ground road conditions, becoming a pipe gallery or tunnel robot. Mainstream way of inspection.
轨道式机器人的轨道安装在隧道顶部,大多通过机械构件吊装,在实际工程中,由于现场施工质量管控不足、机器人行走过程中的振动,容易造成吊件螺母松动,此外,轨道长期承受机器人重量等因素的影响,这些都会使轨道产生变形,一方面,轨道变形会导致机器人行走过程中巡检图像抖动,影响巡检效果,另一方面,轨道严重的变形甚至脱落会给隧道内的设施和人员的安全带来隐患。因此,有必要对机器人轨道进行检测,以提升机器人巡检的可靠性和安全性。The track of the orbital robot is installed on the top of the tunnel, and most of it is hoisted by mechanical components. In actual engineering, due to insufficient quality control of on-site construction and vibration during the walking process of the robot, it is easy to cause the nut of the hanger to loosen. In addition, the track bears the weight of the robot for a long time, etc. Affected by factors, these will deform the track. On the one hand, the track deformation will cause the inspection image to shake during the robot's walking process, which will affect the inspection effect. security risks. Therefore, it is necessary to detect the robot track to improve the reliability and safety of robot inspection.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种机器人轨道自检装置及其方法,通过自动检测轨道状态以及对轨道异常区间进行定位,能够有效提升机器人巡检的可靠性和安全性。The purpose of the present invention is to provide a robot track self-inspection device and method thereof in order to overcome the above-mentioned defects of the prior art, which can effectively improve the reliability and reliability of robot inspection by automatically detecting the track state and locating the track abnormal interval. safety.
本发明的目的可以通过以下技术方案来实现:一种机器人轨道自检装置,包括激光发射器、激光接收器、里程计、速度传感器和处理器,所述激光发射器安装在管廊或隧道的每个分区一侧的轨道位置,所述分区的入口、出口及分区内特殊位置均安装有用于分区位置标记的RFID(Radio Frequency Identification,无线电射频识别)标签,所述激光发射器发出的光束平行于轨道,所述激光接收器安装在机器人底部,用于接收激光发射器发出的光束,并输出光束信号,所述里程计和速度传感器均安装于机器人本体上,分别用于采集机器人的位置信号以及行走速度,所述激光接收器、里程计、速度传感器和RFID标签分别与处理器连接,所述处理器根据光束信号、位置信号、行走速度以及分区位置RFID标记信息,自动判断得到当前轨道状态以及轨道异常区间。The object of the present invention can be achieved through the following technical solutions: a robot track self-checking device, comprising a laser transmitter, a laser receiver, an odometer, a speed sensor and a processor, and the laser transmitter is installed in a pipe gallery or tunnel. At the track position on one side of each partition, RFID (Radio Frequency Identification, radio frequency identification) tags are installed at the entrance and exit of the partition and special positions in the partition for marking the location of the partition, and the beams emitted by the laser transmitter are parallel On the track, the laser receiver is installed at the bottom of the robot to receive the beam emitted by the laser transmitter and output the beam signal. The odometer and the speed sensor are both installed on the robot body and are used to collect the position signal of the robot respectively. And the walking speed, the laser receiver, the odometer, the speed sensor and the RFID tag are respectively connected with the processor, and the processor automatically judges the current track state according to the beam signal, the position signal, the walking speed and the RFID tag information of the partition position and orbital anomalies.
进一步地,所述管廊或隧道的每个分区长度为K,所述激光发射器的传送距离大于K。Further, the length of each partition of the pipe gallery or tunnel is K, and the transmission distance of the laser transmitter is greater than K.
进一步地,所述分区内特殊位置包括弯道和斜坡位段。Further, the special positions in the partition include curves and slopes.
一种机器人轨道自检方法,包括以下步骤:A robot track self-checking method, comprising the following steps:
S1、根据预设的检测间隔,采集机器人位置信号;S1. Collect robot position signals according to a preset detection interval;
S2、将机器人位置信号与分区位置RFID标记信息进行比对,判断机器人是否处于弯道或斜坡位段,若判断为是,则返回步骤S1,否则执行步骤S3;S2, compare the robot position signal with the RFID tag information of the partition position to determine whether the robot is in a curve or a slope segment, if it is determined to be yes, then return to step S1, otherwise go to step S3;
S3、根据预设的信号采集间隔,完成一个分区的信号采集,即采集一个分区内机器人行走时的多个位置信号,以及对应的行走速度和光束信号;S3, according to the preset signal collection interval, complete the signal collection of one partition, that is, collect multiple position signals when the robot is walking in one partition, as well as the corresponding walking speed and beam signal;
S4、根据步骤S3中一个分区内的多个位置信号,以及对应的行走速度和光束信号,判断该分区内轨道状态是否正常,并得到轨道异常区间。S4. According to the plurality of position signals in a partition in step S3, and the corresponding traveling speed and beam signal, determine whether the track status in the partition is normal, and obtain the track abnormality interval.
进一步地,所述分区位置RFID标记信息包括分区入口RFID标记信息、分区出口RFID标记信息、分区弯道位置RFID标记信息以及分区斜坡位段RFID标记信息;Further, the RFID marking information of the partition position includes the RFID marking information of the partition entrance, the RFID marking information of the partition exit, the RFID marking information of the partition curve position and the RFID marking information of the partition slope position;
所述步骤S2的具体过程为:若Se<s<So,且s=Sc,则判断机器人处于弯道位置,返回步骤S1,其中,s为机器人当前的位置信号,Se为分区入口RFID标记信息,So为分区出口RFID标记信息,Sc为分区弯道位置RFID标记信息;The specific process of the step S2 is: if Se<s<So, and s=Sc, then it is judged that the robot is in a curved position, and the process returns to step S1, where s is the current position signal of the robot, and Se is the partition entrance RFID tag information , So is the RFID tag information of the partition exit, Sc is the RFID tag information of the partition curve position;
若Se<s<So,且s=Sr,则判断机器人处于斜坡位段,返回步骤S1,其中,Sr为分区斜坡位段RFID标记信息;If Se<s<So, and s=Sr, it is judged that the robot is in the slope segment, and the process returns to step S1, where Sr is the RFID tag information of the partitioned slope segment;
若s=Se或s=So,则判断机器人没有处于弯道或斜坡位段,执行步骤S3;If s=Se or s=So, it is judged that the robot is not in a curve or slope, and step S3 is executed;
若Se<s<So,且s≠Sc、s≠Sr,则判断机器人没有处于弯道或斜坡位段,执行步骤S3。If Se<s<So, and s≠Sc, s≠Sr, it is determined that the robot is not in a curve or a slope, and step S3 is executed.
进一步地,所述步骤S3中完成一个分区的信号采集的具体过程为:若s=Se,则表明机器人位于分区入口位置,之后根据预设的信号采集间隔,每采集一次位置信号,就将该位置信号与So进行比对,直至s=So,结束信号采集;Further, in the step S3, the specific process of completing the signal acquisition of a subregion is as follows: if s=Se, it indicates that the robot is located at the entrance position of the subregion, and then according to the preset signal acquisition interval, every time a position signal is collected, the position signal is collected. The position signal is compared with So until s=So, ending the signal acquisition;
若Se<s<So,则表明机器人位于分区内,之后根据预设的信号采集间隔,每采集一次位置信号,就将该位置信号与So进行比对,直至s=So,结束信号采集;If Se<s<So, it means that the robot is located in the partition, and then according to the preset signal acquisition interval, every time a position signal is collected, the position signal is compared with So until s=So, the signal acquisition is ended;
若s=So,则表明机器人已经位于分区出口位置,此时结束信号采集。If s=So, it means that the robot has been located at the exit position of the partition, and the signal acquisition is ended at this time.
进一步地,所述步骤S3中采集的光束信号具体为“0”或“1”:当激光接收器无法接收到激光发射器发出的光束时,光束信号为“0”;Further, the beam signal collected in the step S3 is specifically "0" or "1": when the laser receiver cannot receive the beam emitted by the laser transmitter, the beam signal is "0";
当激光接收器能够接收到激光发射器发出的光束时,光束信号为“1”。When the laser receiver can receive the beam from the laser transmitter, the beam signal is "1".
进一步地,所述步骤S4具体包括以下步骤:Further, the step S4 specifically includes the following steps:
S41、基于预设的信号采集间隔和行走速度,结合预设的区段门槛,判断机器人是否处于稳定状态,若判断为是,则返回步骤S1,否则执行步骤S42;S41, based on the preset signal acquisition interval and walking speed, combined with the preset segment threshold, determine whether the robot is in a stable state, if the determination is yes, then return to step S1, otherwise, perform step S42;
S42、基于位置信号和对应的光束信号,结合预设的轨道状态判据,判断轨道状态是否正常,若判断为正常,则返回步骤S1,否则执行步骤S43;S42, based on the position signal and the corresponding beam signal, combined with the preset track state criterion, determine whether the track state is normal, if it is judged to be normal, then return to step S1, otherwise, execute step S43;
S43、计算得到轨道异常区间。S43, the orbit anomaly interval is obtained by calculation.
进一步地,所述步骤S41具体包括以下步骤:Further, the step S41 specifically includes the following steps:
S411、基于机器人行走速度和预设的信号采集间隔,计算得到机器人的当前行驶距离;S411, calculating the current travel distance of the robot based on the walking speed of the robot and a preset signal collection interval;
S412、将当前行驶距离与预设的区段门槛进行比较,若当前行驶距离小于预设的区段门槛,则判断机器人处于稳定状态、返回步骤S1,否则执行步骤S42。S412. Compare the current travel distance with the preset segment threshold, and if the current travel distance is less than the preset segment threshold, determine that the robot is in a stable state, and return to step S1, otherwise, perform step S42.
进一步地,所述步骤S42中轨道状态判据具体为:Further, the orbit state criterion in the step S42 is specifically:
其中,smk为预设的区段门槛,wi,wi+1,...,wi+n为机器人分别在位置信号为si,si+1,...,si+n时的光束信号,当wi,wi+1,...,wi+n连续为“1”时,表明位置区段si,si+1,...,si+n的轨道状态异常;Among them, s mk is the preset segment threshold, w i , w i+1 ,...,w i+n are the position signals of the robot s i ,s i+1 ,...,s i+ The beam signal at n , when w i , w i+1 ,...,wi +n is "1" consecutively, indicates the position segment s i ,s i+1 ,...,s i+n The track status is abnormal;
所述步骤S43中轨道异常区间具体为:In the step S43, the abnormal orbit interval is specifically:
D=si+n-si D=s i+n -s i
其中,D为轨道异常区段大小,si+n和si分别为轨道异常区段的结束位置信号和轨道异常区段的起始位置信号。Among them, D is the size of the track abnormal section, s i+n and si are the end position signal of the track abnormal section and the start position signal of the track abnormal section, respectively.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
一、本发明通过在各分区轨道上安装固定位置的激光发射器、在机器人上安装激光接收器、里程计和速度传感器,结合处理器的设置,能够在机器人行走过程中采集激光接收器输出的光束信号,结合机器人行走速度和所处轨道的位置信号,能够自动、准确地完成轨道状态检测和异常区间定位,有利于提升机器人巡检的可靠性和安全性。1. The present invention can collect the output of the laser receiver during the walking process of the robot by installing a laser transmitter at a fixed position on each partition track, installing a laser receiver, an odometer and a speed sensor on the robot, combined with the setting of the processor. The beam signal, combined with the walking speed of the robot and the position signal of the track, can automatically and accurately complete the track state detection and abnormal interval positioning, which is beneficial to improve the reliability and safety of the robot inspection.
二、本发明利用分区出入口及特殊位置的RFID标记信息,通过比对机器人位置信号与分区的RFID标记信息,能够准确识别机器人是否处于弯道或斜坡位段、以及完成一个分区的信号采集,从而避免误检测问题的发生,此外,结合当前行驶距离与区段门槛的比较,能够准确识别出机器人是否处于稳定状态,当机器人处于稳定状态时则不进行轨道异常的判断,同样能够避免误检测问题的发生,同时,区段门槛的设置能够对采集的位置信号数据产生防抖作用,即保证位置信号数据采集的有效性,进一步提升检测结果的准确性。2. The present invention uses the RFID tag information of the entrance and exit of the partition and the special position, and can accurately identify whether the robot is in a curve or a slope by comparing the robot position signal and the RFID tag information of the partition, and complete the signal acquisition of a partition, thereby To avoid the problem of false detection, in addition, combined with the comparison of the current driving distance and the threshold of the section, it can accurately identify whether the robot is in a stable state. At the same time, the setting of the segment threshold can produce an anti-shake effect on the collected position signal data, that is, to ensure the validity of the position signal data collection and further improve the accuracy of the detection results.
附图说明Description of drawings
图1为本发明的装置结构连接示意图;1 is a schematic diagram of the connection of the device structure of the present invention;
图2为本发明的方法流程示意图;Fig. 2 is the method flow schematic diagram of the present invention;
图3a为实施例中轨道正常时的应用场景示意图;3a is a schematic diagram of an application scenario when the track is normal in the embodiment;
图3b为实施例中轨道异常时的应用场景示意图;3b is a schematic diagram of an application scenario when the track is abnormal in the embodiment;
图4为实施例中机器人轨道自检任务流程图;Fig. 4 is the flow chart of the robot orbit self-checking task in the embodiment;
图中标记说明:1、激光发射器,2、激光接收器,3、里程计,4、速度传感器,5、处理器,6、RFID标签。Description of the marks in the figure: 1. Laser transmitter, 2. Laser receiver, 3. Odometer, 4. Speed sensor, 5. Processor, 6. RFID tag.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
实施例Example
如图1所示,一种机器人轨道自检装置,包括激光发射器1、激光接收器2、里程计3、速度传感器4、处理器5和多个RFID标签6,激光接收器2、里程计3、速度传感器4和多个RFID标签6分别与处理器5相连接,激光发射器1安装在管廊或隧道的每个分区一侧的轨道位置,以发出与轨道平行的光束;As shown in Figure 1, a robot track self-checking device includes a
激光接收器2安装在机器人底部,用于接收激光发射器1发出的光束,并输出光束信号,当轨道平直且无变形时,激光接收器2能够接收到激光发射器1发出的光束;The
里程计3和速度传感器4均安装于机器人本体上,分别用于采集机器人的位置信号以及行走速度;Both the
多个RFID标签6分别安装在分区的入口、出口及分区内特殊位置,用于标记分区位置,其中,分区内特殊位置包括弯道和斜坡位段;A plurality of
处理器5根据光束信号、位置信号、行走速度以及分区位置RFID标记信息,自动判断得到当前轨道状态以及轨道异常区间。The
上述装置的工作方法如图2所示,包括:The working method of the above device is shown in Figure 2, including:
S1、根据预设的检测间隔,采集机器人位置信号;S1. Collect robot position signals according to a preset detection interval;
S2、将机器人位置信号与分区位置RFID标记信息进行比对,判断机器人是否处于弯道或斜坡位段,若判断为是,则返回步骤S1,否则执行步骤S3;S2, compare the robot position signal with the RFID tag information of the partition position to determine whether the robot is in a curve or a slope segment, if it is determined to be yes, then return to step S1, otherwise go to step S3;
S3、根据预设的信号采集间隔,完成一个分区的信号采集,即采集一个分区内机器人行走时的多个位置信号,以及对应的行走速度和光束信号;S3, according to the preset signal collection interval, complete the signal collection of one partition, that is, collect multiple position signals when the robot is walking in one partition, as well as the corresponding walking speed and beam signal;
S4、根据步骤S3中一个分区内的多个位置信号,以及对应的行走速度和光束信号,判断该分区内轨道状态是否正常,并得到轨道异常区间。S4. According to the plurality of position signals in a partition in step S3, and the corresponding traveling speed and beam signal, determine whether the track status in the partition is normal, and obtain the track abnormality interval.
将上述装置及方法应用于本实施例,具体实施如下:The above-mentioned device and method are applied to this embodiment, and the specific implementation is as follows:
一、设置固定的激光发射器:本实施例中,管廊和隧道每200m是一个分区,在每个分区一侧的轨道下方安装激光发射器1(见图3a),其发出的光束与轨道平行并射出;由于激光单色性好、扩散角度小,稳定性强,光线穿透能力强,即使在隧道内有烟雾或水气的情况下,光束也能正常达到接收端。激光发射器结构简单、功耗小、成本低,维护简单,环境适应能力强。本实施例选用激光器要求传送距离大于200m,同时其安装方式应保证射出的光束与巡检机器人轨道平行。1. Setting up a fixed laser transmitter: In this embodiment, the pipe gallery and the tunnel are a partition every 200m, and the
二、设置移动的激光接收器:在巡检机器人底部安装激光接收器2,并对准固定安装的激光发射器1(见图3a),激光接收器2由机器人供电。当巡检机器人在轨道上运动时,其下部的激光接收器2在轨道平直且无变形的区段能够接收到固定激光发射器1发出的光束,因此采集的信号为低电平,记为逻辑“0”;当巡检机器人在轨道上运动到变形的轨道部位时(见图3b),其下部的激光接收器2的接收角度发生变化,不再与激光发射器1对齐,因而接收不到固定激光发射器1发出的光束,因此采集的信号为高电平,记为逻辑“1”。当机器人处于弯道或上下坡时接收不到激光信号,故上述逻辑状态的记录需滤除机器人上下坡和转弯的特殊工况。机器人运动中可设定为每间隔t时间(本实施例中,t设定为0.1秒~1秒,当机器人以1m/s的速度匀速运动时,对应的行驶距离为0.1m到1m)采集一次位置信号s和对应的光束信号w、行走速度v,并将位置信号s和对应的光束信号w写入一个数组中{s,w},该信息可存储在机器人的本体控制系统存储器中,也可直接发送给处理器5。工程应用中本发明的实现十分简单,既可以在新设计的机器人上安装激光接收器2,也可以对现有的巡检机器人进行简单改造,安装激光接收器2。2. Setting up the mobile laser receiver: Install the
三、轨道状态异常分析判断:结合机器人位置信息s和对应的光束信号w、行走速度v,在处理器5中进行轨道的状态综合分析判断,也可以在机器人本体控制系统中以任务方式实现,具体的轨道自检任务流程见图4:3. Analysis and judgment of abnormal track state: Combined with the robot position information s and the corresponding beam signal w and walking speed v, the comprehensive analysis and judgment of the track state is carried out in the
1、在到达预设的检测时间T时,首先采集机器人位置信号s,结合分区位置RFID标记信息,判断机器人是否处于弯道或斜坡位段:1. When the preset detection time T is reached, first collect the robot position signal s, and combine the RFID tag information of the partition position to determine whether the robot is in a curve or slope:
若Se<s<So,且s=Sc,则判断机器人处于弯道位置,其中,s为机器人当前的位置信号,Se为分区入口RFID标记信息,So为分区出口RFID标记信息,Sc为分区弯道位置RFID标记信息;If Se<s<So, and s=Sc, it is judged that the robot is at the curve position, where s is the current position signal of the robot, Se is the RFID tag information of the partition entrance, So is the RFID tag information of the partition exit, and Sc is the partition curve position. Track location RFID tag information;
若Se<s<So,且s=Sr,则判断机器人处于斜坡位段,其中,Sr为分区斜坡位段RFID标记信息;If Se<s<So, and s=Sr, it is judged that the robot is in the slope segment, where Sr is the RFID tag information of the partitioned slope segment;
若s=Se或s=So,则判断机器人没有处于弯道或斜坡位段;If s=Se or s=So, it is judged that the robot is not in a curve or slope;
若Se<s<So,且s≠Sc、s≠Sr,则判断机器人没有处于弯道或斜坡位段;If Se<s<So, and s≠Sc, s≠Sr, it is judged that the robot is not in a curve or slope;
2、当判断机器人没有处于弯道或斜坡位段使,则继续以信号采集间隔t进行一个分区的信号采集:2. When it is judged that the robot is not in a curve or a slope, continue to perform signal acquisition in a partition at the signal acquisition interval t:
若s=Se,则表明机器人位于分区入口位置,之后根据预设的信号采集间隔t,每采集一次位置信号,就将该位置信号与So进行比对,直至s=So,结束信号采集;If s=Se, it means that the robot is located at the entrance of the partition, and then according to the preset signal acquisition interval t, every time a position signal is collected, the position signal is compared with So until s=So, the signal acquisition is ended;
若Se<s<So,则表明机器人位于分区内,之后根据预设的信号采集间隔t,每采集一次位置信号,就将该位置信号与So进行比对,直至s=So,结束信号采集;If Se<s<So, it means that the robot is located in the partition, and then according to the preset signal acquisition interval t, every time a position signal is collected, the position signal is compared with So until s=So, and the signal acquisition is ended;
若s=So,则表明机器人已经位于分区出口位置,此时结束信号采集;If s=So, it means that the robot is already at the exit position of the partition, and the signal acquisition is ended at this time;
当机器人完成一个管廊分区(200m)的巡检后,读取机器人状态信号数组{{s1,w1},{s2,w2},{s3,w3},...},该数组包含了分区内轨道的位置信息与对应状态,例如{{0.1,0},{0.2,0},{0.3,1},{0.4,1},{0.5,1},{0.6,1},{0.7,0},{0.8,0},...}。When the robot completes the inspection of a pipe gallery partition (200m), it reads the robot state signal array {{s1,w1}, {s2,w2}, {s3,w3},...}, which contains the partitions The position information of the inner track and the corresponding state, such as {{0.1,0}, {0.2,0}, {0.3,1}, {0.4,1}, {0.5,1}, {0.6,1}, {0.7, 0}, {0.8, 0}, ...}.
3、读取机器人状态信号数组{{s1,w1},{s2,w2},{s3,w3},...},结合对应的行走速度{v1,v2,v3,...}进行轨道状态的分析判断:3. Read the robot state signal array {{s1,w1}, {s2,w2}, {s3,w3}, ...}, and combine the corresponding walking speed {v1, v2, v3, ...} to track Status analysis and judgment:
具体判据如下:The specific criteria are as follows:
式中,wi,wi+1,...,wi+n为机器人分别在位置si,si+1,...,si+n时的光束信号,当wi,wi+1,...,wi+n连续为“1”时表明这一位置区段si,si+1,...,si+n的轨道状态异常;In the formula, w i , w i+1 ,...,w i+n are the beam signals of the robot at positions s i ,s i+1 ,...,s i+n respectively, when w i ,w When i+1 ,...,w i+n is "1" continuously, it indicates that the orbital state of this position segment s i ,s i+1 ,...,s i+n is abnormal;
smk为预设的区段门槛,本实施例中设置为0.1m,实际工程中可根据需要适当调整。设置此门槛一方面有防抖作用,为防止某个点位偶然的错误输出造成误判,因此取一定长度区间相邻连续点位的输出进行确认,从而起到防抖的作用,当机器人采集激光接收器信号间隔t为0.1秒,机器人以1m/s的速度匀速运动时,对应的行驶距离为0.1m,当行驶距离大于区段门槛smk时,才能保证至少两个以上采样间隔进行确认;另一方面当机器人静止时或相对运动量小于此门槛,不作轨道异常的判断,即当机器人为稳定状态时,不进行轨道异常判断,因为当机器人处于静止时或者相对运动量很小时,没有必要重复在该点进行判别。s mk is a preset section threshold, which is set to 0.1 m in this embodiment, and can be appropriately adjusted in actual engineering as required. On the one hand, setting this threshold has the function of anti-shake. In order to prevent the accidental wrong output of a certain point from causing misjudgment, the output of adjacent continuous points in a certain length interval is used for confirmation, so as to play the role of anti-shake. When the robot collects The laser receiver signal interval t is 0.1 seconds. When the robot moves at a constant speed of 1m/s, the corresponding driving distance is 0.1m. When the driving distance is greater than the segment threshold s mk , at least two sampling intervals can be guaranteed for confirmation. ; On the other hand, when the robot is stationary or the relative motion is less than this threshold, no orbital abnormality judgment is made, that is, when the robot is in a stable state, the orbital abnormality judgment is not performed, because when the robot is stationary or the relative motion is small, there is no need to repeat Judgement is made at this point.
当判断轨道异常时,即可得出轨道异常区间的大小为:When judging the orbital anomaly, the size of the orbital anomaly interval can be obtained as:
D=si+n-si (2)D=s i+n -s i (2)
式中,D为轨道异常区段大小,si+n和si分别为轨道异常区段的结束位置信号和轨道异常区段的起始位置信号。In the formula, D is the size of the track abnormal section, s i+n and si are the end position signal of the track abnormal section and the start position signal of the track abnormal section, respectively.
在实际应用中,以上分析判断过程均在处理器5或巡检机器人本体控制单元中实现,机器人每完成一个管廊分区巡检后,依据式(1)和式(2)进行一次分析计算,在检测到轨道异常后,会将告警信号和异常区段信息上送至监控后台;以上分析判断过程也可以在后台系统中实现,这种情况下,机器人只需将包含当前位置信号s和光束信号w数组{s,w}信息发送至后台分析系统,后台系统接收机器人运动过程中上送的状态信号数组{{s1,w1},{s2,w2},{s3,w3},...}后,依据式(1)和式(2)进行分析判断。In practical applications, the above analysis and judgment processes are all implemented in the
本发明融合巡检机器人位置信号和当前位置激光接收器采集的光束信号,完成轨道状态的检测和异常区间定位,具有判别准确率高、自适应能力强、可靠性好的特点,在现有机器人巡检系统上通过简单改造即可实现机器人巡检轨道的自检测能力,从而有效提升综合管廊和电力电缆隧道运维的可靠性水平。The invention integrates the position signal of the inspection robot and the beam signal collected by the laser receiver at the current position to complete the detection of the track state and the positioning of the abnormal interval, and has the characteristics of high discrimination accuracy, strong adaptive ability and good reliability. On the inspection system, the self-detection capability of the robot inspection track can be realized through a simple transformation, thereby effectively improving the reliability level of the operation and maintenance of the integrated pipe gallery and the power cable tunnel.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010595229.XA CN111702809B (en) | 2020-06-27 | 2020-06-27 | A robot track self-checking device and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010595229.XA CN111702809B (en) | 2020-06-27 | 2020-06-27 | A robot track self-checking device and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111702809A true CN111702809A (en) | 2020-09-25 |
CN111702809B CN111702809B (en) | 2021-10-08 |
Family
ID=72542817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010595229.XA Active CN111702809B (en) | 2020-06-27 | 2020-06-27 | A robot track self-checking device and method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111702809B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113524219A (en) * | 2021-07-28 | 2021-10-22 | 北京京东乾石科技有限公司 | Inspection robot and inspection method thereof |
CN114771599A (en) * | 2022-04-27 | 2022-07-22 | 上海申浙数智轨道科技有限公司 | Method and system for positioning rail fault, storage medium and electronic equipment |
CN115451827A (en) * | 2022-08-19 | 2022-12-09 | 浙江永贵电器股份有限公司 | A non-contact connector alignment monitoring device and method |
CN117086864A (en) * | 2023-08-02 | 2023-11-21 | 上海迪成智能科技有限公司 | Inspection robot safety fault accurate positioning method for monorail crane operation |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07328960A (en) * | 1994-06-07 | 1995-12-19 | Tokyo Electric Power Co Inc:The | Orbiting robot |
JP2005254395A (en) * | 2004-03-11 | 2005-09-22 | Kanazawa Univ | Ski robot and control method thereof |
KR20100027711A (en) * | 2008-09-03 | 2010-03-11 | 투아이시스(주) | Contact wire measurement system in electric railway using stereo vision method |
CN101804822A (en) * | 2009-02-18 | 2010-08-18 | 哈尔滨安通测控技术开发有限公司 | Laser measuring instrument and method |
CN201803723U (en) * | 2010-08-31 | 2011-04-20 | 成都国铁精工科技有限责任公司 | Two-dimensional laser alignment detection device |
CN102750752A (en) * | 2012-06-14 | 2012-10-24 | 山东康威通信技术股份有限公司 | Power tunnel comprehensive environment automatic tour inspection system |
CN102841604A (en) * | 2012-08-28 | 2012-12-26 | 华北电力大学 | Track system and test method for tunnel cable inspection tour robot |
CN102890448A (en) * | 2012-09-28 | 2013-01-23 | 华北电力大学 | Fuzzy logic and speed conversion combined cable tunnel inspection robot anti-swing method |
US20160313739A1 (en) * | 2008-09-19 | 2016-10-27 | International Electronic Machines Corporation | Railway Maintenance Device |
CN108955521A (en) * | 2018-05-15 | 2018-12-07 | 江苏大学 | Crane runway detection device and method based on two robot architecture of a station |
US10265856B2 (en) * | 2016-07-21 | 2019-04-23 | X Development Llc | Reorienting a distance sensor using an adjustable leveler |
CN110509289A (en) * | 2019-08-27 | 2019-11-29 | 天津华宁电子有限公司 | A kind of mining intrinsic safety type belt feeder crusing robot |
CN111123929A (en) * | 2019-12-23 | 2020-05-08 | 天行智控(成都)科技有限公司 | Rail transport partition scheduling system |
-
2020
- 2020-06-27 CN CN202010595229.XA patent/CN111702809B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07328960A (en) * | 1994-06-07 | 1995-12-19 | Tokyo Electric Power Co Inc:The | Orbiting robot |
JP2005254395A (en) * | 2004-03-11 | 2005-09-22 | Kanazawa Univ | Ski robot and control method thereof |
KR20100027711A (en) * | 2008-09-03 | 2010-03-11 | 투아이시스(주) | Contact wire measurement system in electric railway using stereo vision method |
US20160313739A1 (en) * | 2008-09-19 | 2016-10-27 | International Electronic Machines Corporation | Railway Maintenance Device |
CN101804822A (en) * | 2009-02-18 | 2010-08-18 | 哈尔滨安通测控技术开发有限公司 | Laser measuring instrument and method |
CN201803723U (en) * | 2010-08-31 | 2011-04-20 | 成都国铁精工科技有限责任公司 | Two-dimensional laser alignment detection device |
CN102750752A (en) * | 2012-06-14 | 2012-10-24 | 山东康威通信技术股份有限公司 | Power tunnel comprehensive environment automatic tour inspection system |
CN102841604A (en) * | 2012-08-28 | 2012-12-26 | 华北电力大学 | Track system and test method for tunnel cable inspection tour robot |
CN102890448A (en) * | 2012-09-28 | 2013-01-23 | 华北电力大学 | Fuzzy logic and speed conversion combined cable tunnel inspection robot anti-swing method |
US10265856B2 (en) * | 2016-07-21 | 2019-04-23 | X Development Llc | Reorienting a distance sensor using an adjustable leveler |
CN108955521A (en) * | 2018-05-15 | 2018-12-07 | 江苏大学 | Crane runway detection device and method based on two robot architecture of a station |
CN110509289A (en) * | 2019-08-27 | 2019-11-29 | 天津华宁电子有限公司 | A kind of mining intrinsic safety type belt feeder crusing robot |
CN111123929A (en) * | 2019-12-23 | 2020-05-08 | 天行智控(成都)科技有限公司 | Rail transport partition scheduling system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113524219A (en) * | 2021-07-28 | 2021-10-22 | 北京京东乾石科技有限公司 | Inspection robot and inspection method thereof |
CN113524219B (en) * | 2021-07-28 | 2023-12-05 | 北京京东乾石科技有限公司 | Inspection robot and inspection method thereof |
CN114771599A (en) * | 2022-04-27 | 2022-07-22 | 上海申浙数智轨道科技有限公司 | Method and system for positioning rail fault, storage medium and electronic equipment |
CN114771599B (en) * | 2022-04-27 | 2024-01-05 | 上海申浙数智轨道科技有限公司 | Track fault positioning method, system, storage medium and electronic equipment |
CN115451827A (en) * | 2022-08-19 | 2022-12-09 | 浙江永贵电器股份有限公司 | A non-contact connector alignment monitoring device and method |
CN117086864A (en) * | 2023-08-02 | 2023-11-21 | 上海迪成智能科技有限公司 | Inspection robot safety fault accurate positioning method for monorail crane operation |
CN117086864B (en) * | 2023-08-02 | 2024-02-27 | 上海迪成智能科技有限公司 | Inspection robot safety fault accurate positioning method for monorail crane operation |
Also Published As
Publication number | Publication date |
---|---|
CN111702809B (en) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111702809A (en) | A robot track self-checking device and method thereof | |
CN210233046U (en) | Rail mounted utility tunnel patrols and examines robot and system | |
CN109278053B (en) | Railway tunnel operation state detection and monitoring method | |
CN110245734A (en) | Tunnel structure disease recognition System and method for based on rail mounted crusing robot | |
CN112581645A (en) | Cable tunnel collaborative inspection method and system | |
CN108172021B (en) | Roadside parking management system based on camera and electronic license plate reader-writer | |
CN105501248A (en) | Railway line inspection system | |
CN108007464A (en) | Ultra-high-tension power transmission line inspection robot autonomous navigation method and system | |
CN105551108A (en) | Railway line inspection method | |
Rusu et al. | Localization in large-scale underground environments with RFID | |
CN112611375B (en) | Method for monitoring three-dimensional dynamic space-time migration track of top coal based on inertial navigation technology | |
CN103729908A (en) | Intelligent inspection device of railway tunnel and application method thereof | |
CN114954525A (en) | An unmanned transport vehicle system and operation method suitable for phosphate mining roadway | |
KR101684067B1 (en) | Positioning apparatus using a rssi pattern and method thereof | |
JP2019079303A (en) | Road facility inspection system, road facility inspection method, and server used therefor | |
CN210256112U (en) | Intelligent inspection robot with snake-shaped detection head | |
US20210383141A1 (en) | Sign position identification system and program | |
CN113703458A (en) | Obstacle position sensing method and system suitable for tunnel inspection robot | |
CN107092253A (en) | Method, device and server for controlling unmanned vehicle | |
CN115035060B (en) | Tunnel wall deformation detection method based on computer image recognition | |
CN113093267B (en) | Method for identifying cable line path | |
CN116604577A (en) | Track inspection device, running state detection method thereof and storage medium | |
CN116380055A (en) | Autonomous positioning method of fully-mechanized mining face rail-mounted inspection robot | |
CN112254701B (en) | Vehicle-mounted bridge head vehicle jump detection and analysis system and method thereof | |
JP2019114086A (en) | Information processor, information collector, map information update timing determination system, map information update timing determination method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230605 Address after: No. 7500 Chunchun Road, Minhang District, Shanghai, 201101 Patentee after: HUAHAI ENGINEERING Co.,Ltd. OF CREC SHANGHAI Address before: 201620 No. 333, Longteng Road, Shanghai, Songjiang District Patentee before: SHANGHAI University OF ENGINEERING SCIENCE |